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Abstract

2019-nCoV/SARS-CoV2 is a highly pathogenic human corona virus transmitted by respiratory
droplets with an incubation period of 2-14 days. It is both a public health and economic threat
worldwide. In this study, a deterministic mathematical model based on systems of ordinary
differential equations for the dynamics of 2019-nCoV/SARS-CoV2 transmission incorporating
social distancing as a control measure has been derived. The steady states have also been
analysed for stability using the basic reproduction number. Numerical simulations carried out
using MATLAB R2021b shows that social distancing intervention is key to reduction in the
infection rate of 2019-nCoV/SARS-nCoV2. This study recommends implementation of public
policies on public gatherings such as political rallies, worship centers,market places, football
matches to curb the potential chain transmission in a pandemic contagion.

Keywords: Basic reproduction number; Lyapunov functions; global stability; mathematical modeling.
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1 Introduction

Coronavirus belongs to Nidovirales order which include Coronaviridae, Arteriviridae and Roniviridae.
Nidovirales order are enveloped, non-segmented positive-sense RNA viruses. Coronaviridae has the
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largest identified RNA genome, [1]. Severely Acute Respiratory Syndrome (SARS)first appeared
in Guangdong, China, in November 2002, [2, 3]. This epidemic spread rapidly in the winter of
2003-2004 to many parts of the world, making it the first major disease outbreak of the 21st century.

SARS associated Coronavirus (SARS-CoV) was identified as the etiological (causal) agent of SARS,
[4]. Prior to SARS-CoV outbreak, Coronaviruses were only thought to cause mild self limiting
respiratory infections in human [5]. These viruses were assumed to be endemic in human populations
and was evidently more severe in neonates, elderly and individuals with underlying health conditions.
Moreover SARS-CoV transmission was relatively inefficient since it could only be spread through
contact with infected individual after the onset of illness. The outbreak was largely contained within
households and health care settings, [6]. An individual could only super-spread the virus through
multiple contacts due to enhanced developments of high viral burden, ability to aerosolize the virus
or due to compromised immune system [7, 1].

Later in the decade a highly pathogenic human Coronavirus (HCoV) called Middle East Respiratory
Syndrome (MERS-CoV) emerging from animal reservoir with high mortality was also identified, [8].
Most recently, another highly pathogenic human coronavirus (HCoVs) named 2019 novel Coronavirus
(2019-nCoV/SARS-CoV2)has been identified as the etiological agent of coronavirus disease 2019
abbreviated as COVID 19. This disease was first reported in Wuhan city, China, in December,
2019, [9]. Viruses such as the human coronavirus (HCoV) require host cellular factors for successful
replication during infection [10], hence systematic identification of virus-host protein-protein interac-
tion offer an effective way of eliminating viral infection including SARS-CoV, MERS-CoV and 2019-
nCoV. Signs and symptoms of patients with 2019-nCoV infection includes fever, cough and shortness
of breath. Based on the incubation of MERS-CoV and SARS which are transmitted by respiratory
droplets. Anita and Jerigan, [7] reiterates that COVID 19 occurs within 2-14 days. 2019-nCoV has
impacted countries worldwide causing severe illness and its human to human transmission makes
it a public heath and economic threat. Even with the few vaccines like Mordana mRNA-1273,
Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca AZD1222-SII Covishield(chAdox1-S), Novavax -
NVX CoV2373 that require boost shots after short intervals for their effectiveness and may have
some side effects, stringent public health surveillance systems like identification of cases from high
risk countries coupled with rapid diagnostic testing, social distancing and quarantine during an
outbreak, [1] should be implemented to curb the potential chain transmission of human coronavirus
like this deadly 2019-nCoV/SARS-CoV2.

Transmission of infectious diseases is of great interest to both medics and scholars, [11]. Public heath
programmes such as isolation,quarantine,social distancing awareness are strategic in prevention,
control and containing an epidemic can subsequently impact the rate of disease transmission in an
epidemic contagion, [12].

Mathematical models of COVID 19 have attempted to study both the epidemiological and dynamical
aspects of the disease, [7, 13, 14, 15, 16, 17, 18, 19, 8]. From epidemiological perspective, the
mathematical models have been used to determine the basic reproduction number [15, 19]. Other
models have been to estimate the effectiveness of information during the outbreak [15]. The
specific dynamics of the disease has also been done by [14]. This study proposes formulation
of a mathematical model of 2019-nCoV/SARS-CoV2 with Social Distancing as a Control Measure.

2 Objective

In this paper, we
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1. Formulate a Mathematical model for 2019-nCoV transmission incorporating social distancing
as a control measure.

2. Perform stability analysis of the formulated model

Fig. 1. The flow chart showing dynamics of 2019-nCoV Transmission and Control

3 Model

This study proposes a deterministic model based on system of ordinary differential equations for
the dynamics of 2019-nCoV transmission, incorporating social distancing as a control strategy. The
total population at any time t, N(t) is subdivided into 4 compartments: Susceptible S(t) in which all
individuals are susceptible to 2019-nCoV, Social distancing compartment D(t) , in which individuals
are aware about through social distancing as a control and other prevention measures. I(t) is the
compartment in which individuals are infected by 2019-nCoV and Recovered compartment R(t) in
which all individuals have recovered after treatment. Because of the short incubation and assuming
that the probability of survival till infectious state for exposed individuals to 2019-nCoV is unity
and therefore excluding the exposure stage. The removed class comprises of those who have been
removed from scene of infection by means of infection-acquired immunity and death.

The human population is not assumed to be constant since birth, migration, immigration and death
occur. The recruitment into S susceptible population takes place at the rate ΛN = π,. Natural
death rate occurs in S,D, I and R classes at a rate µ . Infected individuals again suffer death due
to disease at the rate σ. The rate at which susceptible observe social distance is represented by ξ
where 0 < ξ < 1. Individuals in a susceptible class may acquire infection from infected environment
or from infected humans and move to compartment I at the rate βSI where β is the effective
contact rate for the disease transmission. Observation of social distance may not be very effective
due to search of basic human needs like food so the individuals in class D may be infected at the
rate (1 − δ)βDI where δ is the success rate of observation of social distancing and (1 − δ) is the
failure rate of observation of social distancing. Individuals in I recover at the rate κ.
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Table 1. Detailed description of the state variables and relevant parameters of the
proposed SDIR Covid 19 Model

Variable/Parameter Symbol

Susceptible Population S(t)
Socially Distanced Population D(t)
Infected Population I(t)
Recovered Population R(t)
Recruitment rate into susceptible population π
Natural death rate µ
Death rate due to Covid 19 σ
Recovery rate from infection κ
Effective transmission rate β
Success rate of observation of social distance δ
Failure rate of observation of social distance (1− δ)
Awareness rate of social distance ξ

From the above descriptions of variables and parameters of the flow chart in Fig. 1 we have the
following model with non-negative initial conditions

dS

dt
= π − βSI − µS − ξS

dD

dt
= ξS − µD − (1− δ)βDI

dI

dt
= βSI + (1− δ)βDI − (σ + µ+ κ)I

dR

dt
= κI − µR (3.1)

3.1 Positivity of solutions

Assuming the initial condition of the system (3.1) to be non-negative

S(0) = S0 ≥ 0, D(0) = D0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0

Consider the first equation of the model system (3.1) at time t

dS

dt
= π − βSI − µS − ES

implying that

dS

dt
≥ −βSI − µS − ξS

dS

dt
≥ −(βI + µ+ ξ)S

integrating ∫
dS

S
≥ −

∫
(βI + µ+ ξ)dt

to obtain

lnS ≥ −[β

∫
I(t) + µ(t) + ξ(t)] + ln c1 at t = 0 and ln c1 = lnS0
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so that we have

ln

(
S(t)

S0

)
≥ −µt− ξt− β

∫
I(t)dt

Taking exponentials of both sides

S(t) ≥ S0e
−(µ+ξ)t−β

∫
I(t)dt

Therefore the first equation of the system (3.1) is positive for all t > , since et > 0 for all t ∈ R

For the second equation
dD

dt
= ξS − µD − (1− δ)βDI

This implies

dD

dt
≥ −µ− (1− δ)βDI ≥ −(µ+ (1− δ)βI)D

separating variables and integrating∫
dD

D
≥ −

∫
(µ+ (1− δ)βI)dt

we obtain

lnD(t) ≥ −µt−
∫

(1− δ)βI(t)dt+ ln c2 at t = 0, and ln c2 = lnD0

gives

ln

(
D(t)

D0

)
≥ −µt−

∫
(1− δ)βI(t)dt

Taking exponentials on both sides

D(t)

D0
≥ e−µt−

∫
(1−δ)βI(t)dt

which equivalently be written as

D(t) ≥ D0e
−µt−

∫
(1−δ)βI(t)dt

Therefore the second equation of the system (3.1) is also positive for all t > 0 since et > 0 for all t ∈ R

In the third equation of the system (3.1)

dI

dt
= βSI + (1− δ)βDI − (µ+ κ+ σ)I

implying
dI

dt
≥ −(µ+ κ+ α)I

separating the variables and integrating∫
dI

I
≥ −

∫
(µ+ κ+ σ)dt

yields
ln I(t) ≥ −(µ+ κ+ σ)t+ ln c3 at t = 0 and ln c3 = ln I0
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ln

(
I(t)

I0

)
≥ −(µ+ κ+ σ)t

taking exponentials on both sides,

I(t) ≥ I0e
−(µ+κ+σ)t

therefore the third equation of the system (3.1) is also positive for all t > 0, since et > 0 for all t ∈ R

From the fourth equation of the system (3.1)

dR

dt
= κI − µR implying

dR

dt
≥ −µR

separating the variables and integrating ∫
dR

R
≥ −

∫
µdt

giving

lnR(t) ≥ −µt+ ln c4 t = 0 and ln c4 = lnR0

ln

(
R(t)

R0

)
≥ −µt

taking exponentials on both sides

R(t) ≥ R0e
−µt R(t) ≥ 0 ∀t > 0

This implies that all the state variables are non negative for all t > 0

3.2 Boundedness of solutions

By showing that the solutions are bounded implies that the model is epidemiologically well posed
in Ω where Ω = (S,D, I,R) By adding the 4 equations in the system (3.1) to obtain the total
population size as

N(t) = S(t) +D(t) + I(t) +R(t) (3.2)

This gives

dN

dt
=

dS

dt
+

dD

dt
+

dI

dt
+

dR

dt
= π − µS − µD − µI − µR− σI

= π − (S +D + I +R)µ− σI

and from (3.2)

dN

dt
= π − µN − σI (3.3)

Proof. Let Ω = (S,D, I,R) ∈ R4
+ be any solution of the model equation with non-zero condition.

In the absence of infection or disease, equation (3.3) becomes

dN

dt
≤ π − µN
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that can be rearranged to give
dN

dt
+ µN ≤ π (3.4)

This is a linear first order differential equation that can be solved by multiplying both sides of
equation (3.4) by the integrating factor eµt, gives

eµ
dN

dt
+ µNeµt ≤ πeµt

d[Neµt] ≤ πeµtdt

integrating both sides, we have

Neµt ≤ π

µ
eµt + c

N(t) ≤ π

µ
+ ce−µt

Applying the initial conditions at

t = 0, N(0) = N0 ≤ π

µ
+ c ⇒ N0 −

π

µ
≤ c

and we now have

N(t) ≤ π

µ
+

[
N0 −

π

µ

]
e−µt (3.5)

as t → ∞ in equation (3.5), the human population N approaches K = π
µ
i.e N → K. The parameter

K = π
µ
is the carrying capacity. Hence N is bounded and all feasible solution sets of the population

of the model system approach or stay in the region

Ω =
{
S,D, I,R ∈ R4

+ : S ≥ 0, D ≥ 0, I ≥ 0, R ≥ 0, N ≤ π

µ

}
The region Ω is therefore positively invariant, that is the solution is positive for all time t and the
model system is epidemiologically meaningful and Mathematical well posed in the domain Ω. Hence
it is sufficient to consider the dynamics of the flow it generates in a proper subset

Ω = {(S,D, I,R) ∈ R4
+}

4 Equilibria Points of the Model

Analysing the model to investigate the stability of its equilibria both at disease-free equilibrium
(DFE)and disease -endemic equilibria (DEE). The disease-free equilibrium points of the model are
its steady states solutions in the absence of infection, [20]. Equilibria points of the model system
in equation (3.1)is obtained by equating the derivatives to zero and solve for the variables

π − βSI − µS − ξS = 0

ξS − µD − (1− δ)βDI = 0

βSI + (1− δ)βDI − (µ+ κ+ σ)I = 0

κI − µR = 0 (4.1)
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Using S + E = π
µ

it can be shown that at disease free equilibrium of the model system equation
(3.1)

π − µS − ξS = 0 ⇒ S =
π

µ+ ξ

ξS − µD = 0 ⇒ D =
ξS

µ

D =
ξπ

µ(µ+ ξ)

DFE = (S0D0I0R0)

= (
π

µ+ ξ
,

ξπ

µ(µ+ ξ)
, 0, 0)

5 Basic Reproduction Number

Definition 5.1 (Basic Reproduction Number,[11]). The basic reproduction number R0 in a given
population is the average number of secondary infection caused by a single infectious individual
during his/her entire lifetime as an infection when introduced into a totally or purely susceptible
population.

The dynamics of the model are highly dependent on the basic reproduction number R0 in that
π is directly related to the effort required to eliminate the infection. In this paper, the basic
reproduction number RD is the expected number of secondary SARS-nCoV 2 infection caused by
a single infected individual in the presence of social distance awareness intervention, when no such
kind of programmes are employed. We determine RD using the next generation matrix approach,
[11].

Consider a matrix

G = FV 1

where F is the Jacobian of fj , where fj is the rate of new infections in compartment j and V is
the Jacobian of Vj , where Vj is the rate of transfer of infections from one compartment to another.
From the system model equation (3.1)

F =

 βSI + (1− δ)βDI

0



V =


(σ + µ+ κ+)I

(0



F =

 βS + (1− δ)βD 0

0 0


at disease-free equilibrium DFE,

S =
π

ξ + µ
and D =

ξπ

µ(µ+ ξ)
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F =

 βπ
ξ+µ

+ (1− δ) βξπ
µ(µ+ξ)

0

0 0


V =

 σ + µ+ κ

0


we consequently determine

V −1 =

 1
σ+µ+κ

0


therefore

FV −1 =

 βπ
ξ+µ

+ (1− δ) βξπ
µ(µ+ξ)

0

0 0

 1
σ+µ+κ

0



FV −1 =


1

σ+µ+κ

(
βπ
ξ+µ

+ (1− δ) βξπ
µ(µ+ξ)

)
0

0 0


computing the eigenvalues from the characteristic equation

(
1

(µ+κ+α)

[
βπ
µ+ξ

+ (1− δ) βξπ
µ(ξ+µ)

]
− λ

)
0

0 −λ

 = 0

and obtain

λ1 = 0, λ2 =
1

(µ+ κ+ α)

[
βπ

(µ+ ξ)
+ (1− δ)

βξπ

µ(µ+ ξ)

]
for

λ2 =
βµπ + (1− δ)βξπ

µ(µ+ ξ)(µ+ κ+ α)

=
βπ

µ(µ+ κ+ α)

(
µ+ (1− δ)ξ

(ξ + µ)

)
= RD

Therefore

RD =
βπ

µ(µ+ κ+ α)

(
µ+ (1− δ)ξ

(ξ + µ)

)
In the absence of social distancing intervention , ξ = 0 and the basic reproduction number becomes

R0 =
βπ

µ(µ+ κ+ α)

(
µ+ (1− δ)0

(0 + µ)

)

=
βπ

µ(µ+ κ+ α)

This implies

RD = R0

[
µ+ (1− δ)ξ

µ+ ξ

]
(5.1)

Since we have the set 0 < ξ < 1, it follows that(
µ+ (1− δ)ξ

µ+ ξ

)
< 1
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which implies RD < R0.It is clear that social distancing intervention on transmission of SARS-
nCoV2 has a positive impact on the reduction of new infections.It is important to note that we have
used the next generation matrix approach in estimating the basic reproduction number; however
there exist other methods, including obtaining the eigenvalues of the Jacobian matrix, the survival
function technique and existence of endemic equilibrium which can be employed in models where
computations are not successful, [21].

6 Stability Analysis

6.1 Local stability and disease free equilibrium

Further analysis of the model to investigate the stability of its equilibrium. The disease-free
equilibrium point of the model is its steady states solution in the absence of disease or infection.

Theorem 6.1. The disease-free equilibrium of the model system (3.1) is locally asymptotically stable
whenever RD < 1 and unstable whenever RD > 1

Proof. We prove the theorem by obtaining the eigenvalues of the Jacobian matrix of the linearised
system given by

J =



−βI − µ− ξ 0 −βS 0

0 −(µ+ (1− δ)βI −(1− δ)βD 0

βI (1− δ)βI βS + (1− δ)βD 0

0 0 κ µ


We now compute the Jacobian matrix at DFE and investigate its stability effect due to the
reproduction number RD. The Jacobian matrix at DFE S0D0I0R0 is given by

J(D0)



−(ξ + µ) 0 −βπ
ξ+µ

0

0 −µ −(1− δ) βξπ
µ(µ+ξ)

0

0 0 βπ
ξ+µ

+ (1− δ) βξπ
µ(µ+ξ)

0

0 0 κ −µ


The characteristic equation is given by

|(J(D0)− λI)| = 0

|J(D0)− λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(ξ + µ+ λ) 0 −βπ
ξ+µ

0

0 −µ− λ −(1− δ) βξπ
µ(µ+ξ)

0

0 0

[
βπ
ξ+µ

+ (1− δ) βξπ
µ(µ+ξ)

− (σ + κ+ µ)

]
− λ 0

0 0 κ −(µ+ λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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We obtain the following eigenvalues

λ1 = −(ξ + µ)

λ2 = −µ

λ3 =
βπ

ξ + µ
+ (1− δ)

βξπ

µ(µ+ ξ)
− (σ + κ+ µ)

λ4 = −µ

From λ3, we have

λ3 =
βµπ + (1− δ)βξπ − µ(µ+ ξ)(µ+ κ+ σ)

µ(µ+ ξ)

But

RD =
βµπ + (1− δ)βξπ

µ(µ+ ξ)(µ+ κ+ σ)

This implies
λ3 = (RD − 1)(µ+ κ+ σ)

If RE < 1 then λ3 is also negative. This clearly shows that λ1, λ2, λ3, λ4 are all negative. The
eigenvalues have negative real parts from Routh-Hurwitz criterion [22, 23]. Therefore the disease-
free equilibrium is locally asymptotically stable in the region Ω if and only if RD < 1, and unstable
if RD > 1. Hence the theorem is proved.

6.2 Global Stability of the disease-free equilibrium

The global stability of the disease-free equilibrium (DFE)is easily proved using a common Lyapunov
function and La Salles’ invariance principal.

Theorem 6.2. If RD ≤ 0 then the disease-free equilibrium of the model system (3.1) is globally
asymptotically stable in the region Ω.

Proof. To prove the theorem, we begin by constructing a linear Lyapunov function We define

L :
{
(S,D, I,R) ∈ Ω :, S,D > 0

}
→ R

by
L(S,D, I,R) = (µ+ κ+ α)I

The global stability of disease free equilibrium holds if its time derivative dL
dt

≤ 0 The time derivative
of Lyapunov function L is given by

dL

dt
= (µ+ κ+ σ)I ′

= (µ+ κ+ σ)(βSI + (1− δ)βDI)− (µ+ κ+ σ)

≤ (µ+ κ+ σ)

[
β(S +D)− (µ+ κ+ σ)

]
I but S +D =

π

µ

≤ (µ+ κ+ σ)

(
βπ

µ
− (µ+ κ+ σ)

)
≤ (R0 − 1)(µ+ κ+ σ)(µ+ κ+ σ)I

Since RD < R0 in o < ξ < 1 We have

dL

dt
≤ (RD − 1)(µ+ κ+ σ)2I
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If dL
dt

= 0, then I = 0. hence L is a Lyapunov function on Ω. Thus I → 0 as t → ∞ substituting
I = 0 in equation (3.1) we obtain S+D = π

µ
. It therefore follows from La Salles invariance principle

that every solution of the model system equation (3.1) with the initial condition in Ω, approaches
DFE as t → ∞

6.3 Existence of a unique positive endemic equilibrium E∗(S∗D∗I∗R∗)

Lemma 6.3. An endemic equilibrium E∗(S∗D∗I∗R∗) exists provided that RD > 1

Proof. At endemic state, equation (3.1) becomes

π − βS∗I∗ − µS∗ − ξS∗ = 0 (6.1)

ξS∗ − µD∗ − (1− δ)βD∗I∗ = 0 (6.2)

βS∗I∗ + (1− δ)βD∗I∗ − (σ + µ+ κ)I∗ = 0 (6.3)

κI∗ − µR∗ = 0 (6.4)

To calculate the disease endemic equilibrium DEE, we set (S,D, I,R) ̸= 0 and solving for S∗ in
(6.1)

S∗ =
π

βI∗ + µ+ ξ
(6.5)

solving for E∗ from equation (6.2)

D∗ =
ξS∗

µ+ (1− δ)βI∗
(6.6)

From equation (6.3)
(βS∗ + (1− δ)βD∗ − (σ + µ+ κ)I∗ = 0

but at Disease Endemic Equilibrium I∗ ̸= 0

βS∗ + (1− δ)βD∗ − (σ + µ+ κ) = 0

S∗ =
(σ + µ+ κ)− (1− δ)βD∗

β
(6.7)

and from equation (6.4)

R∗ =
κI∗
µ

(6.8)

To obtain the value of I∗ we equate equations (6.5) and (6.7) with correct substitution for D∗, so
that we have

σ + µ+ κ

β

[
µ+ (1− δ)βI∗

µ+ (1− δ)βI∗ + (1− δ)ξ)

]
=

π

βI∗ + ξ + µ
(6.9)

solving for I∗ from the above equation, we have

(1− δ)β2(σ + µ+ κ)I2∗ + [βµ(σ + µ+ κ) + (1− δ)β(µσ + µ2 + ξκ− βπ)]

[µ+ (σ + µ+ κ)− βπ(1 + (1− δ)ξ)] = 0 (6.10)

Equation (6.10) can be expressed quadratically as

AI2∗ +BI∗ + C = 0
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where

A = (1− δ)β2(σµ+ κ)

B = βµ(σ + µ+ κ) + (1− δ)β(µσ + µ2ξκ− βπ)

C = µ(µ+ σκ)− (βπ + βπξ(1− δ))

since

RD =
βπ

µ+ (µ+ κ+ σ)

[
µ+ (1− δ)ξ

µ+ ξ

]
> 1

It is easy to show that
βπ + βπξ(1− δ) > µ(µ+ σ + κ)

This clearly proves that C < 0 when RD > 1. Equation (6.10) can only be expressed as either

AI2∗ +BI∗ − C = 0

and by Descartes rule,[24]. There is only one positive root of equation (6.10), that is I∗ > 0.
We therefore conclude that there exist one unique positive disease endemic equilibrium whenever
RD > 0

6.4 Local stability of the endemic equilibrium

Theorem 6.4. If RD > 1 , then the disease-endemic equilibrium of the model system (3.1) is locally
asymptotically stable

Proof. A disease is endemic in a population if it persist in the population. We investigate the
stability of the E∗(S∗D∗I∗R∗) using the Routh-Hurwitz criterion

The Jacobian matrix at E∗(S∗D∗I∗R∗) given by

JD∗ =



−βI∗ − (µ+ ξ) 0 −βS∗ 0

ξ −(µ+ (1− δ)βI∗) −(1− δ)βD∗ 0

βI∗ (1− δ)βI∗
[
(µ+ κ+ σ − βS∗ − (1− δ)βD∗

]
0

0 0 κ −µ


The characteristic equation is given by

|J(E∗)− λI| = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(βI∗ + µ+ ξ)− λ 0 −βS∗ 0

ξ −(µ+ (1− δ)βI∗)− λ −(1− δ)βD∗ 0

βI∗ (1− δ)βI∗ (µ+ κ+ σ)− βS∗ − (1− δ)βD∗ − λ 0

0 0 κ −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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The characteristic equation associated with the Jacobian matrix above is given by

B0λ
4 +B1λ

3 +B2λ
2 +B3λ+B4 = 0 (6.11)

where

B0 = 1

B1 = µ+ d1 + d3 + d5

B2 = d1(d2 + d5 + µ) + d2(d5 + µ) + d3d4

B3 = d1d2(µ+ d5) + µd5(d1 + d2) + d3d4(d1 + µ)

B4 = d1µ(d2d5 + d3d4) + d4ξµβS∗

and

d1 = βI∗ + µ+ ξ

d2 = µ+ (1− δ)βI∗

d3 = (1− δ)βD∗

d4 = (1− δ)βI∗

d5 = (µ+ κ+ α)− βS∗ − (1− δ)βD∗

From equation (6.11), the constants B0, B1, B2, B3, andB4 are all positive. Now using
Routh-Hurwitz criterion for a fourth degree polynomial [22], to ascertain the stability of the
characteristic equation which satisfy the necessary condition for Routh-Hurwitz criterion, we next
verify the sufficient condition for the Routh- Hurwitz criterion of stability. Therefore constructing
the Routh array;

λ4

λ3

λ2

λ1

λ0

∣∣∣∣∣∣∣∣∣∣
B0 B2 B4

B1 B3 0
a1 B4 0
a2 0 0
B4 0 0

∣∣∣∣∣∣∣∣∣∣
where

a1 =
B1B2 −B0B3

B1
> 0 for B1B2 > B0B3

a2 = B3 −
B2

1B4

B1B2 −B0B3
> 0 for B3 >

B2
1B4

B1B2 −B0B3

All the elements of the first column of the Routh array are positive. There is no sign change in the
first column of the Routh array which is the sufficient condition for the Routh-Hurwitz stability.
Hence the endemic equilibrium is locally asymptotically stable.

6.5 Global stability of the endemic equilibrium of the model (EE)

To prove the global stability of the endemic equilibrium,E∗ under the condition RD > 1 we apply
the Lyapunov function [22, 23, 25], that takes advantage of the property of the function.

h(x) = x− 1− ln(x)

which is positive in (0,∞) except at x = 1 where it vanishes

Theorem 6.5. The endemic equilibrium E∗ of the model (3.1) is globally asymptotically stable in
Ω whenever RD > 1
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Proof. Consider the following Logarithmic Lyapunov function V defined by

V (S,E, I, R) =

4∑
i=1

(xi − x∗
i lnxi)

xi is the population of the ith compartment while x∗
i is the equilibrium value of xi. Lyapunov

function denoted by V is continuous and differentiable. The global stability of the endemic equilibrium
holds if its time derivative dV

dt
≤ 0. The time derivative of Lyapunov function V is given by

dV

dt
(S,E, I,R) =

4∑
i=1

(
1− x∗

i

xi

)
dxi

dt

so that we have

dV

dt
=

(
1− S∗

S

)
dS

dt
+

(
1− D∗

D

)
dD

dt
+

(
1− I∗

I

)
dI

dt
+

(
1− R∗

R

)
RS

dt

=

(
1− S∗

S

)[
π − βSI − µS − ξS

]
+

(
1− D∗

D

)[
ξS − µD − (1− δ)βDI

]
+

(
1− I∗

I

)[
βSI + (1− δ)βDI − (µ+ κ+ σ)I

]
+

(
1− R∗

R

)[
κI − µR

]
(6.12)

An endemic equilibrium S′ = D′ = I ′ = R′ = 0, we therefore can have the following substitutions
From equation (6.1), we have

π = βS∗I∗ + µS + ξS∗ (6.13)

From equation (6.2), we have

(µ+ κ+ σ) =

(
βS∗I∗ + (1− δ)βD∗I∗

I∗

)
(6.14)

From equation (6.3), we have

β =

(
ξS∗ + µD∗

(1− δ)D∗I∗

)
(6.15)

from equation (6.4). Next we make

κ =
µR∗

I∗
(6.16)

Using equations (6.13),(6.14),(6.15) and (6.16) to rewrite equation (6.12) and simplifications yields

dV

dt
= (µ+ ξ)S∗

(
2− S∗

S
− S

S∗

)
+

(
1− S∗

S

)(
1− SI

S∗I∗

)

+

(
1− D∗

D

)
+

[
ξ

(
1− S∗DI

SD∗I∗

)
− µ

(
1 +

I

I∗

)]

+

(
1− I∗

I

)(
ξS∗ + µD∗

D∗

)
I

I∗

[
1

1− δ

(
1− S∗

S

)
+

(
1− D∗

D

)]

+

(
1− R∗

R

)[
1− I∗R

IR∗

]
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At

S = S∗, D = D∗, I = I∗ R = R∗

and from the property that the geometric mean and is less than or equal to arithmetic mean, the
inequality dV

dt
≤ 0 holds if and only if (S,D,I,R) takes the equilibrium values S∗D∗I∗R∗. Therefore,

by La Salle’s invariance Principle,[26] the endemic equilibrium E∗ is globally asymptotically stable.
Global asymptotic stability shows that regardless of any solution,the solution of the model will
converge at E∗ whenever RD > 1. Epidemiologically, any perturbation of the model solution by the
introduction of infectives shows that the model solution will converge to the E∗ whenever RD > 1

7 Numerical Simulations

Numerical simulations were carried using MATLAB R2021b to one, understand the complex asymptomatic
infectious individuals with regards to reproduction number and secondly to graphically illustrate the
long term effect of social distance intervention on the dynamics 2019-nCov/SARS-CoV2 infection.
The solution of the model above is done using parameter values shown in table below:

Table 2. Detailed description of the state variables and relevant parameters of the
proposed SDIR Covid 19 Model

Detailed Description Symbol Value Source

Susceptible Population S(t) 5.4× 107 [27]
Susceptible Recruitment Rate π 0.1545 [7]
Natural Death Rate µ 5.2× 10−8 [27]
Death Rate due to Covid 19 σ 2.607× 10−7 [7]
Recovered Reverting Rate to Susceptible κ 6.75× 10−1 Assumed
Effective Contact Transmission Rate β 2.985× 10−8 Computed
Social Distance Intervention Rate δ 0.75 Assumed
Social Distance Awareness Rate ξ 1.75× 10−7 Computed

Fig. 2. Spread of SARS-nCov2 Keeping Social Distance
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Fig. 3. Spread of SARS-nCov2 Without Keeping Social Distance

8 Discussion

Based on illustrations from Fig. 2, it is clear that the population of the susceptible individuals
shortly starts dropping due to social distancing intervention, consequently the recovered individuals
starts to rise. The number of 2019-nCoV/SARS-nCoV2 infected individuals increase for a short
period then decreases before stabilising below the susceptible population. This is an indication that
social distancing intervention is key to reduction in the infection rate of 2019-nCoV/SARS-nCoV2
hence public gatherings in political rallies, worship centers,market places, football matches should
be put on hold. The ministry of health and in particular, department of public health together with
other stakeholders should suggest measures where social distancing is kept. Similarly Fig. 3 with a
slight decrease in social distancing intervention δ i.e the population of exposed population becomes
apparently high and the recovered population also reduces.

9 Conclusion and Recommendations

In this study, a deterministic mathematical model based on systems of ordinary differential equations
for the dynamics of 2019-nCoV/SARS-CoV2 transmission incorporating social distancing as a
control measure was derived. The stability of the disease free and endemic equilibrium have been
analysed. The results of the disease free equilibrium showed that the model is both locally and
globally stable when RSE < 1 thus reducing RSE to less than unity reduces the spread of the disease.
Endemic equilibrium has also been analysed and was found to be locally asymptotically stable when
RSE < 1. From the numerical simulation, it is clear that the public health sector should consider
keeping social distancing during public gatherings in political rallies, worship centers,market places,
football matches as a major intervention strategy for low 2019-nCoV/SARS-nCoV2 infection rate.
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