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ABSTRACT 
 

A theoretical study of radiation heat transfer with reference to an optically thick fluid past an 
oscillating vertical flat plate with variable temperature in the presence of convection and radiation 
has been presented.  The fluid is considered to be a gray, absorbing-emitting radiation but non- 
scattering medium. The Rosseland flux approximation plays an important role in determining the 
effect of radiation heat transfer contribution. This problem is an improvement of Stoke’s first and 
second problem to justify the physical signifance on this problem. This problem is solved by 
employing Laplace transfrom method. Numerical results of velocity and temperature distributions 
are depicted graphically. Also, numerical results of frictional shearing stress and critical Grashof 
number are presented in tables. 
 

 
Keywords: Thermal radiation; gray gas flow; Grashof number; Rosseland model; radiative heat-flux. 
 

NOMENCLATURES  

pc
 : Specific heat at constant pressure 

g
 : Gravity acceleration 
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u  : Grashof number 
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k  : Rosseland mean absorption coefficient 





 
 
 

k
3

1

16
=

3

σ T

kk  : Radiation parameter 
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 
 

Pr =
ν

α  : Prandtl number 

rq  : The radiative heat flux 
t   : Time 
t   : Non-dimensional time 
T  : Fluid temperature 

wT  : Plate temperature 


T
 : Ambient cold fluid 

T  : Non-dimensional fluid temperature 

0u  : Characteristic velocity 
u  : Fluid velocity 
u  : Non-dimensional fluid velocity 

x ,
y
 : Co-ordinate axes 

y
 : Non-dimensional distance 

 

GREEK SYMBOLS 
 

β
 : Thermal expansion coefficient 

ν  : Kinematic coefficient of viscosity 
σ  : Stefan-Boltzman constant 
ρ

 : Density 
ω  : Frequency of oscillations 
 
 
 

2
0

=
ω ν

ω
u  : Non-dimensional frequency of oscillations 

ωt  : Phase angle 

xτ  : Shear stress 
 

SUBSCRIPTS 
 
W : Plate surface 
  : Away from the plate 
 

1. INTRODUCTION 
 

Radiation heat transfer of an optically dense 
medium is subjected to a large optical thickness 
as defined just as with molecular conductivity the 
transfer of radiant energy in a medium to 
compare with diffusion transfer. Here, the 
interphoton collision becomes predominant. For 
large optical thickness ( optically dense medium), 
a gray body radiation depends on the basis of 

diffusion concept of radiation heat transfer. This 
leads to Rosseland approximation for an optically 
thick medium. The study of radiation heat 
transfer of an optically thick fluid has received 
wide attention to many researchers in the field of 
engineering and space physics. The importance 
of a study of thermal radiation effect takes place 
in a numerious applications of condensed fuel 
combustion, solar energy collectors, heat 
exchangers, glass and ceramics  manufacture, 
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rocket propulsion chembers and laser processing 
of materials. A litereture survey reveals to the 
study of Chen et al. [1], Reddy and Kumar [2], 
Nassab and Maramisaran [3], Obidina and 
Kiseleva [4], Saladino and Farmer [5] and Gedda 
et al. [6]. In taking into account of  the problem 
on radiation convection flows which leads to 
include the Schuster-Schwartzchild two flux 
model; the Milne-Eddington approximation and 
the Rosseland diffusion flux model (Siegel and 
Howell [7]). Each flux model has its relative 
benefits and different regimes of validity. Davies 
[8] studied the free and forced convection flow on 
a plate with thermal radiation by employing a 
heat- balance integral method. Chen et al. [9] 
studied “free gray absorbing -emitting, non-
scattering convection boundary layer flow along 
an isothermal horizontal plate with thermal 
radiation flux using the Rosseland diffusion 
model”. Chamkha et. al [10] studied “viscoelastic 
free convection boundary layer flow from a 
doubly inclined geometry i.e., wedge, in porous 
media with the Rosseland diffusion flux model”. 
Bestman [11] studied “asymptotic compressible 
flow along a long vertical hot plate in the 
presence of an externally applied magnetic field 
with strong radiative transfer and temperature 
dependent viscosity and thermal conductivity, 
using differential approximation for the radiative 
flux”. Campo and Schuler [12] investigated 
“numerically the interaction of forced convection 
and thermal radiation heat transfer in laminar 
absorbing-emitting gray gas pipe flow using the 
method of moments to approximate the radiative 
heat flux”. Yih  [13] employed “the Rosseland flux 
model to study numerically the radiative effects 
on free convection boundary layer flow from an 
isothermal vertical cylinder in porous media”. 
Hossain et al.  [14] studied “the Rosseland 
diffusion radiation flux model to simulate the 
natural convection with variable viscosity heat 
transfer from a vertical plate with suction effects”. 
“An oscillating plate temperature effect on a flow 
past an infinite vertical porous plate with constant 
suction and embedded in a porous medium         
was examined” by Jaiswal and Soundalgekar 
[15]. Muthucumaraswamy and Ganesan [16] 
examined “the radiation effects on flow past an 
impulsively started infinite vertical plate with 
variable temperature”. Makinde [17] employed “a 
superposition technique and a Rosseland 
difffusion flux model to study the natural 
convection heat and mass transfer in a gray, 
absorbing- emitting fluid along a porous vertical 
translating plate”. Kumar and Verma [18] studied 
“the thermal radiation and mass transfer effects 
on an MHD flow past a vertical oscillating plate 

with variable temperature and mass diffusion”. 
“An unsteady radiative flow past an oscillating 
semi-infinite vertical plate with uniform mass flux 
was presented” by Muthucumaraswamy and 
Saravanan [19]. Ghosh et al. [20] investigated 
“the transient MHD free convection flow of an 
optically thick gray gas past a moving vertical 
plate in the presence of thermal radiation and 
mass diffusion”. “An MHD radiating heat/mass 
transport in a Darcian porous regime bounded by 
an oscillating vertical surface was presented” by 
Ahmed et al. [21]. “Thermal radiation on 
oscillatory flow past a moving vertical plate in a 
time varying gravity field has been investigated” 
by Ghosh Swapan Kumar [22]. Nevertheless, 
several investigations on different aspect of flow 
have been carried out by Biswas et al. [23], 
Biswas and Ahmed [24]. Biswas et al. [25-26], 
Ahmed and Biswas [27], Gazi et al. [28] and 
Ghosh [29-30]. In compliance with the study of 
heat transfer aspect of flow, several 
investigations have been made on their works of 
Fakour et al. [31-33], Rahbari et al. [34], Fakour 
et al. [35-36], Damala et al. [37] and Chenna 
Kesavaiah et al. [38-39].   
 
The purpose of present investigation is to deal 
with radiative heat transfer of an optically dense 
medium with temperature variation along an 
infinite oscillating vertical flat plate with reference 
to gravity driven radiation- convection flow. The 
importance of a study of such fluid flow problem 
by employing Rosseland diffusion flux model 
takes place of a gray gas flow by which the fluid 
is considered to be gray, absorbing - emitting 
radiation but non- scattering medium. This 
problem is an improvement of Stoke’s first and 
second problem to generate gravity driven 
radiation- convection flow. This mathematical 
study does not seem to appeared in the 
literature. The importance of a study of this 
problem lies in its application of fluid engineering, 
space craft propulsion system and high 
temperature physics.   

   
2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTION 

      
Consider an unsteady flow of a viscous 
incompressible fluid occupying a semi-infinite 
region of space bounded by an infinite vertical 
flat plate with variable temperature moving with 

uniform velocity 
0u  which varies harmonically 

with time in the presence of  convection and 
radiation. The fluid is considered to be a gray, 
absorbing-emitting radiation but non-scattering 
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medium. To choose cartesian co-ordinate system 

in such a way that x -axis is taken along the 

plate and y -axis is normal to it. It is considered 

that all fluid properties are constant except the 
influence of density variation in the body force 
term. Initally, the plate and fluid are at same 
temperature in a stationary condition. At time 

0,t   the plate is given an impulsive motion in 

the vertical direction against the gravitional field 

with the constant velocity 
0 ,u  which varies 

harmonically with time and the plate temperature 
is made to rise linearly with time. Since the plate 

is infinite along x -direction, all physical 

quantites are functions of y   and t   only.   

 
Under the Boussinesq approximation, the flow is 
governed by the following equation:  
 

 
2

2

u u
g T T

t y
  

  
   

  
         (1) 

 
The energy equation becomes: 
 

2

2

1 r

p p

qT k T

c ct y y 

   
 

    
           (2) 

 

where , , , , , , , , , andp ru t g T T k c q  
     

are respectively, the velocity component along 
the plate, the time, the kinematic coefficient of 
viscosity, the gravitational acceleration, the 
coefficient of thermal expansion, the temperature 
of the fluid, the temperature of the fluid far away 
from the plate, the thermal conductivity, the 
specific heat at constant pressure, the density of 
the fluid and the radiative heat-flux. 
 
The boundary conditions are 
 

0, for all , 0
      u T T y t

 

 00: cos , at 0wt u u t T T T T At y  
                (3) 

 

0, asu T T y
       

 

where 
2

0 / ,  wA u T  is the temperature at the 

plate, 
0u  is the velocity of the plate and   is the 

frequency of oscillations. 
 
Introducing dimensionless quantities reads: 
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   is the Grashof number   (4) 

 
Equation (1) together with the dimensionless 
quantities (4) transform into 
 

2

2

u u
GrT

t y

 
 
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                               (5) 

 
The radiation flux vector can be found from 
Isachenko et al. [40] and its formula is derived on 
the basis of the diffusion concept of radiation 
heat transfer in the following way: 
 

4

*

4

3


 


r

T
q

k y


                                          (6) 

where 
*and k  are respectively, the Stefan-

Boltzman constant and the spectrul mean 
absorption coefficient of the medium.  
It is assumed that the temperature differences 
within the flow are sufficiently small such that 

4T   may be regarded as a linear function of 
temperature. It can be established by expanding 

4T   i.e. a Taylor series about T  and neglecting 

higher order term. Therefore 
4T   can be 

expressed in the following way 
 

4 3 44 3T T T T 
                                         (7) 

 
Using equations (6) and (7), equation (2) takes 
the form 
 

  
32 2

2 * 2
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3p p

TT k T T
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          (8) 

 
Using dimensionless quantities (4) , equation (8) 
can be written in a dimensionless form reads 
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16
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
 is the radiation parameter. 

 
The dimensionless boundary conditions turn into 

0, 0 for all , 0u T y t    
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0 : cos , at 0t u t T t y            (10) 

 

0, 0 atu T y    

 
Applying Laplace transform  of equations (5) and 
(9), we have 
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* *

2
Gr

u
su T

y


 


                                        (11) 
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The corresponding boundary conditions become 
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2
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s
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1 1
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* *0, 0 atu T y    
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2
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   (14) 

 

By applying temperature boundary conditions 
given by (13), equation (12) becomes  
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Using equation (15), equation (11) gives 
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By applying Laplace inversion method, the 
equation (14) gives 
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Using Convolution theorem with reference to 
Laplace Inversion method together with the 
boundary condition (13) subject to (17), the 
solution of velocity and temperature distribution 
with reference to (16) and (15) such as   
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where and t    are, respectively, the dimensionless frequency of oscillations and phase angle and 
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Particular case of interest: 
 

Non–oscillatory case by putting 0 and 0t   .The dimensionless boundary conditions (10) 

turns into: 
 

0, 0 for all , 0u T y t   0 : 1, at 0t u T t y                                                  (20) 

   

0, 0 asu T y    

 
By applying Laplace transform subject to equations (11) and (12) together with the boundary condition 
(20) the velocity and temperature distribution can be obtained by the help of Laplace Inversion 
method such as 
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  Shear stress at the plate  0 fory  0 and 0t   takes the form 

 

0

x

y

du

dy
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


1 4 Gr 1 Gr 5
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3 1 2 1 3

t t
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t
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   
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In the absence of Grashof number  Gr 0 , the velocity distribution  ,u y t  given by equation (21a) 

turns into  
 

 , erfc
2

y
u y t

t

 
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 
                                                                          (23) 

 
Equation (23) gives the velocity of Stoke’s first problem reads:    
 

 , erfc 1 erf
2 2

y y
u y t
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   
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The temperature distribution (19) gives the Nusselt number Nu at the plate: 

 

0y

dT
Nu

dy


 
1

Pr
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t

k



                  (24) 

 
3. RESULTS AND DISCUSSION 
 

The graphical discussions in relevance to the 
physical interpretation has been made with 

arbitrary values of radiation parameter (
1k ), 

Grashof number ( Gr ), Prandtl number ( Pr ), 

frequency parameter (  ), phase  angle ( t ) 

and time ( t ) in Figs. 1 to 7. In Fig. 1, it is evident 

that the buoyancy force  Gr  on velocity field 
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leads to increase the flow behavior with increase 

in Grashof number Gr . As the buoyancy effects 

become relatively large due to increasing value 
of Gr, the fluid velocity increases, reaching its 
peak value near the plate surface and then 
decreases monotonically to the zero-free stream 
value satisfying the far field condition. In the case 
of higher buoyancy it is important to note that 
there is no flow reversal on velocity field and the 
maximum peak of the profile occurs at the plate 

0y   while the peak of the profile decreases 

steadily near the plate surface. This situation 
happens in the case of an oscillating plate so that 
the flow velocity is charactarised by the higher 
buoyancy to increase the fluid velocity with an 

increase in Gr . It is noticed from Fig. 2 that the 

fluid velocity decreases with an increase of 

phase angle  t . This situation reveals that the 

phase angle  t  leads to fall the flow velocity 

on increasing t  with reference to impulsive 

onset into motion. There arises a phase lag on 
molecular diffusion region with interphoton 
collision. Fig. 3 shows that, for buoyancy added 

flow  Gr 0 , the velocity increases with 

increase in time ( t ). The maximum peak of the 

velocity profile occurs adjacent to the plate 
whereas the peak of the profile quickly 
decreases on the plate surface. Since the plate 
oscillates harmonically with time, the velocity 
profiles are skewed near the plate surface. The 
skewness is characterised by the impulsive 
movement of the plate with time variation at the 
plate. It is observed from Fig. 4 that in the 

absence of oscillation  0 and 0t   and 

the buoyancy force  Gr 0 , this represents 

Stoke’s flow with reference to the velocity 

distribution  , erfc 1 erf
2 2

y y
u y t

t t

   
     

   

. This 

situation reveals that the velocity increases with 
increase in time t . Fig. 5 shows that the 
temperature field (T) increases with an increase 

in radiation parameter  1k . Larger values of 

radiation parameter  1k exert its influence on 

Rosseland approximation in the determination of 
an increased dominance of thermal radiation 
over conduction. As such thermal radiation 
supplements the thermal diffusion and increases 
the overall thermal diffusivity of the regime since 
the local radiant diffusion flux model adds 
radiation conductivity to the conventional thermal 
conductivity. As a result, the fluid temperature 
and velocity in the fluid regime of flow are 
increased. Fig. 6 demontrates that with the 

increase in Prandtl number ( Pr ) the temperature 
field (T) decreases near the plate.  This is true 
since; in general, fluid with low Prandtl number 
has higher thermal conductivity. The higher 
thermal conductivity means fluid has affinity for 
heat and so low Prandtl fluid attains 
comparatively higher temperature. The effect of 
Prandtl number plays a significant role on 
diffusion concept of flow medium. If Prandtl 

number is greater than one ( Pr 1 ) the diffisivity 
of the flow medium tends to ionization of the flow. 

In a highly ionized fluid Pr 1 , the effect of 
Prandtl number (Pr = 0.72) for air transformed 
into ionized state to water. Fig. 7 reveals that 
with an increase in t, there is a strong 
acceleration in the flow. It is stated that the 
temperature field (T) increases with an increase 
in time ( t ). Thus, time variation at the plate gives 

rise to increase in temperature with an increase 
in time ( t ).   

 

Frictional shear stress at the plate 0y  : 

Frictional shearing stress at the plate can be obtained from 

0

0
y

du

dy


   with reference to the 

solution  ,u y t  of (18) 

 

0

x

y

du

dy




  

    1 2
erfc erfc

4

i ti e i t i t
t

  



       


 

    2
erfc erfci ti e i t i t

t

  



    


 5 Gr

1
6 1

t
t 

 
 


          (25)  
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Fig. 1. Velocity profiles for  large Grashof number Gr  

 

 
 

Fig. 2. Velocity profiles for  increasing  t  
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Fig. 3.  Velocity profiles for increasing  time t  

 

 
 

Fig. 4.  Velocity profiles for increasing  time t  
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Fig. 5. Temperature profiles for increasing  1
k  

 

 
 

Fig. 6.  Temperature profiles for increasing  Pr  
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Fig. 7.  Temperature profiles for  increasing  time t  

 
Critical Grashof Number: 
 

Critical Grashof Number can be obtained by 

putting  

0

0
y

du

dy


   in equation (25) reads: 

                     

    crit

1 1
Gr erfc erfc

4

i ti e i t i t
AA t

  


      


 

    erfc erfci ti e i t i t     


        (26) 

where  5 1
1

6 1

t
A t 

 
 


 

 

Nusselt number Nu  at the plate becomes: 
 

2
t


       (27) 

 

Numerical results of shear stress and critical 
Grashof number are presented in tables. Table 1 
shows that the frictional shear stress at the plate 
increases with an increase in either radiation 

parameter  1k  or time variation (t). Also, there 

exists a seperation at the plate for 0.2t  . Also, 

frictional drag increases to impede thermal 
diffusion at the plate surface. Table 2 
demonstrates that the frictional shear stress 
decrease in magnitude with increase in either 

Grashof number ( Gr ) or radiation parameter       

(
1k ). This implicates the situation of drag 

reducing effect to produce stronger thermal 
diffusion at the plate surface. It is noticed from 
Table 3 that the frictional shear stress increases 
with an increase  in either phase angle ( t ) or 

time (t). It is interesting to note that there exists 

separation when 0.4t  . Since phase angle 

rotates about the time variation at the plate, the 
frictional drag is increased to show the influence 
of thermal radiation at the plate surface. It is 
evident from Table 4 that there arises a 
destabilizing influence on the flow field on 

increasing radiation parameter  1k . Table 5 

indicates that the Critical Grashof number 

 critGr  decreases with increase in either phase 

angle ( t ) or time (t) to show the influence of 

destabilizing effect on the flow field. It is noticed 
from Tables 4 and 5 that no flow reversal occurs 
at the plate surface.  
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Table 1. Shear stress at the plate for Pr 0.72, Gr 10, 0.2 and
4

x t


       

 

1t k  1.0 2.0 3.0 4.0 5.0 

0.2 
0.4 
0.6 
0.8 
1.0 

– 0.78045  
   0.06960 
   0.85560 
   1.69011 
   2.59257 

 – 0.76103  
    0.12454 
    0.95652 
    1.84549 
    2.80973 

– 0.76802 
   0.16132 
   1.02411 
   1.94954 
   2.95515 

– 0.73844 
   0.18844 
   1.07392 
   2.02623 
   3.06233 

– 0.73095 
   0.20961 
   1.11282 
   2.08612 
  3.14602 

 

Table 2. Shear stress at the plate for Pr 0.72, 0.2, and 0.2
4

x t t


       

 

1Gr k  5.0 10.0 15.0 20.0 25.0 

1.0 
2.0 
3.0 
4.0 
5.0 

 – 0.91187  
– 0.90216 
– 0.89565 
– 0.89086 
– 0.88712 

– 0.78045 
– 0.76103 
– 0.74802 
– 0.73844 
– 0.73095 

– 0.64905 
– 0.61991 
– 0.60040 
– 0.58602 
– 0.57479 

– 0.51763 
– 0.47878 
– 0.45277 
– 0.43360 
– 0.41862 

– 0.38621 
– 0.33766 
– 0.30514 
– 0.28117 
– 0.26246 

 

Table 3. Shear stress at the plate 
1for Pr 0.72, 0.2, Gr 10 and 1x k      

 

t t  0.0 
6

  
4

  
3

  
2

  

0.2 
0.4 
0.6 
0.8 
1.0 

– 0.99874  
– 0.14867 
   0.63731 
   1.47182 
   2.37429 

– 0.78045 
– 0.76103 
   0.76096 
   1.59547 
   2.49794 

– 0.78045 
   0.06960 
   0.85560 
   1.69011 
   2.59257 

– 0.68115 
   0.16890 
   0.95490 
   1.78941 
   2.69188 

– 0.50544 
   0.34462 
   1.13062 
   1.96512 
   2.86759 

 

Table 4. Critical Grashof number critGr for Pr 0.72, 0.2 and
4

t


     

 

1t k  1.0 2.0 3.0 4.0 5.0 

0.2 
0.4 
0.6 
0.8 
1.0 

39.69485 
9.06368 
3.73500 
1.96185 
1.17716 

36.96329 
8.43998 
3.47798 
1.82685 
1.09615 

35.33497 
8.06817 
3.32477 
1.74637 
1.04787 

34.22374 
7.81444 
3.22021 
1.69145 
1.01491 

33.40347 
7.62715 
3.14303 
1.65091 
0.99059 

 

Table 5. Critical Grashof number 
crit 1Gr for Pr 0.72, 1.0 and 0.2k     

 

t t  00  
6

  
4

  
3

  
2

  

0.2 
0.4 
0.6 
0.8 
1.0 

48.00001 
12.00000 
5.33333 
3.00000 
1.92000 

43.29557 
10.33673 
4.42796 
2.41194 
1.49922 

39.69485 
9.06368 
3.73500 
1.96185 
1.17716 

35.91665 
7.72789 
3.00789 
1.48958 
0.83923 

29.23097 
5.36414 
1.72123 
0.65387 
0.24124 

 

4. CONCLUSION 
 
Radiation heat transfer aspect on transient gray 
gas flow of an optically thick fluid past an 

oscillating vertical flat plate with variable 
temperature in the presence of thermal radiation 
has been presented. This problem is an 
improvement of Stoke’s first and second problem 
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with Rosseland radiation – conduction 
parameter. The present problem deals with 
optically dense medium with a decisive 
importance to black body radiation.  The 
governing equations have been solved by using 
Laplace transform method. The velocity profiles 
are influenced by the Rossel and radiation – 
conduction parameter. The fluid velocity greatly 
increases for increasing values of Grash of 
number while the fluid velocity is accelerated 
when time progresses. The frictional shear stress 
at the plate is reduced in magnitude with 
increase in Grash of number or radiation 
parameter while it is enhanced for increasing 
values of phase angle. It is stated that the critical 
Grashof number increases for increasing values 
of phase angle or time whereas it decreases for 
increasing values of radiation parameter. 
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