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Abstract

In this paper, a mathematical investigation has been done for Cumulative Sum control ~ Chart (CSCC) of
Truncated Negative Binomial Distribution (TNBD) under inspection error using the sequential probability
ratio test (SPRT). Average Run Length (ARL), d (lead distance) and ¢ (angle of the mask) is calculated for
different values of error rates and different values of parameter of the distribution.

Keywords: TNBD; CSCC; ARL; inspection error; SPRT.

1 Introduction

In statistics, truncated distributions are conditional distributions that effect from confining the area of
additional probability distribution. Truncated distributions occur in realistic statistics in cases where the
capability to record or even to know about, occurrences is restricted to values which lie within a specified range.
The Poisson is often the standard distribution regarded as modeling random counts. As such, for analyzing
control limits for processes with discrete responses, usual procedures are based on the Poisson distribution.
Poisson distribution has the distinguished property that the mean and variance of the distribution is equal.
Though, for several processes, the Poisson distribution offers an unsatisfactory model. Different kinds of
procedures can make distributions of counts which are not effectively modeled by the Poisson distribution. Such
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processes comprise conditions where the intensity rates of the counts differ at random over time. Negative
binomial distribution is a typical expansion of the Poisson distribution and authorizes for over-dispersion
relative to the Poisson. The negative binomial distribution can be resultant of numerous models. The negative
binomial is also resulting as a mixture of Poisson distributions however, usually resulting as a generalization of
the geometric distribution. Applications of the negative binomial distribution are extensive. The negative
binomial distribution is extensively used for the description of data excessively assorted to be fitted by a Poisson
distribution. However, observed samples may be truncated, in the sense that the number of individuals falling
into the zero class cannot be determined. Samford [1] have illustrated the use of truncated negative binomial
distribution over Poisson distribution by considering the method of moments. Hoffman [2] considered the
control limits of negative binomial distribution for count data with discrete responses based on Poisson
distribution. Chakraborty et al. [3] investigated the effect of measurement error on the power and ARL of
control chart for ZTNBD based on standardized normal variates.

The CUSUM chart is exercises to examine the mean of a process based on samples taken from the process at
given times. The measurements of the samples in a given time comprises a subgroup rather examining the mean
of every subgroup independently, the CUSUM chart illustrates the accumulated information of existing and
earlier samples. This is the reason why CUSUM chart is usually better than the X —chart for detecting small
shifts in the mean of a process. The CUSUM charts rely on the requirement of a target value and a known or
consistent estimate of the standard deviation. This is the reason; the CUSUM chart is better used past the
process control has been recognized. The CUSUM chart usually signals an out-of-control process by a growing
or sliding drift of the cumulative sum until it crosses the boundary. An assignable cause is suspected whenever
the CUSUM chart indicates an out-of-control process. Hoffman [2] calculated exact and approximate control
limits for count data based on the negative binomial distribution. Sankle et al. [4] presented CSCC for truncated
normal distribution considering the effect of inspection error. Sayyed and Singh [5] considered CSCC for
binomial parameters under the effect of inspection error where the underlying distribution is Poisson. Singh and
Mishra [6] have considered the effect of inspection error on singly truncated Binomial distribution. Chakraborty
and khurshid [7] studied the connection between apparent fraction defective (AFD) and true fraction defective
(TFD) on the power of control chart.

The point of inspection and quality control in manufacturing operations is to avoid manufacturing mistakes.
Without regular manufacturing error inspection, many mistakes would get through that could have catastrophic
consequences for a business. Ya-Hui Lin et al. [8] develops an integrated model of production lot-sizing,
maintenance and quality for considering the possibilities of inspection errors, preventive maintenance (PM)
errors and minimal repairs for an imperfect production system with increasing hazard rates. Sarkar et al. [9]
considered that product inspection performs at any arbitrary time of the production cycle and after the
inspection, all defective products produced until the end of the production run are fully reworked. Due to some
misclassification during inspection, from the inspector’s side two types of inspection errors as Type I and Type
Il are considered to make the model more realistic rather than existing models.

In this paper, we have seen the effect of inspection error on CSCC for TNBD. ARL, d, and ¢ is calculated for
different values of parameter of TNBD under inspection error.

2 Truncated Negative Binomial Distribution (TNBD) under Inspection
Error

The negative binomial distribution has the following probability density function (pdf):
x+r—1

>prqx ; x=0,1,2,3..

(
fler,p) = r—1 )

0, otl]erwise,

where r and p are the parameters of Negative Binomial distribution which satisfy 0 <p <1andr =0,1,2,3 ...
Ifp = % and g = gthen we have Q — P = 1, then the equation (1) will be written as:
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(x‘l‘?"—l P\* P\"
( >(5) (1-%) s x=0123.
f(X;r,p)=1 r—1 .

k 0, ot lerwise.

To obtain the corresponding probabilities for the truncated distribution the equation (2) must be divided by
(1 - f(x = 0;7,p)) where f(x = 0;7,p) = (1 - g) , it follows that;

x+r—1 ) o .
!( ) =) () (1-7) s x=123.
fCer,p) =

r—1

3)
|
k 0, ot Jerwise.

The mean and variance of the above distribution are as follows:

Mean =E(X) =rP(1—-Q™")* \I

} . @

Variance = V(X) = (;ZQ_T) [1 - %((1 —Q") - 1)])

Moreover, inspection of attributes are differentiated by two decision variables in which every item is analyzed
and classified as good or faulty. Two types of error are possible, an item which is good but categorized as faulty,
ey, or an item which is faulty but categorized as good, e,. If p is true fraction defective and p’ is the apparent
fraction defective, then we set:

pr=pl-e)+d-p) ©)

with both e; and e, estimated.

3 CSCC for TNBD under Inspection Error

Let x; (i = 1,2,3,...) are the independent random variables with the distribution given by equation (3).The
sequential probability ratio test (SPRT) distinguishes between the hypotheses Hy,: P =P, and H;: P =
P, (> P,) has the value:

f((xl,xz,...,xn)|P1:r) -, <1—(Q{))::)_ (1= ()" (PlQO)Exi (M)nr_ ©)

F(Gerxz,n)IPoT) 1-(01) PoQy 01(Qo—Po)

The SPRT has the continuation region is then

(L) < M (B907) - oy (39) (Sldry” < (=), ©
that is,

log( ) <n log( EQ"%_T) +rlog(1—-Q") + X, x; log( 1Q°) + nrlog (Z‘IEZ; P:%) < log (%)
(8)

Now consider the right hand side of the equation (8), we have:
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1—(05)_T) Y noo o (Pi% (Qé(Qi—Pi)) 1-8
nlog <1—(Qi)_r +rlog(1—-Q) + X x;log (P(;Qi) + nr log (0P < log ( - ), 9)
P1Qq 1- 1-(ep) " Qo(Q1-P; ,
™ x;log (PzQZ) < log (Tﬁ) —nlog <1—EQS_T> —nr log (m) —rlog(1 - Q). (10)

If we plot points (n, X' x;) then the boundary line between the continuation region and the acceptance region
for H; has the equation:

N1 ' ' '
log (%) —nlog (71_(0?)—r>—nr log(*Qo(Ql_Pln—rlog(l—Q’)

1-(Q 1(Qo-Po)
ik < e : (11)
log(?—?)
PoQq
or using the approximation of 8 = 0, we have:
\"T ' ' P’
—loga—-nlog 1_(0?)—r -nr log(Q?(Q,l_ ,1)>—rlog(1—Q')
n 1—(01 Ql(QO_PO)
i=1 % < . 12)

log(P1Q)-10g(PyQ;)

To construct the CUSUM chart and the V-Mask, the lead distance d and the angle ¢ of the mask is given by:

d = _(Q,)_r—loga Q’(Q,_P') ) (13)
log <1_(Q6)—r>+r log <Q6(Q’1—P'1)>]

and

[ (=) L(05-Po)\]
_1rag(1_g363_r>+mg(géggiﬂ;)l

= tan T T .
¢ l log (P1Qq)~log (PoQy) J

(14)

The approximate formula for the average run length (ARL) for detecting a shift for the parameter P from P, to
P, for known r is given by,

ARL = o “loga L (15)
1-(Qp TP; m Qp(Q@1-Pq
["’g (1—@;)*)*(1—(@;)*)“"9 (e e (W—Ps))}
Values of the d, ¢ and ARL of CUSUM chart are determined for a different combinations of the values of P, r
and a for controlling the parameters P when r is known. These values are shown in Table 1.1 to Table 1.6.

4 Ilustration and Conclusion

For the purpose of numerical illustration, we have considered five cases: (e, e;) = (0,0),
(0.03,0.3),(0.03,0.1),(0.01,0.05), (0.005, 0.02). Table- 1.1 shows that values of the lead distance d and ARL
for different values of a@and k in error free case. In Table- 1.2 to Table- 1.5 we have taken different
combinations of error rates. It is seen that the value of d and ARL decreases as the value of @ and k increases.
But if we compare error free case given in Table-1.1 to other error rates shown in Table 1.2 to Table- 1.5, it is
seen that for k =1 and @ = 0.05, the value of d and ARL is 4.31 and 17.54 respectively when (e;, e,) = (0,0)
and for the same value of k and a, the values of d= 4.41, 453, 4.64, 5.66 and ARL= 18.22,
19.10, 20.69, 26.55 when (e;, e,) = (0.005,0.02), (0.03,0.3), (0.03,0.1), (0.01,0.05) respectively. The above
discussion shows that as the error rate increases the value of d and ARL increases, which is a good symptom to
detect assignable causes less often in production process.
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Table 1.1. Value of d and ARL when (e4, e;)= (0, 0)

(PoP,) o
0.05 0.025 0.01 0.005 0.001
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
1,2) d- 431 3.04 2.27 531 3.75 2.80 6.62 4.68 3.50 7.62 5.38 4.02 9.94 7.03 5.25
ARL- 1754 9.49 6.20 21.60 11.69 7.64 26.96 14.60 9.53 31.03 16.80 10.97 40.45 21.90 14.30
1,3) 2.72 1.86 1.36 3.35 2.29 1.67 4.19 2.86 2.09 4.82 3.29 241 6.28 4.29 3.14
5.72 3.04 1.98 7.05 3.74 2.44 10.12 4.67 3.05 10.13 5.37 3.50 13.20 7.01 4.57
1, 4) 2.16 1.44 1.04 2.66 1.77 1.28 3.32 2.21 1.60 3.82 2.54 1.84 4.98 3.32 2.40
3.11 1.63 1.06 3.83 2.01 1.35 4.77 2.50 1.63 5.49 2.88 1.88 7.16 3.76 2.46
(1,5) 1.85 1.21 0.87 2.28 1.49 1.07 2.85 1.86 1.33 3.28 2.14 1.54 4.28 2.80 2.01
2.04 1.06 0.69 2.51 1.31 0.85 3.13 1.63 1.06 3.60 1.87 1.23 4.70 2.45 1.60

Table 1.2. Value of d and ARL when (e,, e,) = (0.01, 0.05)

1}
(P . ) 0.05 0.025 0.01 0.005 0.001
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
1,2) d- 4.53 3.17 2.35 5.59 3.91 2.90 6.97 4.87 3.62 8.02 5.61 4.17 10.47 7.32 5.43
ARL- 1910 10.30 6.72 23.52 1268 8.28 29.36 1583 1033 3.78 18.22 4.88 44.04 23.75 15.50
1,3) 2.86 1.93 1.41 3.52 2.38 1.74 4.40 2.98 2.17 5.06 3.42 2.49 6.61 4.47 3.25
6.28 3.32 2.17 7.74 4.09 2.67 9.66 511 3.34 11.11  5.88 3.84 14.49 7.67 5.01
1,4 2.27 1.50 1.08 2.79 1.85 1.33 3.49 231 1.66 4.01 2.65 191 5.24 3.46 2.49
3.44 1.80 1.17 4.24 2.22 1.45 5.29 2.77 1.81 6.09 3.19 2.08 7.94 4.16 2.72
(1,5) 1.95 1.27 0.90 2.40 1.56 1.12 3.00 1.95 1.39 3.45 2.24 1.61 4.50 2.93 2.09

8.28 1.18 0.77 2.81 1.46 0.95 3.55 1.82 1.19 4.04 2.10 1.37 5.26 2.73 1.79
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Table 1.3. Value of d and ARL when (e4, e;) =(0.03, 0.1)

o
(p,P) 0.05 0.025 0.01 0.005 0.001
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
1,2 d- 464  3.28 245 572 404 302 714 505 377 821 581 434 1071 757 566
ARL- 2069 1122 733 2548 1381 9.02 3182 1724 1126 36.60 19.84 1296 4773 2587 16.90
(1,3) 295 202 148 364 249 183 454 311 228 523 358 263 681 467 342
6.97 371 242 858 457 298 1071 570 3372 1233 656 428 1607 855 558
(1,4) 236 158 114 2.90 194 141 362 243 176 417 280 203 544 365 264
390 205 134 480 253 165 600 315 206 690 363 237  9.00 473  3.09
(1,5) 204 134 097 251 166 119 313 207 149 361 238 171 470 311 223
264  1.38 090 325 170 111 406 212 138 467 244 159  6.09 318  2.08
Table 1.4. Value of d and ARL when (e4, e;) = (0.03, 0.30)
o
(P,,P) 0.05 0.025 0.01 0.005 0.001
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
(1,2 d— 566  3.70 264 698 456 325 871 569 406 1002 654 468 1307 853  6.10
ARL- 2655 1396 911 3269 1720 11.22 40.81 2147 1401 4695 2470 1612 61.22 3221 2101
(1,3) 353 224 158 434 277 195 542 345 244 624 397 281 814 518  3.66
8.88  4.62 3.02 1094 569 372 1366 710 464 1571 817 534 2049 1065 6.96
(1,4) 278 174 122 343 215 150 428 268 188 492 3.08 216 642 402 282
497 257 168 612 316 207 765 395 258 880 454 297 1147 592  3.88
(1,5) 239 148 1.03 294 18 127 367 227 159 423 262 18 551 341 238
338 173 114 416 213 140 519 267 175 597 307 201 779 400 262
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Table 1.5. Value of d and ARL when (e4, e;) = (0.005, 0.02)

o
(P, P) 0.05 0.025 0.01 0.005 0.001
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
1,2 d— 441 310 231 543 382 285 678 477 356  7.80 549 409 1016 715 533
ARL- 1822 9.85 6.43 2244 1213 792 2801 1515 9.89 3223 1743 11.38 4202 2272 14.84
(1,3) 279 1.90 139 343 233 171 428 291 213 493 335 245 642 437 320
597 317 207 735 390 255 918 487 318 1056 560 366 1377 7.31 477
(1,4) 221 147 106 272 181 131 340 226 163 391 2.60 1.88 5.09 339 245
326 171 112 401 210 138 501 263 172 576 302 197 751 394 257
(1,5) 190 124 089 234 153 1.09 292 191 137  3.36 219 157 438 286 205

2.15 1.12 0.73 2.65 1.38 0.90 3.31 1.72 1.13 3.80 1.98 1.30 4.96 2.58 1.69

Table 1.6. Values of ¢ for different values of (e;, e,)

oP) 1,2 (1,3) (1. 4) (1.5)
N k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

(e1, &2)

l
(0,0) 67.50 73.70 77.68 69.78 75.90 79.58 71.31 77.30 80.75 72.45 78.31 81.57
(0.01, 0.05) 68.24 74.42 78.31 70.40 76.47 80.06 71.85 77.77 81.14 72.92 78.71 81.89
(0.03,0.1) 67.45 73.64 77.63 69.54 75.67 79.39 70.92 76.95 80.46 71.94 77.86 81.21
(0.03, 0.30) 72.96 78.70 81.88 74.61 80.07 82.96 75.69 80.94 83.63 76.48 81.55 84.09
(0.005, 0.02) 67.76 73.96 77.91 69.99 76.10 79.75 71.49 77.46 80.88 72.60 78.44 81.67
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Table- 1.6 shows that the angle of mask, ¢ increases as the value of k increases. For comparison, if we
take (e, e;) = (0,0), (0.005,0.02), (0.03,0.3), (0.01, 0.05), the angle of mask is 67.50, 67.76, 68.24, and 72.96
respectively, which is the increased value of the mask, whereas (e;, e,) = (0.03,0.1) the angle of mask is 67.45,
lesser as compared to error free case.
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