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ABSTRACT 
 

Aims: In this study, the antibiofilm activity of citric acid on P. fluorescens isolated from raw milk 
samples was studied. 
Background: Due to the resistance it gives to Pseudomonas bacteria, the presence of biofilm has 
been mentioned in recent studies. Biofilm is defined as the irreversible mucoid layer that 
microorganisms form on any surface and milk biofilms, which are the cause of contamination in 
milk, are a major concern in the dairy industry. 
Methods: In this study, antibiofilm activity of citric acid and chlorine was investigated in 16 
Pseudomonas fluorescens strains isolated from raw milk samples. For this purpose, the prevention 
and removal of biofilm formation of P. fluorescens strains was determined comparatively after 
treatment with microtitration plates with chlorine or citric acid.  
Results: It was found that after treatment of microplates with citric acid, biofilm formation in P. 
fluorescens isolates was prevented by 52% and eliminated by 71-78%. It was also found that after 
the microplates were treated with chlorine, biofilm formation was prevented by 48% and eliminated 
by 61%.  
Conclusion: This study showed that it was observed that citric acid can be used as an antibiofilm 
against biofilms produced by P. fluorescens bacteria. 
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1. INTRODUCTION 
 
Pseudomonas are bacteria that are classified in 
the Pseudomonadaceae family. Pseudomonas 
species commonly found in nature have gram 
negative, nonfermentative and aerobic 
properties. Some of its types are pathogens for 
humans, animals and plants. P.aeruginosa, 
P.fluorescens, P.putida and P.stutzeri are 
important species that are infectious in humans 
[1]. Pseudomonas are opportunistic 
microorganisms that cause many important 
diseases such as endocarditis, pneumonia and 
bacteremia [2,3]. Pseudomonas bacteria are also 
very important for foods as they are a factor of 
degradation due to their rapid reproduction in 
foods due to their aerobics. They can also 
synthesize the factors and vitamins necessary for 
them to reproduce. They cannot reproduce in an 
oxygen-free environment and above 42ºC. 
Pseudomonas bacteria have psychrophil, 
mesophile or psychotrophic species [4]. Bacteria 
of Pseudomonas genus can decompose in many 
food compositions, especially meat, milk and 
fish, causing them to degrade. In addition, they 
have the ability to degrade vegetable 
carbohydrates, fatty and fatty acids [1]. Many 
types of microorganisms can be found in foods. 
While some of the bacterial species persist in 
food, some are used in the production of various 
foods. Many of them can cause deterioration in 
food structure or foodborne diseases [5]. Food-
borne diseases caused by consuming foods 
contaminated with pathogenic microorganisms or 
toxins, often show gastrointestinal symptoms [6]. 
Milk and dairy products play an important role in 
strengthening the immune system. The 
composition of milk includes calcium, 
phosphorus and riboflavin. Besides vital amino 
acids and fatty acids, there are important factors 
such as lactose, milk fat, casein, lactoalbumin 
and lactoglobulin [7]. Since raw milk is high in 
nutrients, it creates an excellent environment for 
many microorganisms to reproduce and more 
than 160 species of bacteria have been detected 
in it [8]. The microbiological structure of milk and 
dairy products provides an environment for many 
diseases, but also constitutes an important 
problem in terms of public health. The most 
common Pseudomonas species identified in 
these foods are P. fluorescens, P. gessardii, P. 
fragi and P. lundensis [9,10]. Pseudomonas 
bacteria, especially P. fluorescens in raw milk, 
have difficulties in controlling their reproduction 
during cold storage, and consequently the 
negative effects on milk or dairy products [11]. 
While biofilm is found to be attached to the 

surface or to each other in terms of reproduction, 
genetic structure, protein synthesis, planktonic 
cells; microbial substances that have been 
embedded within the matrix or extracellular 
polysaccharide substance (EPS) [12]. Biofilm 
layer can protect microorganisms from living 
tissue surfaces as well as protecting against 
nutritional deficiencies, pH changes, toxins and 
antibiotics [13]. Biofilms can occur quickly in food 
processing environments. First of all, it is the 
arrangement of the material surface and the cells 
are reversibly connected to that surface. Then, 
attachment becomes irreversible and the 
development of microcolonies begins. Later, the 
three-dimensional structure of the biofilm 
occurred and a complex ecosystem ready to 
disintegrate was formed [14]. Biofilms in food 
environments become the place where pigment-
producing Pseudomonas bacteria accumulate. In 
addition, biofilms can make bacteria more 
resistant to various environmental stresses such 
as cooling, acidity, salinity and disinfection in 
food processing [15]. Microorganisms in Biofilm 
can be protected from disinfectants due to their 
environmental relations, the presence of 
extracellular polymeric substances and the 
grounding of contamination of processed dairy 
products. Bacteria in milk can cause the 
formation of biofilm in milk storage tanks and milk 
processing departments, as it has the ability to 
adhere and accumulate on stainless steel 
surfaces. And pathogenic microorganisms can 
grow in this structure and cause milk 
deterioration. Reducing the biofilms formed by 
Pseudomonas species on the materials and 
equipment used in the milk processing stages 
are very important processes in reducing milk 
pollution [16,17,18]. In addition to causing 
serious economic and health problems, biofilms 
formed in food production may cause the metal 
surfaces used to be corroded by some bacteria. 
In addition, Pseudomonas, Bacillus and some 
other types of bacteria can secrete many 
proteolytic and lipolytic enzymes that can create 
unpleasant odor and taste [19]. In 
microorganisms, the basis of the bacteriostatic 
and bactericidal properties of organic acids is 
that they have the ability to dissolve in the pH-
neutral cytoplasm by passing through the 
semipermeable membrane and to decrease the 
pH of the cytoplasm [20,21]. The antibacterial 
effect of citric acid on E. coli, S. typhimurium, S. 
aureus, L. monocytogenes, Y. enterocolitica was 
investigated. In addition, citric acid was reported 
to be more effective than lactic and hydrochloric 
acid in a study on the inhibition of S. typhimurium 
species in milk that was acidified with citric acid 
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[22]. In their study, they investigated the effect of 
ultrasound application with weak organic acids 
(citric, lactic and malic acid) on E. coli O157: H7, 
S. typhimurium and L.monocytogenes, and as 
the concentration of citric acid is increased (0.3-
2.0%), more microorganisms are inhibited and 
stated that 2.0% citric acid concentration is the 
most effective [23]. The effect of citric acid and 
lactic acid has been investigated to inactivate V. 
parahaemolyticus isolated from oyster. 
Accordingly, the natural and strong effects of 
lactic acid and citric acid solutions on bacterial 
species have been demonstrated [24]. The most 
preferred disinfectant in eliminating biofilm 
formation is chlorine. However, it has been 
observed that chlorine affects the biofilm 
structure to a limited extent. Chlorine can form 
harmful residues in the cell by forming 
compounds with organic carbon [25]. In addition, 
some types of reactive chlorine can be 
deactivated on the surface without affecting the 
interior of the biofilm [26]. In addition to chlorine, 
various organic acids can be used to prevent and 
remove the biofilms of Pseudomonas species, 
which is one of the important problems related to 
food production, especially in raw milk. For this 
purpose, the antibiofilm effect of citric acid and 
chlorine was investigated against P. fluorescens 
biofilms. 

 
2. MATERIALS AND METHODS 
 
In this study, 16 P. fluorescens isolates isolated 
from the raw milk samples offered for 
consumption were used. Bacterial isolates were 
stored in glycerol liquid medium (glycerol, 20% v 
/ v; Sigma Aldrich, St. Louis, MO, USA) to 
maintain its viability from freezing. The ability to 
form biofilms in P. fluorescens isolates was 
determined by quantitative method. For this 
purpose, after incubating the isolates in nutrient 
agar, 2 cc suspension of 0.5 Mc Farland (~ 1.5 × 
108 CFU / ml) was prepared in the tubes 
containing 1% glucose luria bertoni (LB) medium 
from their fresh cultures. Then, 200 microliters of 
96-well polystyrene microtitration plates were 
distributed from the prepared suspension and 
kept in an aerobic environment for 24 hours at 37 
° C. After incubation, the microplate was washed 
three times with 0.2 ml of phosphate buffered 
water (PBS; pH 7.4) and dried at room 
temperature. Then 200 microliters of 0.1% crystal 
viole (Sigma-Aldrich, St. Louis, MO) solution was 
distributed to all wells and kept at room 
temperature for 15 minutes. Biofilm formation 
was observed macroscopically on the walls of 
the wells. These wells were dissolved by adding 

200 microliters of 95% ethanol. Then, it was read 
in a spectrophotometer device (Versamax 
Tunable, Microplate Reader; Molecular 
Devices®) with a wavelength of 570 nm [27,28]. 
In the study, microplate wells were treated with 
chlorine (200 mg / kg) or citric acid (2%, w / v) for 
20 minutes to prevent biofilm and dried at room 
temperature. Then, after incubating the isolates 
in nutrient agar according to the recipe 
mentioned above, the presence of biofilm was 
investigated. In order to remove biofilm, the 
microplate wells prepared and incubated 
according to the above recipe were washed three 
times with distilled water in the study. The wells 
were then treated with chlorine (200 mg / kg) or 
citric acid (2%, w / v) for 20 minutes and dried at 
room temperature. Then, 200 microliters of 0.1% 
crystal viole (Sigma-Aldrich, St. Louis, MO) 
solution was distributed to all wells and kept at 
room temperature for 15 minutes. These wells 
were dissolved by adding 200 microliters of 95% 
ethanol. Then, it was read in a 
spectrophotometer device (Versamax Tunable, 
Microplate Reader; Molecular Devices®) with a 
wavelength of 570 nm. Biofilm experiments were 
performed three times for each strain and the 
average absorbance value was determined. The 
wells with liquid medium without bacterial isolate 
were used as negative control, the wells not 
treated with Pseudomonas aeruginosa PAO1 
strain added, chlorine (200 mg / kg) or citric acid 
(2%, w / v) were used as positive control [29-31]. 
In the investigation of the presence of biofilm 
using microplate, there is no internationally 
approved reference value [32]. In the prevention 
and elimination of biofilm formation, the 
percentage of its effectiveness is explained 
according to the formula below. 
 

Biofilm reduction value: ((C-B) - (T-B) / C-B)) 
X 100 

 

A: Average absorbance value in wells with 
Biofilm 
B: Average absorbance value in wells without 
bacterial isolate 
T: Average absorbance value in wells treated 
with citric acid or chlorine [33]  
 

In the study, the results obtained from microplate 
wells that are not treated with citric acid or 
chlorine and the reduction rates in the prevention 
and elimination of biofilm formation were 
determined. 
 

2.1 Statistical Analysis 
 

In the strains included in the study, the statistical 
significance of comparing the effect of chlorine or 
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citric acid on biofilm formation was evaluated by 
chi-square test using SPSS 21.0 (Chicago, 
Illinois) program. In statistical evaluation, (P) 
value was considered significant if                                 
P <0.05. 
 

3. RESULT AND DISCUSSION 
 
In our study, the rates of prevention and 
elimination of biofilm formation in wells in 
polystyrene microtiter plates, which were applied 
chlorine (200 mg / kg) or citric acid (2%, w / v), 
were determined in percent (%). For this 
purpose, the effect of chlorine or citric acid on the 
biofilm formation of 16 P. fluorescens isolates in 
microplates isolated from raw milk was 
determined using dyes called crystal violet. All 
biofilm formation experiments were repeated 
three times and the mean value was determined. 
Standard deviations are shown in                  
brackets. 
 
In the study, as a result of the treatment of 
microplates with citric acid (2%, w / v), 16 P. flu-
orescens isolates, 52% in one strain (P <0.05), 
45% in one strain (P <0.05) and 4% in four 
strains. 21- 37% (P <0.05) rate of biofilm 
formation was prevented (Table 1). In another 
study, after treatment with polystyrene 
microplates with citric acid (2%, w / v), 71-78% 
(P <0.05) in three strains, 63-69% (P <0.05) in 
four strains, 51-58% in three strains It was 
observed that the formation of biofilm was 
eliminated in the ratio (P <0.05) (Table 1). 

In the study, as a result of the treatment of 
microplates with chlorine (200 mg / kg), 16 P. 
fluorescens isolates were 48% (P <0.05) in one 
strain, 35% (P <0.05) in one strain and 20-29% 
in five strains. It was observed that the formation 
of biofilm (P <0.05) was prevented at the rates (P 
<0.05) (Table 2).  
 
In addition, as a result of application of chlorine 
(200 mg / kg) to microplates, 16 P. fluorescens 
isolates, 61% (P <0.05) in one strain, 58% (P 
<0.05) in one strain, 51% (P <0.05) in one strain, 
and 41-32% (P <0.05) biofilm formation was 
eliminated in four strains(Table 2). 
 

Foodborne pathogens and the biofilms they 
create are commonly found in the natural 
environment and in many habitats. In addition, 
food pathogens cause bacterial food poisoning, 
which seriously endangers human health and 
can cause major economic losses [34,35]. In 
recent years, diseases caused by food borne 
pathogens, morbidity and mortality factors in 
many parts of the world have become an 
important public health problem. In addition, 
many other identified pathogen outbreaks have 
been found to be associated with biofilms [ 
36,37]. According to the World Health 
Organization (WHO) report, foodborne diseases 
are seen as an important public health problem 
that occurs in both developed and developing 
countries [38]. Biofilms are bacterial communities 
located in a matrix of nucleic acids, 
polysaccharides,

 
Table 1. P. fluorescens biofilm formation rates (%) in polystyrene microplates treated 

with citric acid (2%, w / v) 
 

 
A: Prevention of Biofilm B: Biofilm Elimination 

(Results are averaged over three replicates. Standard deviations are shown in parentheses). 
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Table 2. P. fluorescens biofilm formation rates (%) in polystyrene microplates applied with 
chlorine (200 ppm) 

 

 
Strain No. A B 

A: Prevention of Biofilm B: Biofilm Elimination 
(Results are averaged over three replicates. Standard deviations are shown in parentheses). 

  
lipids and proteins, which are formed by the 
ability of microorganisms to hold on to a suitable 
surface and then multiply [18]. Many 
Pseudomonas species use biofilm formation on 
different surfaces during their colonization and 
lead to the production of various biofilm matrix 
molecules [39]. Biofilms are of great importance 
for the milk and milk processing industry. 
Because it allows bacteria to adhere to various 
surfaces such as stainless steel, plastic and 
polypropylene in a short time, and biofilms can 
mature within a few hours or even a few days 
[18]. Raw milk can be contaminated by milk 
collection materials and utensils during milking 
and storage due to inadequate hygiene. Milk is 
very sensitive to contamination. It can be an 
effective source of transmission of foodborne 
pathogens, especially gram negative bacteria, in 
humans [40]. Pseudomonas, Enterococcus, 
Listeria, Bacillus are among the most common 
bacterial species in the dairy industry [41,42]. (In 
a study in raw milk, Pseudomonas, Lactococcus 
and Acinetobacter are the 62% most common 
bacteria among all isolates [8]. The materials 
used from the collection of raw milk to the milk 
production stage, mostly Pseudomonas bacteria, 
provide a favorable physicochemical 
environment for the formation of a wide spectrum 
of microorganisms. Among the Pseudomonas 
species, P. fluorescens is considered as the most 
important deterioration factor in milk tanks [43]. 
In the research on microorganisms and biofilms 

formed in raw milk tanks, they found a large 
number of microorganisms that determine the 
presence of microbial biofilms. In addition, 
Pseudomonas were found to be the most 
common species and biofilm was detected in 
50.2 of the isolates [44]. Many bacterial species 
need the optimum pH environment for their 
reproduction and cannot survive under extremely 
acidic conditions. Organic acids can prevent or 
prevent the growth and reproduction of bacteria 
sensitive to the acidic environment by lowering 
the pH value. Weak organic acids such as acetic, 
citric, benzoic, sorbic and lactic acids are often 
used to limit microbial growth [45, 46]. In the 
study of Bjarnsholt et al., they showed that using 
both acetic acid, which is one of the organic 
acids, biofilms formed by both gram positive and 
gram negative bacteria can be completely 
destroyed [47]. They found that organic acids 
such as malic, citric, lactic and tartaric acid have 
antibacterial properties under specific pH 
conditions. They also found that organic acids 
can affect food-borne microbial pathogens or 
cause significant damage to the cytoplasm as 
microorganism cells can spread throughout the 
cell membrane [48]. In a study to investigate the 
ability of Pseudomonas bacteria to form biofilms, 
it was revealed that they tend to form biofilms on 
both polystyrene and stainless surfaces [49]. In 
another study investigating the antimicrobial 
effect of citric acid, the cattle carcass was 
washed with citric acid solution and it was found 
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that the number of P. fluorescens decreased 
when the pH decreased to 4 [22]. The inhibitory 
effect of organic acids was investigated using 
citric acid on Y.enterocolitica, and in their study 
at different concentrations and at different 
temperatures, they stated that although there 
was an exponential inactivation at 4 and 20 ° C, 
no inactivation was observed at 40 ° C. The 
inactivation effect of citric acid was found to be 
dependent on time, the temperature it was 
exposed to, and the acid concentration [50]. 
They also investigated the effect of different 
concentrations of citric acid for the inhibition of 
pathogens in the egg and determined that citric 
acid reduced the population of E. coli, S. 
typhimurium, S. aureus, L. monocytogenes, Y. 
enterocolitica [51]. In this study, it was observed 
that by the treatment of polystyrene surfaces of 
microplates with citric acid (2%, w / v), in 16 P. 
fluorescens isolates, biofilm formation was 
highest, 52%, and 71-78% was eliminated. Faot 
et al. explained that citric acid can reduce the 
production and viability of biofilm created by C. 
albicans [52] In another study, they report that 
citric acid isolated from tomato inhibits 
microorganisms, shows very little bacteriostatic 
activity at pH 5.0, and inhibition increases with 
decreasing pH [22]. In their study using media 
containing glucose and milk, it was determined 
that biofilms formed by B. cereus vegetative cells 
were prevented by 59% and removed by 38-63% 
with the effect of citric acid and reported that citric 
acid affects the biofilms of B. cereus vegetative 
cells as much as chlorine [30]. In their study, Tsai 
et al. Investigated the effect of citric acid on the 
biofilm formed by bacteria colonized on the 
surface of the water pipes and showed that citric 
acid is highly effective [53]. In the study, it was 
reported that citric acid delayed the development 
of E. coli O157: H7 colonies, but did not 
completely stop it [54]. Sommer et al. 
investigated the effect of citric acid on L. 
monocytogenes' radiation resistance and the 
quality of sausages, and reported that citric acid 
reduced the radiation resistance of L. 
monocytogenes inoculated on the surface of 
sausages [55]. They demonstrated that the 
formation of P. aeruginosa biofilms occurring in 
24 hours was highly reduced with a 
concentration of 4% chlorine solution [17]. In the 
study, it was found that by treating the 
polystyrene surfaces of microplates with chlorine 
(200 mg / kg), in P. fluorescens isolates, biofilm 
formation was prevented at the highest rate, 48% 
and eliminated by 61%. In the results obtained 
from the study, the role of citric acid in the 
prevention and elimination of biofilm formation 

was found to be more effective compared to 
chlorine.  
 

4. CONCLUSION 
 

Studies show that especially P. fluorescens 
strains have a high biofilm ability in milk and 
dairy products. In order to prevent contamination 
and biofilm control in various tools and devices 
used in the food industry, more detailed studies 
should be carried out at different times, 
temperatures and concentrations in order to use 
non-toxic, citric acid or other natural substances. 
In our study, it was observed that citric acid can 
be used as against biofilms produced by P. 
fluorescens bacteria. As a result, it has been 
determined that it is preferable to use 
environmentally friendly citric acid in the dairy 
industry to prevent and eliminate biofilm 
formation of P. fluorescens strains. 
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