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Encapsulation of biostimulant metabolites has gained popularity as it increases their shelf life and improves their absorption,
being considered a good alternative for the manufacture of products that stimulate plant growth and fruit production. Cell-free
supernatants (CFS) were obtained from nine indole-3-acetic acid (IAA) producing bacterial strains. Stenotrophomonas mal-
tophilia (PT53T) produced the highest concentration of IAA (15.88 μg/mL) after 48 h of incubation. CFS from this strain, as well as
an IAA standard were separately encapsulated in chitosan microparticles (CS-MP) using the ionic gelation method. Te CS-MP
were analyzed by Fourier transform infrared spectroscopy (FTIR), showing absorption bands at 1641, 1547, and 1218 cm−1,
associated with the vibrations of the carbonyl C�O, the N-H amine, and the bond between chitosan (CHI) and sodium tri-
polyphosphate (TPP).Te efects of unencapsulated CFS, encapsulated CFS (EN-CFS), and encapsulated IAA standard (EN-IAA)
on germination and growth of seven-day-old tomato (Solanum lycopersicum) seedlings were studied. Results showed that both
EN-CFS and EN-IAA signifcantly (p< 0.05) increased seed germination rates by 77.5 and 80.8%, respectively. Both CFS and EN-
IAA produced the greatest increase in aerial part length and fresh weight with respect to the treatment-free test. Terefore, it was
concluded that the application of EN-CFS or EN-IAA could be a good option to improve the germination and growth of
tomato seedlings.

1. Introduction

Plant growth-promoting bacteria (PGPB) or rhizobacteria
(PGPR) establish mutualistic interactions with plants,
promoting nutrient uptake, and water acquisition and help
counteract the negative efects caused by biotic and abiotic
stresses [1]. When applied to plants or the rhizosphere,
substances produced by PGPB, known as phytohormones or
biostimulants, interact with biochemical and physiological
processes, infuencing plant metabolism and morphology

and promoting plant growth [1–5]. Several microorganisms
can excrete phytohormones as secondary metabolites,
depending on the composition of the medium and culture
conditions. Indole-3-acetic acid (IAA), abscisic acid (ABA),
gibberellin (GA), cytokinin, and ethylene are phytohor-
mones that have physiological efects on plant development,
afecting plant growth and promoting the induction of re-
sistance systems against pathogens [6–8]. Phytohormones
are considered biostimulants; these organic compounds are
synthesized by all plants in certain organs and are
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transported to other tissues to perform their function[9]. At
present, bacterial cell-free supernatants (CFS) containing
biostimulants are an environmentally friendly alternative to
the use of expensive agrochemicals, mainly because agro-
chemicals promote the accumulation of polluting com-
pounds, increasing environmental pollution, decreasing the
variability of microorganisms, and promoting soil degra-
dation [10, 11].

Bacterial CFS is obtained by mechanical or physical
separation of bacterial cells. Teir composition includes
substances from the culture medium, such as phytohor-
mones and peptides, as well as microorganism biocontrol
substances such as those obtained from Bacillus spp. (Iturin
A, jasmonic acid, and surfactin, among others) [10]. Indi-
vidual applications of these compounds have a positive efect
on plants. Castiglione et al.[11] demonstrated that the
combination of CFS with compost, algal extracts, humic
acids, amino acids, or exopolysaccharides improved plant
growth.

One of the most studied phytohormones is IAA, which
belongs to the auxin group. IAA is a hydrophilic molecule
with a structure similar to tryptophan, with an indole ring.
IAA is involved in several physiological processes, such as
cell diferentiation and elongation, tissue diferentiation,
secondary and lateral root formation, and response to light
and gravity [12–14]. Diferent bacterial genera synthesize
IAA through diferent biosynthetic pathways, such as in-
dole-3-pyruvate, indole-3-acetonitrile, indole-3-acetamide,
tryptamine, side-chain tryptophan oxidase, and the tryp-
tophan-independent pathway [15]. Bacterial synthesis of
IAA may be associated with bacteria-plant interaction, as a
colonization strategy benefted by phytostimulation. Te
most studied bacterial genera that produce IAA are Azo-
spirillum, Burkholderia, Erwinia, Enterobacter, Pseudomo-
nas, Rhizobium, Serratia, Bacillus, Acinetobacter, and
Sphingomonas [4, 16].

Currently, microparticles containing bacterial phyto-
hormones can be used as plant growth promoters, herbi-
cides, fungicides, and pesticides. However, their size, as
well as the use of toxic elements during their synthesis, may
limit their use [17]. In contrast, chitosan encapsulates
(CHI-ENC) have attracted attention, as chitosan (CHI) is a
natural biomacromolecule and biopolymer formed by 2-
acetamido-2-deoxy-β-1, 4-D-glucan chains. Chitosan
(CHI) is mainly found in the exoskeletons of crustaceans
and insects, as well as in the cell walls of some fungi, mainly
Zygomycetes and algae [18–20]. Te synthesis of CHI-ENC
could help to keep biostimulant compounds stable,
avoiding their rapid degradation and promoting a gradual
release to plants or seeds. Te most common method for
CHI-ENC synthesis is ionic gelation, where the charge
diference of the protonated amino groups of chitosan
cross-links with the polyvalent tripolyphosphate anions
(TPP) [19, 21].

CS-MP have a benefcial efect on plant seed germina-
tion, development, and growth, and helps to decrease the
efects of abiotic stress, and increase resistance to diseases
caused by pathogens due to their antimicrobial efects
[22, 23]. Valderrama et al. [24], reported that chitosan

nanoparticles (CS-NPs) loaded with IAA (mass ratio 1 : 0.25)
applied to the lettuce variety Crocantela in hydroponic
medium signifcantly improved both leaf length and dry
weight. However, it was also observed that high concen-
trations of free IAA in the growth medium had a negative
efect on root length. Hoang et al. [25] reported the potential
use of CS-NPs alone on root length, showing increases
between 7.1 and 71%, depending on concentration, encap-
sulated metabolites, and plant species. In plants such as
cofee, corn, wheat, chicken, and tomato, it has been ob-
served that this type of encapsulation has had a good efects
on the length of the aerial part, fresh and dry weight, total
chlorophyll, germination, number of leaves, leaf area, stem
diameter, vigor index, the number of secondary roots, as well
as protection against certain pathogens such as
F. oxysporum, C. gloeosporioides, P. capsici, S. sclerotium,
G. fujikuori, A. solani, F. graminearum, and
C. michiganensis.

Te aim of the present study was to synthesize chitosan
microparticles containing bacterial CFS with IAA. Once
obtained, the efect of their application on the germination
and growth of tomato seedlings were evaluated.

2. Materials and Methods

2.1. Inoculum Preparation. Table 1 shows the IAA-pro-
ducing bacterial strains used in the present study. Six strains
were obtained from the bacterial collection of the Facultad
de Ciencias Biológicas-Benemérita Universidad Autónoma
de Puebla (FCB-BUAP), Mexico, after identifcation by the
same institution using the API20NE test. Tree strains were
obtained from the bacterial collection of the Centro de
Investigación en Biotecnologı́a Aplicada-Instituto Politéc-
nico Nacional (CIBA-IPN), Mexico, and identifed using a
molecular test (16S gene).Te strains were grown in nutrient
broth (BD Bioxon, 8 g/L) at 32°C with continuous agitation
at 120 rpm for 24 h for CFS production.

2.2. Quantitative Determination of IAA in Bacterial Culture
Media. Bacterial populations obtained after 24 h were
adjusted to 108 cfu/mL, and 1mL of each solution was
inoculated into 25mL of nutrient broth supplemented with
0.5 g/L L-tryptophan (L-trp) (Meyer) at pH 7 [7]. Culture
conditions were maintained at 32°C and 120 rpm for 48, 72,
and 96 h to evaluate IAA production as a function of time.
After this time, the growth medium was centrifuged at
4709 × g for 15min at 4°C and the CFS was obtained.
500 μL of this suspension was added to 500 μl of Salkowski
reagent (2mL 2.5M FeCl3 + 50mL HClO4 50% (v/v)), and
the well-integrated mixture was incubated at room tem-
perature for 30min. Absorbance at 535 nm [26, 27] was
determined to correlate with IAA concentration using a
standard curve in the range of 2–100 μg/mL. PT53Twas the
strain with the highest IAA production, as was subse-
quently corroborated by FTIR analysis (Bruker Vertex 70;
spectral range of 4000–400 cm−1 using 120 scans, in mode
attenuated total refectance (ATR) sampling cell for
analysis).
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2.3. CFS Lyophilization. Bacterial cells were removed from
the growth medium by centrifugation at 7358 × g for 20min
to obtain the supernatant. Ten, supernatants were frozen at
20°C for 24 h, followed by ultrafreezing at −80°C for 5 days,
and fnally, lyophilized (Labconco, Mod. FreeZone 1L Freeze
Dry System) at 51°C and 0.054mbar to obtain CFS.

2.4. Preparation of Chitosan Encapsulates. Chitosan micro-
particles (CS-MP) were prepared by the ionic gelation
method proposed by Antoniou et al. [28], with some
modifcations. Medium molecular weight chitosan (CHI,
75%–85% deacetylate, Sigma–Aldrich, 448877) was dis-
solved at a concentration of 0.5mg/mL in a 1% v/v aqueous
solution of acetic acid (Meyer CAS: 64-19-7). Four diferent
pH values (4, 4.5, 5, and 5.5) were studied by adjusting the
solution with 10M NaOH (Meyer CAS 1310-73-2). A so-
lution of sodium tripolyphosphate (TPP; Meyer CAT
7005–500g) 0.7mg/ml was added dropwise to the chitosan
solution in a 3 :1 ratio with vigorous magnetic stirring at
room temperature. CFS and IAA standard (98%, Sigma-
–Aldrich, I3750) at concentrations of 15.88, 158.88, 1588,
and 15880 μg/mL were encapsulated at pH 5, to be subse-
quently used for inoculation of tomato seeds. All samples
were prepared in triplicates and centrifuged at 11337 × g for
30min at room temperature. Te supernatant was used for
UV-vis measurements, and the precipitate was allowed to
dry for analysis by FTIR spectroscopy.

2.5. Morphology and Particle Size. Morphology and size of
the CS-MP were observed using a SEM-FE-JOL 7610F
scanning electron microscope (Tokyo, Japan) with Oxford
EBSD detector with 2.0 kV voltage accelerations and sec-
ondary electron detector (SEI). Samples of CS-MP were dry
mounted on carbon tape and were coated with Au/Pd. Te
SEM images obtained were analyzed with ImageJ 1.52a
software (National Institute of Health, USA) to determine
the average particle size.

2.6. Fourier Transform Infrared Spectroscopy (FTIR).
CS-MP containing bacterial CFS (EN-CFS) and standard
IAA (EN-IAA) were analyzed using a Bruker Vertex 70
Fourier transform infrared spectrometer in the spectral

range of 4000–400 cm−1 using 120 scans. CS-MP samples
were placed on the surface of the attenuated total refectance
(ATR) sampling cell for analysis.

2.7. Determination of the Encapsulation Efciency.
Suspensions with EN-CFS and EN-IAA were centrifuged at
11337 × g for 30min. Te supernatant was separated for
analysis by UV-VIS spectrophotometry. Te amount of IAA
present in the supernatant was estimated using an IAA
calibration curve. Similarly, the encapsulation efciency of
EN-IAA was determined as a function of the IAA present in
the supernatant using equation (1) [29], where IAAi is the
initial amount of IAA and IAAs is the amount in the
supernatant.

Encapsulation% �
IAAi − IAAs

IAAi
􏼒 􏼓∗ 100. (1)

2.8. Inoculation of CS-MP in Tomato Seeds. Te tomato
(Lycopersicum esculentum; ball-type) seeds were obtained
from the brand Hortafor. For inoculation with CFS, EN-
CFS, and EN-IAA the frst three rinses were performed with
sterile distilled water, then, they were disinfected using 70%
alcohol for 10min and rinsed with sterile distilled water fve
times [30]. In vitro, forty seeds were inoculated with 1mg/
mL of encapsulate, placed on 60% agar, and left to develop
for 7 days at 30°C in darkness [31]. Te germination rate,
root length, and aerial part length (Steren vernier mod.
HER-411) as well as fresh weight (American Weigh
GEMINI-20 Portable Milligram Scale) of 25 seedlings was
recorded.

2.9. Experiment Design and Statistical Analysis. Te exper-
iment consisted of two factors: (A) metabolite concentration,
and (B) type of metabolite presentation (or method for its
preparation). Four experimental variables were studied after
7 days of seedling growth: germination rate, root length,
aerial part length, and fresh weight. Factor A included fve
levels of metabolite concentration (0, 15.88, 158.8, 1588, and
15880 μg/mL) which were adjusted according to their order
of magnitude, using the IAA obtained from strain PT53T as
the reference and considering sterile distilled water as the

Table 1: Indole acetic acid producing bacterial strains used in the study.

Number Code of strains Source of bacterial isolate Species Collection
Identifcation method (%)

API20NE Molecular (16S gene)
1 2S3BA Rhizosphere of tomato plant Stenotrophomonas maltophilia FCB-BUAP 73.4
2 1S4AA Rhizosphere of tomato plant Chryseobacterium indologenes FCB-BUAP 86.2
3 2S1A Rhizosphere of tomato plant Sphingomonas paucimobilis FCB-BUAP 98.7
4 2S1C Rhizosphere of tomato plant Chromobacterium violaceum FCB-BUAP 93.3
5 TH3A Tomato plant leaf Burkholderia cepacia FCB-BUAP 97.7
6 2H2B Tomato plant leaf Brevundimonas vesicularis FCB-BUAP 99.3
7 S17 CIBA soil Ewingella americana CIBA-IPN 99.9
8 MT11PS Rhizosphere of potato plant Leclercia adecarboxylata CIBA-IPN 99.7
9 PT53T Rhizosphere of potato plant Stenotrophomonas maltophilia CIBA-IPN 99.6
FCB-BUAP: Facultad de Ciencias Biológicas-Benemérita Universidad Autónoma de Puebla, Mexico. CIBA-IPN: Centro de Investigación en Biotecnologı́a
Aplicada-Instituto Politécnico Nacional, Mexico.
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negative control (zero). Factor B included three levels: CFS,
EN-ECFS, and EN-IAA. All experiments were performed in
triplicate and were analyzed with the Kolmogorov–Smirnov
normality test using Statistica v14.0.0.15 software. Te re-
sults shown in the fgures are expressed as mean± standard
deviation (SD). Te signifcance level of the variation be-
tween treatments was evaluated using a two-way analysis of
variance (ANOVA). Te mean values were separated using
the Tukey’s test (p< 0.05). Response surface analysis was
performed using MINITAB16 and Excel software.

3. Results and Discussion

3.1. Production of Bacterial CFS Containing IAA. All strains
evaluated showed IAA production, with Stenotrophomonas
maltophilia (PT53T) being the strain that produced the
highest concentration of IAA after 48 h of culture. On the
other hand, Ewingella americana (S17) and Brevundimonas
vesicularis (2H2B) showed the highest production at 72 and
96 h, respectively (Table 2). Based on these results, strain
PT53T was selected for further studies.

Production of IAA as a bacterial secondary metabolite is
afected by pH value, temperature, culture medium com-
position (carbon and nitrogen source), bacterial species,
growth stage (stationary phase), and the addition of diferent
concentrations of L-trp [30, 32–34]. It has been shown that
S. maltophilia can promote plant growth, stimulate pathogen
control, and increase plant tolerance to diferent types of
stresses due to the production of phytohormones such as
IAA and protective enzymes [35]. Adeleke et al. [36]
demonstrated that genes such as trpABCD, amiE, andmiaA
present in this bacterium were related to IAA synthesis
through the indole-3-acetamine pathway.

Te concentration of IAA produced by the S. maltophilia
strain is considered low. However, the addition of diferent
concentrations of L-trp contributed signifcantly to the in-
crease in IAA production, ranging from 3.9 μg/mL to
2.5mg/mL [30, 32–34, 36]. Growth of the bacterium in LB
medium spiked with L-trp as a precursor at a concentration
of 25 ug/mL produced a 24% increase in IAA within 24 h. It
was also observed that higher concentrations (100–400 ug/
mL) of the precursor increased IAA production to 79± 2.
55 ug/mL. However, studies carried out over a longer period
(7 days) reported concentrations of 30 ug/mL [37]. Yeast
malt dextrose (YMD) medium supplemented with 0.1%
L-trp and an incubation time of 4 days resulted in an IAA
concentration of 2.5mg/mL in the medium for
S. maltophilia BE25 isolated from the roots of banana [30].
In contrast, a decrease in IAA production was observed for
longer incubation periods [38].

FTIR analysis for the IAA standard (Figure 1 (1), the
nutrient broth (control) (Figure 1 (2)) and the extracts
(Figures 1, (3–5), corresponding to the 3 strains with the
highest IAA production (PT53T, S17, and 2H2B) are shown
in Figure 1. Absorption bands at 1636 cm−1 show the -C�O
stretching vibration of the carboxylic group. Te peaks
centred between 1350–1650 cm−1 arise from the asymmetric
alkyl (-CH2) stretching group, and the peak at 1094 cm−1 is
related to the C-H bending vibration [39–41].

3.2. UV-VIS Spectrophotometric Analysis. Maximum in-
tensity for all spectra was obtained at 280 nm (Figure 2),
from the lowest to the highest concentration of IAA
(24–85 μg/mL). Te calibration equation for the IAA stan-
dard (y� 0.029x+ 0.121) was obtained from a linear rela-
tionship between the maximum intensity of the band at
280 nm and a known concentration of IAA. Te readings
correspond to the presence of IAA in the supernatant
[42, 43].

Figure 3 shows the UV-VIS absorbance values at 280 nm
of the IAA standard measured in the supernatant after
centrifugation (left axis) once the encapsulation of the IAA
standard was performed by applying the two types of initial
reactions TPP+ IAA and CHI+ IAA respectively. Te en-
capsulation efciency (right axis) of chitosan particles was
estimated from the IAA concentration in the supernatant
using the calibration equation and, subsequently, equation
(1). Table 3 shows both the IAA concentration determined in
the supernatant and the encapsulation efciency. For pH 4
and 4.5 the suspension was transparent; however, for pH 5
and 5.5, the suspension was opalescent. Te highest en-
capsulation efciency (85.88%) was observed at pH 5, when
IAA was added to TPP (initial reaction TPP+ IAA).

From UV-VIS spectrophotometry measurements, it was
found that when IAA was added to CHI (during the CS-MP
preparation procedure), the amount of free IAA was high in
the supernatant and the encapsulation efciency was low.
However, when IAA was incorporated into TPP, the con-
centration of free IAA in the supernatant was low (20–35 μg/
mL) and the encapsulation efciency was high (80%–85%).
Similarly, when both IAA and bacterial CFS were added to
chitosan, a low percentage of encapsulation was obtained,
being at pH 5.5, the condition that presented the highest
percentage of encapsulation (54.74%).

3.3. FTIR Analysis of EN-CFS and EN-IAA. When TPP was
incorporated into chitosan (CHI) during encapsulation of
the IAA standard and CFS, the translucent solution became
opalescent, suggesting an electrostatic interaction between
chitosan and TPP; Agarwal et al. [21], mentioned that this
efect corresponded to the formation of small particles. At
pH 4, 5 and 5.5, a higher opalescence was observed for both
control particles (blank particles) and those containing the
standard IAA or CFS. Te opalescence is related to both
TPP-CHI interaction and pH, although at pH below 4.5
particles synthesis is unlikely. However, at pH levels above 5,
more homogeneous suspensions are generated [44].

Figure 4 shows the FTIR spectra of both the precursors
(CHI and TPP) and the particles obtained and used to
encapsulate the standard IAA and the CFS.Te spectrum of
chitosan shows two absorption bands at 1154 and
1075 cm−1, which are related to the asymmetric C-O-C
stretching of the glycosidic bond and C-O stretching vi-
brations, respectively [21]. Te spectrum of TPP shows two
bands at 1210 cm−1 and 899 cm−1, which may be associated
with P�O stretching and P-O/P-O-P vibrations, respec-
tively [45, 46]. When both compounds (CHI and TPP)
react to form target particles, the resulting FTIR spectra
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show three specifc bands that result from their interaction.
Tese bands were observed at 1641, 1547, and 1218 cm−1;
and are associated with the carbonyl C�O, the N-H amine,
and the bond between CHI and TPP, respectively, indi-
cating particle formation [47, 48].

Te FTIR spectra of the EN-CFS and EN-IAA showed
the same three absorption bands at 1642, 1547, and
1218 cm−1, as shown in Figure 5, related to the formation of
CS-MP. No other bands corresponding to CFS metabolites
were observed, suggesting that CFS was inside the micro-
particles, as indicated by the UV-VIS results. In addition,
other absorption bands were observed at 1450 and

1690 cm−1 corresponding to alkyl (-CH2) and carbonyl,
respectively. All these results agree with those reported by
Sachdev et al. [32] and Patel and Patel [40].

3.4. Morphology and Size ofMicroparticles. Morphology and
particle size of CS-MP were analyzed by scanning electron
microscopy. In the case of the encapsulated control (blank
CS-MP), their size was 2.31± 0.86 μm (Figure 6(a)),
achieving larger sizes than those reported by Antoniou et al.
[28]. However, this diference could arise from themolecular
weight (100 kDa) and degree of deacetylation (90%) used by
those researchers in contrast to the parameters used in this
research (190–310 kDa, 75%–85%). Te shape and size of
microparticles are afected by the pH, the molecular weight
of chitosan, the concentration of the solutions, the CHI/TPP
molecular ratio, as well as the agitation conditions and the
percentage of acetic acid used [49, 50]. For EN-CFS at
concentrations of 15.88 and 15880 μg/mL, an average par-
ticle size of 7± 1.95 and 2.76± 0.160 μm, respectively, was
determined (Figures 6(b) and 6(c)). EN-IAA containing
15.88 and 166 μg/mL of the IAA standard showed average
sizes of 3.98± 0.160 μm (Figure 6(d)) and 4.65± 0.076 μm
(Figure 6(e)), respectively. Several studies have shown that
the increase in particle size is a consequence of IAA addition
and efective encapsulation of this metabolite [24, 51]. In
addition, several clusters were observed, possibly related to a
focculation efect by the interaction of the charges because
of the addition of the positive charge of IAA [52]. Several
reports mention that in a 3 :1 ratio (CHI: TPP) there is the
possibility of aggregate formation [21].

Table 2: Indole acetic acid (IAA) production (μg/mL) by nine bacterial strains after incubation periods.

Incubation time (h)
Strains

2S3BA 2S1C 2S1A 2H2B TH3A 1S4AA PT53T S17 MT11PS
48 4.601 4.932 7.033 3.723 5.599 1.247∗ 15.880∗∗ 7.093 4.691
72 9.634 7.828 7.566 8.683 6.537 8.278 5.059∗ 12.691∗∗ 7.273
96 6.757 10.058 9.216 10.104∗∗ 7.993 4.241 2.920∗ 9.839 6.357
∗Lower IAA production; ∗∗high IAA production. Bacterial strains according to Table 1.
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3.5. Tomato Seed Inoculation and Seedling Growth.
Figure 7 shows the results for the variables considered
in the experimental design: germination rate, root

length, aerial part length, and fresh weight. Results were
obtained after seedlings were allowed to grow for 7 days
(Figure 8).

All four variables: germination rate, root length, aerial
part length, and fresh weight were infuenced by the two
factors previously defned, as was shown by a two-way
ANOVA analysis. Table 4 summarizes the main statistical
parameters commonly used to determine whether a treat-
ment can afect a set of specifc variables (responses).

Figure 9 shows the response surface and contour plots of
the combined efect of both factors (metabolite concentra-
tion and method) on germination rate and root length,
respectively. According to the germination rate response
surface and contour plot, a metabolite concentration of
15.88 at 15880 μg/mL using method 2 (EN-CFS) generates a
germination rate of 80.8% (Figures 9(a) and 9(b). A similar
result of 77.5%, was achieved with method 3 (EN-IAA) using
15.88 μg/mL, and fnally, a germination rate of 80% was
achieved with method 1(CFS) at 158.8 μg/mL metabolite
concentration. For the root length response surface and
contour plot, a decrease in root length was observed for all
metabolite concentrations (Figures 9(c) and 9(d)) although a
slight increase was observed for a concentration of 15.88mg/
mL using method 2. Figures 10(a)–10(d) shows the response
surface and contour plots of the combined efect of both
factors (metabolite concentration andmethod) on aerial part
length and fresh weight, respectively. According to the re-
sponse surface of aerial part length and contour plot, the
optimum value of 8.27 cm was obtained using method 3
(encapsulated IAA standard) at 15.88 μg/mL (Figures 10(a)
and 10(b)). Finally, for the fresh weight response surface and
contour plot, an optimum value of 0.04 g was obtained using
method 1 (free bacterial SFC) (Figures 10(c) and 10(d)).
Another optimum value of 0.04 g was also obtained using
method 3 (the encapsulated IAA standard) at 15.88 μg/mL.

Rapid degradation of IAA and CFS is one of the dis-
advantages of their exogenous application, which is in-
creased by several factors such as salinity, temperature, and
the use of agrochemicals [10]. However, microencapsulation
of these metabolites has shown enhanced absorption ef-
ciency with benefcial efects on plants [53]. In this research,
EN-CFS (method 2) and EN-IAA (method 3) were the best

Table 3: Efect of pH on the chitosan particle formation.

Encapsulation treatment pH IAA concentration supernatant (μg/mL) Encapsulation (%)
Control 4.0 0 100
Control 4.5 0 100
Control 5 0 100
Control 5.5 0 100
CHI + IAA 4.0 81.91 48.24
CHI + IAA 4.5 83.79 51.86
CHI + IAA 5 82.61 53.13
CHI + IAA 5.5 84.86 54.74
TPP+ IAA 4.0 30.89 80.73
TPP+ IAA 4.5 26.13 85.37
TPP+ IAA 5 24.48 85.88
TPP+ IAA 5.5 28.30 80.03
CHI+ IAA: IAA added to chitosan; CHI +TPP: TPP added to chitosan.
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Figure 4: FTIR spectra of the precursors CHI (purple) and TPP
(blue) and, also of the CS-MP control (black) obtained from the
interaction of both compounds.
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Figure 6: Scanning electron microscopy images of CS-MP blank particles (a), EN-CFS at 15.88 μg/mL (b), and 15880 μg/mL (c), EN-IAA at
15.88 μg/mL (d), and 166 μg/mL (e).
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Table 4: Two-way ANOVA analysis for the statistical comparison of features studied in tomato seedlings.

Source of variation Sum of squares Degree of freedom Mean square F value p value

Germination rate
Concentration 963.69 5 192.74 3.67 0.0088

Method 1085.37 2 542.68 10.32 0.0003
Interaction 1268.76 10 126.88 2.41 0.0258

Root length
Concentration 355.69 5 71.14 87.04 3.68 E− 63

Method 9.49 2 4.74 5.81 3.25 E− 03
Interaction 58.41 10 5.84 7.15 1.88E− 10

Aerial part length
Concentration 355.69 5 71.14 87.04 3.68 E− 63

Method 9.49 2 4.74 5.81 3.25 E− 03
Interaction 58.41 10 5.84 7.15 1.88 E− 10

Fresh weight
Concentration 0.0002 5 3.6 E− 05 0.32 0.902147

Method 0.0027 2 1.3 E− 03 11.80 0.000010
Interaction 0.0041 10 4.1 E− 04 3.61 0.000127

(A) (B) (C) (D)

(c)

Figure 8: Efect of CS-MP on tomato root and aerial part length seedling; method: (a) CFS, (b) EN-CFS, and (c) EN-IAA, metabolite
concentration (μg/mL): (A) 15.88 (B) 158.8, and (C) 1588, (D).
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alternatives to improving germination rate (Figures 7(a) and
7(b)). Currently, diferent strategies have been studied, such
as those applied in this research to enhance plant growth.
Te use of PGPR, biostimulants, and recently the
implementation of chitosan-based encapsulants have
been studied, the fnal products being applied either via
foliar or on plant roots. Diferent authors have pointed out
that the addition of chitosan encapsulates or their de-
rivatives has shown a positive efect on the increase in
biomass, root length, fowering, mycorrhization, bio-
control, and even on the increase in phytohormone
production [31, 32, 54, 55].

In tomato seeds, inoculation with 0.1mg/mL of empty
CS-NPs had a positive efect on germination percentage, fresh
and dry weight, length, and vigour of seedlings. In addition,
results showed that these particles induced plant defence
response as well as the production of salicylic acid (SA),
jasmonic acid (JA), abscisic acid (ABA), and the activation of
metabolic pathways involved with the biosynthesis of phe-
nolic compounds [31, 55, 56]. Andrade et al. [57] used chi-
tosan-alginate nanoparticles loaded with IAA and bacterial
IAA, adding them to plants 25, 30, and 45 days after
transplanting, and observed a signifcant efect on plant
growth. In other plants, such as wheat, the addition of CS-NPs
at concentrations of 5 μg mL−1 to seeds generated a positive
efect on germination and seedling length, as well as an in-
crease in the number of adventitious roots [23]. Comparing
our results with those reported in the mentioned literature,
our encapsulated products showed a good efect on tomato
seed germination and seedling growth. However, when in-
creasing the concentration of IAA, a decrease in root and
aerial part length was observed.Tis agrees with other reports

in the literature that point out that low auxin concentrations
have a stimulatory efect on plant growth, while higher auxin
concentrations have an inhibitory efect [30, 40, 58].

4. Conclusions

Te use of bacterial CFS containing biostimulant compounds
such as IAA and its form in chitosan microparticles could
represent a good option for germination and seedling growth.
In addition, these particles reduce their sensitivity to light,
humidity, temperature, and soil components, increasing their
shelf life and minimizing their exposure to contamination
during the application process. Tus, CFS and EN-CFS would
avoid the use and release of bacteria into the environment,
especially because approximately 108–109CFU/g are needed to
have a successful commercial product for crop improvement,
in addition, some authors suggest checking the toxin pro-
duction or pathogenicity of the strains used. In the future,
biofertilizers, including CFS encapsulated in chitosan could
generate a crucial change in the development of sustainable
approaches to crop production. Experimental studies at other
stages of tomato development and in other plant species could
be necessary to fnd other forms of application to understand
the mechanism of interaction between the plant and the
microparticles, as well as to observe the process of metabolite
release once the encapsulates are opened.

Data Availability

Te (https://1drv.ms/u/s!AheVVJ1zvLUX8z7zx8zw7zmU3z
AH?e�ATpnkq) data used to support the fndings of this
study are included within the article.
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