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In this paper, we investigate the solutions of coupled fractional pantograph differential equations with instantaneous impulses. The
work improves some existing results and contributes toward the development of the fractional differential equation theory. We first
provide some definitions that will be used throughout the paper; after that, we give the existence and uniqueness results that are
based on Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Two examples are given in the last part to

support our study.

1. Introduction

Fractional differential equations (FDEs) involve fractional
derivatives of the form d”/dx", which are defined for a >0,
where « is not necessarily an integer. They are generalizations
of the ordinary differential equations to a random (noninte-
ger) order. These FDEs have attracted considerable interest
due to their ability to model complex phenomena. The frac-
tional differential operators are global, and they are used to
model several physical phenomena because they give accu-
rate results. For the new readers that are interested in the
fractional calculus theory in a more general concept, please
see [1-6] and the references therein. Our work is concerned
with impulsive coupled systems of pantograph FDEs. Impul-
sive FDEs have found applications in many areas such as
business mathematics, management sciences, and population
dynamics. Some physical problems have sudden changes
and discontinuous jumps. To model these problems, we
impose impulsive conditions on the differential equations
at discontinuity points; for more details about impulsive
fractional differential equations, we give the following ref-
erences [7-13].

Many papers have studied impulsive fractional differen-
tial equations with antiperiodic boundary conditions, and
results on the existence and uniqueness have been given

(see [14-17]). For example, recently, Zuo et al. [18] investi-
gated the existence results for an equation with impulsive
and antiperiodic boundary conditions given by

D (t) + yx(t) = f (8, x(2), Ax(t), Bx(t)),
Axpy (0) =Li(x(ty)),  i=1,-m,
x(0) =-x(1),

te]=[0,1], t#t, i=1,2,-,m,

(1)

where ‘D* is the Caputo fractional derivative of order « € (0
,1,y>0,[eR,0=t,<t; <--+<t;,, =1, the function f is
in C(J xR R), Ax,_, denotes the jump of x(t) at t=t,
and A and B are linear operators. The authors established
the existence and uniqueness under some conditions using
Banach’s and Krasnoselskii’s fixed point theorems.

On the other hand, in the deterministic situation, there is
a very special case of delay differential equations known as
the pantograph equations given by

{ g'(t)=kg(t) +1g(At), te[0,b], b>0,0<A<1,

9(0) = g,
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These equations are also called equations with propor-
tional delays. Pantographs are special devices mounted on
electric trains to collect current from one or several contact
wires. They consist of a pantograph head, frame, base, and
drive system, and their geometrical shape is variable. But it
is recently being used in electric trains. Many researchers

where ‘D™ and ‘D are the Caputo fractional derivatives of
orders a; and a,, respectively, f,,f, : ] x R* > R are two
continuous functions, J = [0, 1], Ax,_, =x(t]) — x(t;), with
x(t}) and x(t;) representing the right and left limits of x(#)
at t=t, i=1,---,m, and also Aylt:t) =y(t]) = y(t;), with
y(t}) and y(t;) representing the right and left limits of y(t)
att=t,j=1,-n

The objective of this paper is to establish the existence
and uniqueness results of the solutions of problem (3) by
means of Banach’s contraction principle and Krasnoselskii’s
fixed point theorem.

The main contributions of this paper are as follows:

(i) We consider a new system of impulsive pantograph
fractional differential equations

(if) We consider antiperiodic boundary value conditions
with a more general form

This paper contributes toward the development of quali-
tative analysis of impulsive fractional differential equations.

This paper is organized as follows: in Section 2, we give
some definitions and useful lemmas that will be used
throughout the work; after that, in Section 3, we will establish
the existence and uniqueness results by means of the fixed
point theorems; last but not least, in Section 4, we give two
illustrative examples.

2. Preliminaries and Lemmas

Let Jo=(0,4,], ], = (£1 ty)s -+ ] = (£, 1), and PC(J, X) =
{x:J->R:xeC(J,R)}, where i=0,1,2,---,m, x(t})
and x(t;) exist, i=1,---,m, is a space of continuous real-
valued functions on the interval J, and x(¢;) = x(t;).
Similarly, we define PC(J, Y)={y: J > R:ye C(J,,R)},
where j=0,1,2, -, n, y(t]) and y(t;) exist, j=1,--+,n, is a
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have investigated the pantograph differential equations and
their properties; see [19-21].

Motivated by all the previous works, we consider in
this paper coupled impulsive fractional pantograph differ-
ential equations with antiperiodic boundary conditions as
follows:

te],t#t,i=1,2,--,m 0<a; <1,0<A; <1,

te], t¢tj,j=1,2,‘~-,n,0<(x2<1,0</12<1,

space of continuous real-valued functions on the interval ],
and y(t;) = y(t)).
Then, clearly, PC(J,X) and PC(J,Y) are two Banach
spaces with the norms ||x|| = sup |x(#)| and ||y|| = sup |y(¢)|,
te0,1]

te0,1]
respectively.
Consequently, the space PC(J, X) x PC(J, Y) is a Banach
space with the norm ||(x, y)|| = ||lx|| + ||y]]-

We note that the space L”(J,R) is a Banach space of
Lebesque measurable functions with |.|[;(;) < co.

Definition 1 (see [1]). The fractional integral of order a with
the lower limit zero for a function f is defined as

t

18.f(t) = % j (£ 9" f()ds,

0

a>0,neN, (4)

provided the right-hand side is pointwise defined on [0, c0),
where I'(.) denotes the Gamma function.

Definition 2 (see [1]). The Riemann-Liouville derivative of
order a with the lower limit zero for a function f is defined as

a>0,n—-1<a<mn,

(5)

DY) = i | (=9 s

Jo

provided the function f is absolutely continuous up to order
(n— 1) derivatives, where I'(.) denotes the Gamma function.

Definition 3 (see [1]). The Caputo derivative of order a >0
with the lower limit zero for a function f is defined as

Py 14 n-a-1 (SLP)
D0+f(t):mwjo(t—s) f(s)—zpf (0) |ds, n=[a]+1, neN,
<kl

7 ©)
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provided the function f : [0,00) — R, where I'(.) denotes the
Gamma function.

Definition 4. A couple (x, y) is a solution of problem (3) if it
satisfies the equations

t#t,i=1,2,,m,

{ DRx(t) +y,x(1) = 1 (8 x(8), x(A11), y(1)),
DEy(t) +y,y(1) = f(6x(8), y(8) y (A1),

t#t, j=1,2m,

(7)

a.e. on J, and the conditions Ax,_, (0) =I;(x(t;)), Ay}, (0)
=Li(y(t)),i=1,--,m,j=1,---,n and a,x(0) + b;x(1) =0,
a,y(0) + byy(1) =0,a, 2 b; >0,a,>b,>0.

Lemma 5 (see [22]). The nonnegative functions E, and E,
given by

00 Zk
Ea(z) = ;m,
. (8)
E = 7
wa(?) };F(ak + )

have the following properties:

(1) Foranyy>0andte],

Etx(_tay) <1,

Etx,a(_t(xy) = m .

In addition, we have E,(0) = 1 and E, ,(0) = 1/T («).

(2) Foranyy>0andt;t,€],

—Ey (—71)Eq, (-1"y1) & Uy
N S =t
()= E, (—t%y,) i U
1+ Ea, (-71) =1 Ea, (*fZ'%)

Etx, (_t“‘)/l) < Uy
1+E, (1)

) +Jou—s)“"lEa,,a,(—(r—s)“'m(s)ds

13
«
SE, (') 0

—Eq,(=2)Ea, (-1%7,) Vi
I+ Euz(_yz) i1 Ea, (4::),2
o) L) (6w
4 L+ E (1) \ S Eo, (-1872)
Egctop) (& v,
1 +Ea2(’)’z) o1 Ea, (_tzzyz)

M=

0

_ [:)(1 - s)”‘flE%%(—(l —9)"p,) Z(S)ds> . J[

_ B (=) J
1 +Ea‘ (_yl) 0

[ 09 e (-7 1<s)ds> B () )

o t-9=E, L (—(t-9) f(s)ds ~ e
) ‘0( ) By (=) L)~ T

E,(=t3y) = Eo(=177),
Ea,a(_tg)/> - Ea,a(_t?)})’

ast, —t,

(10)

ast, —t;.

(3) Foranyy>0andt;,t, €] such that t; <t,,

E,(=t5y) S E,(=t7y),

3 ., (11)
Ea,:x(_tzy) < Ea,a(_tl Y)

Lemma 6 (see [23]). Let M be a closed, convex, and nonempty
subset of a Banach space X, and let F; and F, be operators
such that

(1) Fyx+ F,y € M whenever x,y € M
(2) F, is compact and continuous
(3) F, is a contraction mapping

Then, there exists z € M such that z= F;z + F,z.

Lemma 7 (see [24]). Let X be a Banach space, and let ] = [0
,T). Suppose that W c PC(],X) satisfies the following
conditions:

(1) W is a uniformly bounded subset of PC(], X)

(2) W is equicontinuous in (t,, t,;), i= 0,1, ---, m, where
tp=0andt,, =T

(3) Its t-sections W(t) = {x(t): x€ W, t/{t;, -, t,,}, W(
) ={x(t]): xe W}, and W(t;)={x(t;): xe W}
are relatively compact subsets of X

Then, W is a relatively compact subset of PC(], X).

Lemma 8 (see [25]). Let f;, f, = R be two continuous func-
tions. The couple (x, y) given by

(1=9)" 7 Eq g (-(1=9)"p))fy (5)ds, t€]p,

m

u t
s [ 29 B (-9 reTy =12 me,
p=itl zx,(*tp Yl) 0

= [0(1 )T Ey o (<=9 <s>ds> . ] (£= ) Eyp o (=9 y)fi()ds, t€ ),

S - By, (090 e

1 m v, 13
0= B (=9 ) B 1) Y [ (-9 B (-9 teT, =12,
0 - E (*tp Vz) 0

1 E,

(t=9)" " Eq g, (-(t=9)"p,)f (5)ds,  t€],

(13)



is a solution of the impulsive problem
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It follows from Lemma 8, and by using the boundary con-
ditions a,x(0) + b;x(1) =0 and a,y(0) + b,y(1) = 0, that the
solution of (3) can be expressed as follows:

C % — H—
DYx(t) +yx(t)=f,(t), te],t#t,i=12--,m,
D2y(t) +y,y(t)=f,(t), tel t#t,j=12-n,
Axltt(0)= i=1,-,m,
K (0) =), j=L-wem,
x(0) + x(1)
y(0) +y(1) =
(14)
B CHE () & Lx(t0) . B ) o .
N S K R L A e K AR R AT R R I
B (-1"y) (& I(x(t) -1 . ayy § L(x(5)) " e
0 1+mEa.<—y,>(éE:(—rfm ~o[[(1-9" B 1-9) yl>f1<s,x(s»xuls))y(s))ds)—E,‘,<—r 7 3 P L9 B I ROty i3,
Rt (k P~ [ (19 (0= 9 x(S)J(MS)J(S))ﬂ’S) [0 B =16 56 5O 0 T
(15)
—E. (-v,)E. (-
“ZL”EL(,(YZ; “)kZlEa’fE{(t}f)y)z)+L<t—s> i (£ )35 3(6), 1(6), ¥ (Aa5) dkm; (VZY j P59 ya)ds, 1 Jos
y(0)= lfa(;(yfy)z) (kzlplf(f(fg)yi)—%JL(I—s) B (1= )1 )fo(55(5), ()y(azs»ds)— wcrtr) 3 ’Ey(tp)y)z)+J';<r—s>"f‘E‘,a1< (=l X5 H )y Oas)ds, HeT,j=1.2mn=1,
ey <k e s =] (1 (-t )y(azs>>ds>+[<t 9T (53O ), 1€,

where 0, = b,/a, and 0, = b,/a,.

3. Main Results

(16)

Proof. We define the operator T : PC(J,X) x PC(J,Y) > P
C(J,X) x PC(J, Y) by

T(xp) () = (Ul p)(1), V(x)(1)), (19)

Theorem 9. We consider the following hypotheses:

(H,). The functions f,,f, : ] x R* > R are continuous,

where

and there exist two constants L, L, > 0 such that

|1 (6%, 2) = f( w, v, w)|
If2(t:% 9, 2) = fH(6w, v, w)| <

<Ly(]x-
Ly(|x—

uf+ly=vl+|z-w), Ml)

ul + [y = v+ [z —w]),

(17) ->E (~(1=9)"71)fi (5. x(s),

S 1p(x(ty))
o P P
forallte],x,y,z,u,v,weR. x(/\ls),y(s))ds> — B, (=t%1) —Z1E (_tglyl)
(Hy). |1,(x) = 1,)| < C1[x - y| and t e
] 9B =9 5 460,
1) = L;(n)| < Colx =], (18) 0
x(Ay8), y(s))ds, teltty,), i=0,1,2,--,m
forallx,yeR,i=1,2,---,m,and j=1,2,--,n . .
(H;). We suppose that (4, + u,) < 1. V() (t) = Eg, (-t*y,) Z L(y(ty))
Then, problem (3) has a unique solution (x*,y*). ’ 1+0,E,,(=2) \ G Ea, (-1172)

Remark 10. The expressions of y, and p, are given in the

proof.
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5 Efp(y(tp))

$), ¥(Ay9))ds | — E, (~t%y, @
)/()}/( )) > 2( g Y)P:j+1 az(_tpz)’z)

+J;(t—s

(), y(Ay5))ds,

)txzflEaz’

o, (Z(E =) p2)fo (5 %(),

te [tpty). =012,
(20)

Zic (K

We show now that the operator T has a fixed point,
which is a solution of problem (3).
Let K, =sup|f,(+,0,0,0)|, K, =sup|f,(t,0,0,0)|, K} =
te] te]

max {|[,(0)]: i=1,2,--,m}, and K =max {|[;(0)]: j=1,2

’...’n}‘

We choose

E, (—tZ’h) |) + (Ky/I'(ay + 1))

“Y)|/(4+20,)) -

>
(|1 +0,E, (
Yia (K51 |E,, (-t

(XL (C/|E,, (=teév)|) + (6Ly (o) + 1)/(2 + 0 )T (0 +1)))
az)’z) ’) + (Ky/T (o +1))

+(|(1+02 (=12)) |/(4+20,)) -

Firstly, we show that TB, c B,, where B, ={(x,y)€P
C(J,X) xPC(], Y): || (x, )|l <r}. It follows from the hypoth-

eses above and Lemma 5 that for any (x, y) € B,, we have
« 1 v L(x(t)
U(x,y)(t)] < |E, (—t™ .
| (xy)( )‘ } 1( YI)||: ( YI) <,;Eal(—tkl)’1)
/1
(1 - S)alilEal,al (7(1 - S)alyl)

L (x(ty))
p=i+l Eal (_t;lyl)

|1+0'1

-0,

Jo

'fl(S’x(S)»’C(MS)J(S)WS) - }
+ L(f =) By, (=(t = 9)"71)1 (5 %(5), x(As5), y(5))ds

S ! ( 11 (x(2)]
|1 +0,E, (_Yl)| k=1 |Ea, (_t:l)’1)|

: ‘|‘0<1 5=, (s,x<s>,xuls),y<s>>|ds>

I'(ay)

i (x ()] L PR
" k=1 ‘Eal (_tzlh)‘ " I(ay) L(t )
U569 509y ds < a1
|1+‘71 ( Y1)|
(< Hx(t) - L(0) + K7 0,
(1; |Ea, (_tzl}’1)| >+ I'(a, ‘1*’01 (=7)

x L(l =" [y (5 x(5), (41, ¥(5)) = £(5,0,0,0)

) o1 s, x(s
o ), (9 A )

x(A18):¥(5)) = f(5,0,0,0)[ +[f(s, 0,0,0) ]ds
(2+0)) Cir+Kj
N |1 +0,E, (_YI)| k=1 !Ea, (_tZIV1)|
K,y

Kl
+ +
I + 1)\1 +0,E, (—yl)\ I(a; +1)

g 1 -
I(ay)|1+0,E, (-y,)] Jo(l =)Ly (Jx(s)| + [x(A;3)]

+|f(5,0,0,0)|]ds +

(S (ol By (~1272)]) + (6La(05 + I(2+ 0)I (@ + 1))

o (=9 L9 9+ 9
[ « Cr+K;
& |Es, (—tZ‘yI)\

+y(s)[)ds +

(2+0y)
|1+(r E, (1)
3rL,0,

Kl
+
I'(a; +1)
3rL;
I'(a; +1)

N (2+0))
F(“1+1)|1+015a,(_}’1)| |1+01 ( Y1)|
Z K K, u o

. ot, + + e a T

=1 |szl (-te'yy)| Tl +1) st ‘Eal (~t'r)|

6L (0, +1) r
T @vo)Tm 1))7} =7

Similarly, we show that

K,

K3 .
I'(a; +1)

PEem

6L,(0,+1) -
T2t m+)) | T2
(23)

(2+0,)
‘1‘“’2 ( Y2 ’

; (z lE%(cz

—tZZY2)|

[V(xy)(B)] <

=

Finally,

)OI+ V) (O <r (24)

<

IT(ep) ()] < |U(xy

which implies that TB, C B,.
Next, we show that the operator T is a contraction; we let

(x,9), (%,¥) € X x Y; then, for t € ], we have

m

~thy)) (Z

’1+0E — al

tk)) I (%(%))
tk Vl)

U@ 2)(8) - Ux y)(1)] = | &



- GlL(l =) By, (=(1= )" p1) (f1 (5, %(5), %(A15), (5))

= fi(s%(s) X(As), Y(S)))d$> ~E, (-1, )

p=i+l
L((5) =L, E®) [ qan
P EZI (—tg‘pyl) I +[(t—s) E
(=t =) ) (fi(s x(s), %(Ai5)s ¥ (5))

N = _ 1
= f1(s X(s), X(A,9), y(5)) ) ds| < (m + 1)

o0

) icl‘x(tk))’x(tk” !

Dtl +
o Eq(-tém) r al)‘l +¢71Ea1(7m‘

| 9L (9 - 50 019 - 20

1 ! a -1
#13(6)~3(6))ds) + s | (69"
([5(6) = 3(6)| + e(hys) = 3O0)] + 5(6) - 7(5) )

(2+O'1) U C1
* [Tro, ()| & Es ()

3L,0 _ _
+ = O (x=] + -7
(“1+1)|1+01 al( YI)’
3L, B _ (2+0))
+ (x=xl[+ly=-yl) s 77—
I(a +1) [1+0,E, (=71)|

2+o0)I(a +1)

< (o} 6L, (0, +1)
’ Z a +
k:lEal (7tk YI)

(e ==l + 1y =7l = ey (Nl = [ + [y = ¥I)-

With a similar method, we also get

V(% y)(t) = V(% 7)(1)]
(2+0,) = 6L,(0,+1
2) Z 2(0,+1)
,(=12)| \ /S Ea, ( tk 7) (2+‘72)F(“2+1)
([l =X+ [ly = »ID)

|1+o2

=y ([lx=x[| + 1y = 7I)-
(26)

Finally, we can obtain

TCap) () = T y) ()] < (i + 1) ([ = X[ + [y = 7]))-

(27)

And since (u; +p,) <1, then the operator T is a
contraction.

Therefore, we conclude by Banach’s contraction mapping
principle that T has a fixed point which is the unique solution
(x*,y*) of problem (3). The proof is now completed.

Next, we present a result based on Krasnoselskii’s fixed point
theorem.

Advances in Mathematical Physics

Theorem 11. Assume that the condition (H,) and the follow-
ing additional conditions are satisfied:

(H,). Two functions ¢, v, €L"P1(0,+00)(0<p, <«
<1), @,y,€L"2(0,+00)(0< p,<a,<1), and w;,w,,7,,
#, € C([0,+00]) are nondecreasing functions satisfying the fol-
lowing inequalities:

[f1(tx(s), x(A15), ()| < @y () ([[]]) + v, (B)1,
f2(t:x(5), ¥(5), ¥ (A29))] < @, () ([1x]]) + ¥ ()7

(yID,

(1D,
(28)

for all (x,y) € PC(J,X) xPC(], Y), t€].
(Hs). We suppose that €, + €, < 1.
Then, problem (3) has at least one solution.

Remark 12. The expressions of & and &, are given in the
proof.

Proof. The set B,={(x,y) € PC(J,X)xPC(],Y): ||(x, )l
<r} is a closed, bounded and convex set in PC(J, X) x
PC(],Y) for all r>0.

We define the operator T by T(x,y)(t) = (U(x, y)(¢),
V(x,y)(t)) for any (x,y) € B, and ¢ € [a, b], where

oo o L(x(t))
x(Ays), y(s))ds | —E, (=t"y, %
(u):7(5) ) 1( o )p:ZiJ:rlEul (_tPIYI)

- S)alilEocl,al (_(t - 5)“1y1) 1(5, X(S),

15),p(8))ds, tet,ti,),i=0,1,2,-,m

Vixy)(t) =

Eq, (=1%y,) <” L (t))

T+ 0,E, (1)) \ & By, (-£07,)
1
- ozj (1= )% B, (~(1= )% 1) (5 X(5),

6 v L))
—E (-t% 5 14 IXP
w7 >p:fz+lEaz(‘tP2Yz)
+j0<t— o (< (E =5, f (5, 5(5),

y(s)y(Ays))ds, e [tty,),j=0,1,2,--n
(29)

(), y(A55))ds)

t
s)“z’lE
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By splitting the two operators above, we have

Ui(xp)(t) = Jt(f =) By, (=(t = 8) 1)1 (5 %(5),

0

0,E, (_tlxly) ! o —

xX(A15), y(s))ds lJlra;Ei(—yl)Jo(l —s)n!
a 1

o, (Z(1 =) 91 (5%(5), X(A15), y(5))ds,

E,, (=t2y,) <& L((t))
1+0,E, (=7,) (5 Eo, (—t:72)
—E,, (=1%y,) i L)

p=u1 Ea, ('tgz ¥2) '

Vo y)(t) =

(30)

This upcoming part of the proof requires us to rewrite
the operator T as

T(xy)(t) =T, (xy)(t) + To(x.)(1), (31)

where
T (6 y)(t) = (Ui (% p)(1), Vi(xp)(1)), (32)
Ty (xp)(t) = (Ua(xp)(1), Vo (% )(1)- (33)

It follows from (H,) and Holder’s inequality that for
any (x,y) € B, and each t € J, we have

—_—
= S

[t = 9)" 7 Egy 0, (=(t =) p1)fy (5 %(5), (A1),

= F(:xl) J:}Mt_S)arl

y(s))|ds

Pr(S)y (r) + v, (s)m, (1) ds

: r(;) <Jt|<f-5>“"l%<s)w1<r>| +j;\<t—s)““v/ (S)m(r)lds>
(fm (] f=syememvas ) ([
r(a ([a=sermoras) - ([mnomenma)”
91l ¥l
T = p1 g7 T =g
(34)

By the same method used above, we get

j (1= 87 B o (—(1 =)™y )y (5 %(5)s £(Ay5), (5))|ds

1 H(PIHL”Pl(]) .
= T (o1 = p)/(1=py)) ™" )
1 W1 llpen ) .
" T(@) (@ p)I(1-p )" o

(35)

Next, we show that T(x,y)=U(xy)+V(x,y) is a
bounded operator, which means that T(x, y) € B,, for (x, y)
€B,.

Suppose the opposite; so there exist (x,y) € B, and t € ]
such that |U(x,y)| >r/2 and |V(x,y)|>r/2. Assumption
(H,) implies that |I;(x(t,))| < [I;(x(t;)) - I;(0) + I;(0)] < C;
r+Kj and [I;(y(t)))| < |L;((t;)) - 1;(0) + ;(0)| < Cyr + K3.

Thus,
r ||‘P1HL”PI(1)
LUyl —wy(r)
2 (o) (o = py)/(1=py)) 7
HV’ H Vet
+ Uy ()
I(ay) (@ - p)/(1- p)
(1]
LIILYPL()) — wl(r)
I'(ay) {1*"71 ( Y1)|((“1_P1)/(1_P1)) !
W1l e
L (1)
I(ay)[1+0,E, (=yy)|((an = p1)/ (1= p1))
1 - Cir+Kj Cir+K;

+
‘1+0Ea1 )’1|I<1|Eo¢l thl)} k1|E (_tZIV1)|

- 2+0)) ( (1+2‘71)||‘P1||L”P1 w,(r)
_|1+01Ea1(_7’1)| (2+0)I (o) ((a = py)/ (1_/31))1_;)l '
. (L+20) [y, [l v ) n,(7)
2+ o) (e)((@ —p)/(L-pp)
Cir+Kj
kzl|E (—tf‘h)})
(36)

Dividing both sides by r and taking the lower limit as
r — +00, we get

1< (2+0,) (1+20)19, ||
2 |1+01 (= Y1)| (2+(71)F(ocl)((o¢1_pl)/(l_pl))kp1
- lim inf @y (1 +201)||1/’1||L1/p] )

r—+00 r

(2+0) (o) (@ = py)/(1=py))' ™
- lim inf & }11 + i i

r—+00

([, - tkw)r):“'

(37)
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Similarly, we have
l< (2+0,) (1+20,) ||| e,
27 [1403E,, (=1,)| \(2+05) (@) (= p,)/(1 = )
Wy (1+20,) 1w, | )
- lim inf —= + =
e T (24 0p) I (ag)((e )/(1—P )
- lim inf T2 4 L‘h =g,.
e TS 1|E (i Vz)}
(38)
So we get ¢ +¢&, =1, which contradicts (Hs). Hence,
T(x,y)=U(x,y) + V(x,y) is a bounded operator, for all (
X, y) €B,.

Now, we show that T, is a contraction mapping.
Thus, for all t € J and (x, ), (%, 7) € PC(J, X) x PC(], Y),
we get

< ‘Eal (_tal))l)‘
’1 + ‘71Ea1 (_Yl)‘

I (x -I.(x
',Z . |fs‘tfl)<)—‘tz@(1 (—fk)) [Eu ()
N T () = Te(x(8) 5 Te(x(t) = Te(*(8)
2 e En) S )

. 1 (2+0y) < C,
(1 ' |1 +01Ea1(_y1)|> = <|1 +01Ea1(_YI)} 1; |Ea, (-i%)\)

(e = X[+ [y =71 = er([le = %[ + [ly = 71])-
(39)

Similarly, we show that

Vz(x,y)(f)—Vz(x,y)(mg( 2+0,) c, >

|1 + azEaz(_Vz)’ k=1 }Eaz (_tzzyz)‘
(=%l + |y =yl =& (lx = X[ + [y =¥)-
(40)

It follows from (H;) that 0 <&} + &5 <1, and

T2 (% y)(1) = To (% 7)(1)] < (e +&3) (e = %[ + [ly = ¥1])-

(41)

Thus, T, is a contraction mapping.

Since the functions f, and f, are continuous, this implies
that the operator T, is also continuous. Now, we show that
T, =(U,, V,) is compact; we apply the same method as in
Theorem 9. One can verify easily that T,(B,) is uniformly
bounded on PC(J,X)x PC(],Y). We now show that T,
(B,) is equicontinuous on J. Let 7 = sup,. ;| f, (¢, x(t), x(A,1),
y(1))] and f3 = supye| f, (£, x(2), y(t), y(A,1)) s then, for any
t; <&, <& <t,,, we have
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EZ
[Ui(x:9)(8) = Uy (%) (§1)] < Jo (& - S)alilEul,al (_(52 - 5)a1Y1)

¢
'fl(S’X(S)’x()‘ls)’y(s))ds_J (81 =9 By, (=51 =97

0
(Ee, (=82'11) — Eq, (<51'71))
1 +01E“‘(—yl)

'f1<5’X<S>’x<hs>,y<s>>d5‘ ' 101
X L(l =) Ey o (=(1=5)p))f (5 %(s), x(A,5), y(5))ds

<

‘{Z
JO (&= 9" Ey g, (=62 = )™ 1) (5 2(5)s (4, 9), y(s))ds

(€1 =9 Egy, (=82 = )11 f1 (5 2(5), x(Ay5), y(5))ds
Ty, (<& =) 1)1 (5 %(), X(Ay), y(5))ds
(€1 = 9" By, (=81 =) 901 (52(5), x(Ay5), y(5))ds

(El _S)arlEaA,oc,( (El —S yl)f1<s X(S
o1(Ee, (52'71) ~ Ee, (') !

e e L= s x50 o s

SJZZ‘(EZ—S)“\’I—(El—S)u‘ 1| a,a,( (& -5) YI)}fldS

x(M1s), y(s))ds

(El _S)al 1
fi

I(oy

| a0 ( (EZ - S)alyl) @, (_(El - S)alyl) }f;ds

+ ‘Ulr ( &' Vl) l(*ET‘Vl))'f;«
(o +1) ‘l+a Eal(—y1)|

J'E' E -9

&

)

I'(a; +1)
‘Ul (Eal (75?1/1) 7Eu1 (7?11‘)11))‘ x * & a-1
" T(a, +1)[1+0,E, (-7,)] f1+f1J0’(El_S) ’

‘Ealal( (& -s) al}’l) . (_(fl_s)al}’l)‘ds
&)
I'(a

<

_& +£“l 8 e, G5 |on(Be (B07) ~Ee (Bi1))] (o
< ) fl+ I(a +1) + I'(a;+1) |1+0'1 ()’1)‘ fl

+fTJ0 (El—s)al | alrxl( (& - S) YI)_E“I'D‘I(_(EI_S> " |ds'
()

By (3) of Lemma 5, it follows that E,, , (—ty,) is contin-
uouson t € J,and thus, E, , (~t*y,) is uniformly continuous

ont € J; hence, for every real number € > 0, there exists a small
x> 0 such that for ¢, ¢, € J with |, — t,| < x, we have

|E(X1,(X1 (_t?lyl) - Etxl,txl (_tglyl) | < (43)

ay/(2-ay)
2

Letp=(2-a,)/2(1 - ;) and g = (2 — a;)/a;. Then,p > 1,
q>1, and (1/p)+(1/q)=1. Applying Holder’s inequality
yields

&
j (51 - S)al | oy, ‘7‘1( (52 S) YI) - Eal,al (_(El - S)alyl) |d$

2(1-a)/(2-ay)

¢
< U () — )@ DEaR-a) 4
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o/(2-0;)

%
: |:JO ( a0y ( (Ez - S) ) E“lr“l (_(El - S)aIYI))(Z_al)/al ds
2602 o (&, - &) 2(1-ay)/(2-ay)
L

E.

Hence,

(i -&)" +87 -8 .

U (%, 9)(8,) = Uy (%) (&)] < T(a +1) f1
+ (& _Ez)alfr + |01( ( 52 V1) (_gfl)’l)) s
(o +1) I(ay+1)|1+0,E, (-yy)| 7'

e—0,

2(1-ay)/(2-ay)
2 /2 2 _ /2
P l §" 25 -8)
&

(45)
as &, — &, which implies that U, is equicontinuous on J.
Similarly, the operator V, is also equicontinuous on J.
Hence, T,(B,) is relatively compact on J. It follows by
Arzela-Ascoli’s theorem that T, is compact. Therefore, we

conclude from Lemma 6 that problem (3) has at least one
solution.

4. Examples

Example 1. Consider the following coupled fractional panto-
graph differential equations with instantaneous impulses
cos (1) y*(t)

given by
sin (t) 1 1
" (er+7)2x(§t) ETHESZ0) te]\{i}’

cos (1) y*(t) sin (f) (1 1

cos (t) 2(t

(t+8) 1+x

sin (t) xz(t

(t+8) 1+
[x(172)]

40 + [x(1/2)]”
y(1/2)]

40+ [y(1/2)]”

‘D"x(t) + x(t) =

Dy +y()=

Ax\t:l/z(o) =

A}’\r:l/z(o) =

x(0) = =x(1),

(46)

By comparing (46) with problem (3), we get
2 .
cos (t) x°(t) N sin () x<lt>
(et +7)> \3

(t+8)*1+x%(t)
(t+8)71+y2(t)

Filtx(t), x(A11), (1)) =

cos (1) (1)

sin (1) x (t)
(t+8)* 1+x(t)
sin ()

' <ef+8>”<§t>'

cos (1) y(1)
(t+7)* L+y%(t)

Lot x(t),y(1) y(Aat)) =

(47)

9
We have g, =a,=b,=b,=0,=0,=1, a; =a, =1, and
V1=v=1
__ x®)]
Ii(x) = 40+ [x(D)]’
bl )
Ii(y) = m
Then, for any x, X, y, ¥ € R and f € ], we have
(6 x(8), x(A10), p(8)) = f1 (6 %(2), X(A11), y (1))
1
< 35 (Ix=3] + [y =71,
(6 x(0), (), y(Aa)) = fo (8 X(8), 3 (1), Y (A21)) |
< 55 (=l +ly =71,
_ 1
(%) = Li(x| < o5 (e =l + [y =71,
0) 10| < 3o (- [y =50 (49)

Then, by simple calculations, we can easily see that

L, =L,=—,
1773
1

C :C = —>
1 2 40

Ep(-1)=0.42,

E1/2<

> =~ (.52,
(50)

oo

3 Z C,
X
[T+E (1) (;E (-(1/2)"")

12L,
~0.796 < 1.
3I(3/2)

Py Uy =2

Therefore, all the hypotheses of Theorem 9 are satis-
fied. Hence, problem (46) has a unique solution (x,y) on
[0, 1].

Example 2. Consider the following impulsive fractional
coupled equations with antiperiodic conditions given by
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‘D"2x(t) +2x(t) =
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&717sm<m><lua _+07?Tx<30_k07?fam<%>< wan)), tej\{l}

A)’|t=1/2 (0) - W )
x(0) +x(1) =0,
7(0) +y(1)=0.

By comparing (51) with problem (3), we have

Si(tx(6), x(A8), y(1))

2\3/t+lsin(2t)( |x(t)] )+ 3t+1x
)]

14 1+ |x( 7et)2
Vt+1cos (2t) [ |y(t)|
T Q+wm0’

L6 x(1), y(t), y(Ast))

_ Vt+1 cos (2t) ( |x(1)] ) N Vt+1sin (2t)
1+ [x(t)]

14

(5im) e ()

This implies that

[f1 (8 x(8), x(Aa1), y(1))]
< <\3/t+ 1 sin (2t)> (%] +1)

14

14

N <\3/t+ 1 sin (2t)> il

o (6x(8), y(8), (A1)
3 <€/t+ 1 sin (zr)) »

14

+<ﬂiif599>wm+lx

14

forany x,x,y,y€ Rand t € J.

14 +x (7e')? " \2 14 1+ |y(t 2
i _ Vt+1lcos (2t) [ |x(t Vt+1sin (2t) [ |y(t)] vVi+1l (3
DY) +2(0) = Q+M T Q+wmo+<wf Gﬁ’
_ _ 1x(12)|
Ax\t:llz(o) = m’ 1)
p(172)|

Thus, applying the same procedure as in Example 1, we
get

1

= %’
E,(-2)=0.25,

1\ 12
Ei; —2(2> =~ (.40, (54)
1
F() ~3.14,
2
Jt+1

P1(t) =@, (t) =y, (1) =y, (t) = 14

C =G,

(52) This implies that
. LWy .o
lim, ., inf 71 =lim,_, ., inf 71
=lim,_,, inf 22 (55)
r
=lim,__  inf 2 _ 1,
r
& +¢&=084<1. (56)
(53) Thus, all the hypotheses of Theorem 11 are satisfied.

Hence, problem (51) has at least a solution (x, y) on [0, 1].
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