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We carry out the Becchi-Rouet-Stora-Tyutin (BRST) quantization of the one ð0 + 1Þ-dimensional (1D) model of a free massive
spinning relativistic particle (i.e., a supersymmetric system) by exploiting its classical infinitesimal and continuous
reparameterization symmetry transformations. We use the modified Bonora-Tonin (BT) supervariable approach (MBTSA) to
BRST formalism to obtain the nilpotent (anti-)BRST symmetry transformations of the target space variables and the (anti-
)BRST invariant Curci-Ferrari- (CF-) type restriction for the 1D model of our supersymmetric (SUSY) system. The nilpotent
(anti-)BRST symmetry transformations for other variables of our model are derived by using the (anti-)chiral supervariable
approach (ACSA) to BRST formalism. Within the framework of the latter, we have shown the existence of the CF-type
restriction by proving the (i) symmetry invariance of the coupled Lagrangians and (ii) the absolute anticommutativity property
of the conserved (anti-)BRST charges. The application of the MBTSA to a physical SUSY system (i.e., a 1D model of a massive
spinning particle) is a novel result in our present endeavor. In the application of ACSA, we have considered only the (anti-
)chiral super expansions of the supervariables. Hence, the observation of the absolute anticommutativity of the (anti-)BRST
charges is a novel result. The CF-type restriction is universal in nature as it turns out to be the same for the SUSY and non-
SUSY reparameterization (i.e., 1D diffeomorphism) invariant models of the (non-)relativistic particles.

1. Introduction

The Becchi-Rouet-Stora-Tyutin (BRST) quantization
scheme is one of the most elegant approaches to quantize
the locally gauge and diffeomorphism invariant theories
where the local classical transformation parameters are
traded with the (anti-)ghost fields at the quantum level
[1–4]. For the quantization of the classical supersymmetric
gauge theories (with the bosonic and fermionic transforma-
tion parameters), the BRST quantization scheme requires
the fermionic as well as the bosonic (anti-)ghost fields/vari-
ables (see, e.g., [5, 6]). Some of the key characteristic features
of the BRST quantization scheme are (i) for a given local
gauge and/or diffeomorphism symmetry, there exist two nil-
potent symmetries which are christened as the BRST and
anti-BRST symmetries, (ii) the (anti-)BRST symmetries ð
sðaÞbÞ are fermionic (i.e., nilpotent) and absolutely anticom-

muting (i.e., sb sab + sab sb = 0) in nature, (iii) the quantum
gauge (i.e., BRST) invariance and unitarity are respected
together in the perturbative computations at any arbitrary
order, (iv) there is appearance of the Curci-Ferrari- (CF-)
type restriction(s) which are responsible for the absolute
anticommutativity of the (anti-)BRST transformations and
they lead to the existence of the coupled (but equivalent)
Lagrangian (densities) for the BRST quantized theory which
respect both (i.e., BRST and anti-BRST) nilpotent quantum
symmetries, and (v) the (anti-)BRST symmetries transform
a bosonic field/variable to a fermionic field/variable and
vice-versa. Hence, these symmetries are supersymmetric type
(i.e., SUSY type).

Physically, the nilpotency property of the (anti-)BRST
symmetry transformations corresponds to the fermionic
nature of these quantum symmetries and the absolute antic-
ommutativity property encodes the linear independence of
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the BRST and anti-BRST symmetry transformations. The
former property encodes the SUSY-type transformations.
As pointed out earlier, the absolute anticommutativity prop-
erty owes its dependence on the existence of the CF-type
restriction(s). The BRST approach to Abelian 1-form gauge
theory is an exception where the CF-type restriction is trivial
(but it turns out to be the limiting case of the non-Abelian 1-
form theory which is endowed with the CF condition [7]). It
is the usual superfield approach (USFA) to BRST formalism
[8–15] which provides the interpretation and origin for the
abstract mathematical properties (i.e., nilpotency and antic-
ommutativity) that are associated with the (anti-)BRST
symmetries. Furthermore, the USFA leads to the derivation
of the CF condition [7] in the context of a 4D 1-form non-
Abelian theory (see, e.g., [10–12]) which is found to be an
(anti-)BRST invariant quantity. Hence, it is a physical
restriction on the BRST quantized theory.

The USFA to BRST formalism [8–15] leads to the deri-
vation of only the off-shell nilpotent symmetries that are
associated with the gauge and (anti-)ghost fields/variables.
It does not shed any light on the (anti-)BRST transforma-
tions that are associated with the matter fields in an interact-
ing gauge theory. There have been consistent extensions of
the USFA (see, e.g., [16–18]) where additional quantum
gauge invariant restrictions on the superfields have been
imposed to derive the (anti-)BRST symmetry transforma-
tions for the gauge, (anti-)ghost, and matter fields together.
This extended version of the superfield approach to BRST
formalism has been called as the augmented version of
superfield approach (AVSA). In our recent works (see, e.g.,
[19–21]), we have been able to develop a simpler off-shoot
of AVSA where only the (anti-)chiral superfields/supervari-
ables have been taken into account. The quantum gauge
(i.e., (anti-)BRST) invariant restrictions on these (anti-)chi-
ral superfields/supervariables have led to the deduction of
(anti-)BRST symmetry transformations for all the fields/-
variables. This approach to BRST formalism has been
named as the (anti-)chiral superfield/supervariable approach
(ACSA) to BRST formalism where the existence of the CF-
type restriction(s) has been shown by proving (i) the abso-
lute anticommutativity of the (anti-)BRST charges and (ii)
the invariance of the coupled (but equivalent) Lagrangian
(densities) of the (anti-)BRST invariant theories.

It has been a challenging problem to apply the superfield
approach to BRST formalism in the context of (super)string
and gravitational theories which are diffeomorphism invari-
ant. In a recent paper [22], it has been proposed that the dif-
feomorphism symmetry can be taken into consideration
within the framework of superfield approach to BRST for-
malism. This approach to BRST formalism has been called
as the modified Bonora-Tonin superfield/supervariable
approach (MBTSA) to BRST formalism which has been
recently applied to the physical system of a 1D scalar
(non-)relativistic particles [23, 24]. To be precise, judicious
combination of MBTSA and ACSA has been very fruitful
in our recent works [23, 24] where we have been able to
derive the proper (anti-)BRST symmetries for all the quan-
tum variables along with the CF-type restriction in a system-
atic fashion. In the proposal by Bonora and Malik [25], the

diffeomorphism symmetry transformations have been incor-
porated into the superfields which are defined on a ðD, 2Þ
-dimensional supermanifold on which a D-dimensional
ordinary diffeomorphism invariant theory is generalized.
We have exploited the mathematical rigor and beauty of
the MBTSA in our present endeavor for the BRST analysis
as well as quantization of a 1D diffeomorphism invariant
SUSY system.

To be precise, in our present investigation, we have
applied the theoretical beauty and strength of MBTSA to
derive the off-shell nilpotent (anti-)BRST transformations
for the target space canonically conjugate bosonic variables
(xμ and pμ) and fermionic variables ðψμ, ψ5Þ along with the

(anti-)BRST invariant CF-type restrictions: B + �B + ið�C _C −
_�C CÞ = 0 which is responsible for (i) the validity (cf. Equation
(22)) of the absolute anticommutativity (i.e., fsb, sabg = sb
sab + sab sb = 0) of the off-shell nilpotent (s2ðaÞb = 0) (anti-

)BRST symmetry transformations sðaÞb and (ii) the deriva-
tion of LB and L�B which are coupled (but equivalent) (cf.
Equation (24)). The proper (anti-)BRST transformations of
the rest of the variables have been derived by using the
ACSA to BRST formalism. It is worth pointing out that, in
the case of MBTSA, we have taken into account the full
super expansions of the supervariables along all the possible
Grassmannian directions of the general ð1, 2Þ-dimensional
supermanifold. On the other hand, we have performed only
the (anti-)chiral super expansions of the supervariables in
the context of ACSA to BRST formalism. We have derived
the exact expression for the CF-type restriction by demand-
ing (i) the invariance of the coupled (but equivalent)
Lagrangians and (ii) the validity of the absolute anticommu-
tativity of the off-shell nilpotent (anti-)BRST symmetries as
well as conserved (anti-)BRST charges in the ordinary space
and in the superspace (within the framework of ACSA to
BRST formalism). These derivations of the CF-type restric-
tions, by various theoretical methods, are novel results in
our present investigation.

The following key factors have been at the heart of our
curiosity to pursue our present investigation. First, we have
been able to apply the MBTSA to a reparameterization
invariant model of the scalar relativistic particle to derive
the (anti-)BRST symmetry transformations as well as the
(anti-)BRST invariant CF type of restriction [24]. Thus, it
has been very important for us to apply the same mathemat-
ical technique (i.e., MBTSA) to a physically interesting SUSY
model of a reparameterization invariant theory where the
fermionic as well as bosonic variables exist. Second, we have
been very curious to verify the universality of the CF-type
restriction in the context of BRST quantization of the 1D dif-
feomorphism (i.e., reparameterization) invariant theories.
We find that the nature and form of the CF-type restriction
are the same for the SUSY as well as non-SUSY theories.
Third, it has been very interesting to note that the gauge-
fixing and Faddeev-Popov ghost terms together are the same
for the reparameterization invariant scalar and SUSY relativ-
istic as well as a nonrelativistic particle [23]. Finally, our
present investigation (as well as others [23, 24]) is our
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modest initial steps to apply the MBTSA as well as the ACSA
to BRST formalism together to physically interesting 4D
(and higher dimensional) diffeomorphism invariant theories
which are important from the point of view of the modern
developments in gravitational as well as (super)string
theories (and related extended objects) of the theoretical
high energy physics.

The theoretical contents of our present endeavor are
organised as follows. In Section 2, we discuss a couple of
continuous and infinitesimal symmetry transformations
and establish their relationship with the infinitesimal and
continuous 1D diffeomorphism (i.e., reparameterization)
symmetry transformations. Our Section 3 is devoted to the
upgradation of the classical infinitesimal reparameterization
symmetry transformations to the quantum off-shell nilpo-
tent and absolutely anticommuting (anti-)BRST symmetry
transformations. The latter property is satisfied due to the
existence of an (anti-)BRST invariant CF-type restriction.
This section also contains the coupled (but equivalent)
Lagrangians that respect both the (anti-)BRST symmetry
transformations on the submanifold (of the subspace of
quantum variables) where the CF-type restriction is satisfied.
In Section 4, we derive the (anti-)BRST transformations for
the target space fermionic as well as bosonic variables. In
addition, we deduce the CF type of restriction by exploiting
the theoretical strength of MBTSA. We utilize the potential
of ACSA to BRST formalism to obtain the nilpotent (anti-
)BRST symmetry transformations for the other variables of
our BRST-invariant theory in Section 5. We capture the
(anti-)BRST invariance of the coupled (but equivalent)
Lagrangians within the ambit of ACSA and establish, once
again, the existence of our quantum (anti-)BRST invariant
CF-type restriction in Section 6. Section 7 of our present
endeavor contains theoretical proof of the nilpotency and
absolute anticommutativity of the conserved and off-shell
nilpotent (anti-)BRST charges. Finally, in Section 8, we
summarize our key accomplishments and point out a few
directions for further investigations.

In our Appendices A, B, and C, we collect some explicit
computations that corroborate a few key claims and state-
ments that have been made in the main body of the text of
our present endeavor. Our Appendix D is devoted to provide
an alternative proof of the existence of an (anti-)BRST
invariant CF-type restriction on our theory.

Convention and notations: we take the flat metric tensor
of the D-dimensional target spacetime manifold as ημν = ð+
1,−1,−1,−1⋯ Þ so that the dot product between two nonnull
vectors ðPμ,QμÞ is P ·Q = ημν P

μ Qν = P0 Q0 − Pi Qi where
the Greek indices μ, ν, λ⋯ = 0, 1, 2⋯D − 1 and Latin indi-
ces i, j, k⋯ = 1, 2, 3⋯D − 1. We adopt the convention of
the left-derivative w.r.t. all the fermionic variables. We
always denote the nilpotent (anti-)BRST transformations
by the notations sðaÞb. Our 1D model is generalized onto a
ð1, 2Þ-dimensional supermanifold which is parameterized
by the superspace coordinates ZM = ðτ, θ, θÞ where τ is the
bosonic evolution parameter and a pair of Grassmannian

variable ðθ, θÞ satisfy θ2 = θ
2 = 0, θ θ + θ θ = 0. In our pres-

ent investigation, we shall focus only on the ð1, 1Þ

-dimensional (anti-)chiral super submanifolds of our cho-
sen general ð1, 2Þ-dimensional supermanifold in the con-
text of ACSA.

2. Preliminaries: Continuous and Infinitesimal
Reparameterization
Symmetry Transformations

We divide our present section into two parts. We
discuss, in our Section 2.1, a few classical infinitesimal
continuous symmetries and their relationships with the
classical infinitesimal reparameterization symmetry trans-
formations. Our Section 2.2 is devoted to a concise
description of the quantum (anti-)BRST symmetry
transformations.

2.1. Some Classical Infinitesimal and Continuous
Symmetries. We begin with the following first-order
Lagrangian ðLf Þ for the free one ð0 + 1Þ-dimensional (1D)
massive spinning (i.e., SUSY) relativistic particle (see, e.g.,
[5, 26])

Lf = pμ _x
μ −

e
2 p2 −m2� �

+ i
2 ψμ _ψμ − ψ5 _ψ5

� �
+ iχ pμ ψ

μ −mψ5

� �
,

ð1Þ

where we have parametrized the trajectory of the particle by
τ and defined the “generalized” velocities ð _xμ = dxμ/dτ, _ψμ

= dψμ/dτÞ w.r.t. to it. This 1D trajectory is embedded in
the D-dimensional flat Minkowskian target spacetime man-
ifold where ðxμ, pμÞ (with μ = 0, 1, 2,⋯D − 1) are the canon-
ical conjugate pair of spacetime and momenta variables
which are function of the evolution parameter τ. We have
the fermionic variables ðχ, ψμ, ψ5Þ in our theory. The
Lagrangian (1) also has the bosonic variable e and fermionic
variable χ as the Lagrange multiplier variables. These latter
variables behave like the “gauge” and “superaguge” variables
due to their transformation properties under the gauge and
supersymmetric gauge transformations. In fact, the fermi-
onic variable ψμ is the superpartner of xμ and the other fer-
mionic variable ψ5 has been introduced to incorporate the
rest mass m into the Lagrangian Lf where the mass-shell
condition ðp2 −m2 = 0Þ is satisfied by the free ( _pμ = 0) mas-
sive spinning relativistic particle. Our present 1D model is
interesting because it provides a prototype example of a
supersymmetric (SUSY) gauge theory and its generalization
to the 4D theory provides an example of the supergravity
theory where fermionic variable ψμ becomes the Rarita-
Schwinger Lorentz vector spin 3/2 field and the einbein var-
iable e turns itself into the vierbein field.

The action integral S =
Ð +∞
−∞dτLf respects the following

infinitesimal and continuous reparameterization symmetry
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transformations ðδrÞ:

δr xμ = ε _xμ,
δr ψμ = ε _ψμ,

δr pμ = ε _pμ,

δr ψ5 = ε _ψ5,

δr χ = d
d τ

εχð Þ,

δre =
d
d τ

εeð Þ,

ð2Þ

because the first-order Lagrangian ðLf Þ transforms, under
the above infinitesimal reparameterization symmetry trans-
formation ðδrÞ, as

δr Lf =
d
dτ

εLf

� �
⟹ δrS = 0, ð3Þ

where δr basically corresponds to the infinitesimal 1D diffeo-
morphism/reparameterization transformation: τ⟶ τ′ = τ
− εðτÞ. Here, the transformation parameter εðτÞ is infinites-
imal. It is an elementary exercise to note that, if we set all the
fermionic variables equal to zero (i.e., χ, ψμ, ψ5 = 0), we
obtain an infinitesimal gauge symmetry transformation ðδg
Þ from the infinitesimal reparameterization symmetry trans-
formation (2) as follows:

δg xμ = ξ pμ,
δgpμ = 0,

δge =
d
d τ

ξð Þ = _ξ,

δgψμ = δgψ5 = δgχ = 0,

ð4Þ

where we have identified eε = ξ and used the Eular-Lagrange
eqations of motions (EL-EOMs): _xμ = epμ, _pμ = 0. In Equa-
tion (4), the bosonic infinitesimal transformation parameter
ξðτÞ is nothing but the gauge transformation parameter. It
can be readily checked that we have the following transfor-
mation for Lf and S under δg:

δgLf =
d
dτ

ξ

2 p2 +m2� �� 	
⟹ δg S = 0, S =

ð+∞
−∞

dτLf : ð5Þ

We have infinitesimal classical supergauge symmetry
transformations ðδsgÞ in our theory which transforms the
fermionic variables into their bosonic counterparts and
vice-versa. These continuous and infinitesimal symmetry
transformations are

δsgxμ = κψμ,
δsgpμ = 0,

δsgψμ = iκpμ,
δsgψ5 = iκm,
δsgχ = i _κ,
δsge = 2κχ,

ð6Þ

where the infinitesimal transformation parameter κðτÞ is fer-
mionic (i.e., κ2 = 0) in nature. It is straightforward to observe
that we have the following:

δsg Lf =
d
dτ

κ

2 pμψ
μ +mψ5

� �h i
⟹ δsg S = 0: ð7Þ

Under the combined δ = δg + δsg classical symmetry
transformation ðδÞ, we have the following continuous and
infinitesimal symmetry transformations ðδÞ, namely,

δxμ = ξpμ + κψμ,
δψμ = iκpμ,
δpμ = 0,

δe = _ξ + 2κχ,
δχ = i _κ,

δψ5 = iκm,

ð8Þ

which lead to the transformation of the first-order Lagrang-
ian Lf as

δLf =
d
dτ

ξ

2 p2 +m2� �
+ κ

2 pμ ψ
μ +mψ5

� �� 	
⟹ δS = 0:

ð9Þ

Thus, the continuous and infinitesimal transformation δ
is indeed a symmetry transformation for the action integral
S =

Ð∞
−∞dτLf due to Gauss’s divergence theorem.
As the gauge symmetry transformation (4) can be incor-

porated into the reparameterization symmetry transforma-
tions (2) with the help of some EL-EOMs and some
identification of the transformation parameters, in exactly
similar fashion, the combined (super)gauge symmetry trans-
formations (8) can be incorporated into the reparameteriza-
tion symmetry transformations (2) if we take the help of the
following EL-EOMs, namely,

_pμ = 0,
_xμ = e pμ − iχψμ,

_ψμ = χ pμ,
_ψ5 =mχ,

ð10Þ

and identify the transformation parameters as e ε = ξ and −
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i ε χ = κ (see, e.g., [5, 26] for details). Thus, we note that the
classical infinitesimal reparameterization symmetry trans-
formations (2) are a set of very general kind of symmetry
transformations whose special cases are the continuous and
infinitesimal symmetry transformations (4) and (8).

2.2. Quantum (Anti-)BRST Symmetries Corresponding to the
Classical (Super)gauge Symmetry Transformations. The clas-
sical continuous and infinitesimal (super)gauge symmetry
transformations (8) can be elevated to their counterpart
quantum nilpotent ðs2ðaÞb = 0Þ, infinitesimal, and continuous

(anti-)BRST transformations sðaÞb as follows [5, 6, 26]:

sabxμ =�cpμ + �βψμ,

sabψμ = i�βpμ,

sabe = _�c + 2�βχ,
sabc = i�b,

sab�c = −i�β2,
sabpμ = 0,

sab�β = 0,
sab β = −i γ,
sab γ = 0,

sab χ = i _�β,
sab b = 2 i �β γ,
sab ψ5 = i �βm,

sab �b = 0,

ð11Þ

sb xμ = c pμ + βψμ,
sb ψμ = iβ pμ,
sb e = _c + 2βχ,

sb pμ = 0,

sb c = −iβ2,
sb β = 0,
sb �c = i b,
sb �β = i γ,
sb γ = 0,

sb χ = i _β,
sb �b = −2 iβ γ,

sb b = 0,
sb ψ5 = iβm,

ð12Þ

where the fermionic ðc2 =�c2 = c�c +�c c = 0Þ (anti-)ghost vari-
ables ð�cÞc and the bosonic ðβ2 = �β

2 ≠ 0, β �β = �ββÞ (anti-

)ghost variables ð�βÞβ correspond to the bosonic and fermi-
onic gauge and supergauge transformation parameters ξ
and κ of Equation (8), respectively. The variables ð�bÞb are
the Nakanishi-Lautrup-type auxiliary variables, and γ is an
additional fermionic ðγ2 = 0Þ variable in our BRST-
quantized (as well as invariant) theory.

It is straightforward to note that the anticommutativity
property of the off-shell nilpotent ðs2ðaÞb = 0Þ (anti-)BRST

symmetry transformations (sðaÞb), namely,

sb, sabf gxμ = i b + �b + 2β �β
� �

pμ,

sb, sabf g e = i
d
d τ

b + �b + 2β �β
� �

,
ð13Þ

is true if and only if the CF-type restriction b + �b + 2β �β = 0
is invoked from outside. However, this restriction is a physi-
cal constraint because it is an (anti-)BRST invariant (i.e.,
sðaÞb ½b + �b + 2β �β� = 0) quantity. It can be readily checked
that

sb, sabf gΦ = 0,
Φ = pμ, ψμ, ψ5, b, �b, β, �β, c,�c, γ:

ð14Þ

In other words, we observe that the off-shell nilpotent ð
s2ðaÞbÞ = 0 (anti-)BRST symmetry transformations ðsðaÞbÞ are
absolutely anticommuting (i.e., fsb, sabg = sb sab + sab sb = 0)
provided the entire theory is considered on the quantum
submanifold where the CF-type restriction b + �b + 2β �β = 0
is satisfied. It is the existence of this physical restriction that
leads to the existence of coupled (but equivalent) Lagrang-
ians

Lb = Lf + sb sab
i
2 e2 + χψ5 −

1
2�c c

� 	
,

L�b = Lf − sab sb
i
2 e2 + χψ5 −

1
2�c c

� 	
,

ð15Þ

which incorporate the gauge-fixing and Faddeev-Popov
ghost terms in addition to the first-order Lagrangian ðLf Þ
of Equation (1). In the full blaze of glory, the above Lagrang-
ians (in terms of all the appropriate variables) are as follows
[6, 26]:

Lb = Lf + b _e + 2 �ββ
� �

+ b2 − i _�c _c + �β
2
β2 − 2 e �β _β + γ χ

� �
+ 2 iχ β _�c − �β _c

� �
+m �β _β − _�ββ + γ χ

� �
+ 2 γ β�c − �β c

� �
− _γψ5,

ð16Þ

L�b = Lf − �b _e − 2 �ββ
� �

+ �b
2 − i _�c _c + �β

2
β2 + 2 iχ β _�c − �β _c

� �
+ 2 e _�ββ − γ χ

� �
+m �β _β − _�ββ + γ χ

� �
+ 2 γ β�c − �β c

� �
− _γψ5,

ð17Þ
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where the subscripts b and �b are appropriate because the
Lagrangian Lb depends on the Nakanishi-Lautrup auxiliary
variable b but the Lagrangian L�b contains the auxiliary vari-
able �b in its full expression. It is straightforward to check that
Lb and L�b of our theory respect the perfect BRST and anti-
BRST transformations because we have

sb Lb =
d
d τ

β

2 pμ ψ
μ +mψ5

� �
+ c
2 p2 +m2� �

+ b _c + 2βχð Þ
� 	

,

ð18Þ

sab L�b =
d
d τ

�β

2 pμ ψ
μ +mψ5

� �
+ �c
2 p2 +m2� �

− �b _�c + 2 �βχ
� �� 	

:

ð19Þ

As a consequence, the action integrals S1 =
Ð∞
−∞d τ Lb

and S2 =
Ð∞
−∞d τ L�b remain invariant under the BRST and

anti-BRST symmetry transformations (12) and (11), respec-
tively. We define a perfect symmetry as the one under which
the action integral remains invariant without any use of the
CF-type restriction and/or EL-EOMs.

The BRST quantization of the massive spinning particle
can be performed using the (anti-)BRST transformations
(11) and (12) which correspond to the classical (super)gauge
symmetry transformations (8). In our recent publication
[26], we have discussed all the details of this quantization
scheme. However, we have not touched the continuous
and infinitesimal reparameterization transformations (2).
We focus on the latter classical symmetry transformations
in the next section for the BRST analysis as it is our mod-
est first step towards our main goal to discuss the diffeo-
morphism invariant SUSY theories in the physical ð3 + 1Þ
-dimensional (4D) and higher dimensional ðD > 4Þ
spacetime.

3. Quantum (Anti-)BRST Symmetries
Corresponding to the Classical
Reparameterization Symmetry

In this section, we discuss the quantum (anti-)BRST symme-
try transformations corresponding to the classical infinitesi-
mal reparameterization symmetry transformations (2). This
is essential and important because we wish to perform the
BRST quantization of a 1D diffeomorphism (i.e., reparame-
terization) invariant SUSY theory. We exploit the standard
techniques and tricks of the BRST formalism to elevate the
above classical symmetry to its counterpart quantum sym-
metries. In fact, the off-shell nilpotent ðs2ðaÞb = 0Þ (anti-)BRST
symmetry transformations (corresponding to the classical
Equation (2)) are

sab ψμ = �C _ψμ,

sab pμ = �C _pμ,

sab e =
d
d τ

�C e
� �

,

sab xμ = �C _xμ,

sab �C = �C _�C,

sab χ = d
d τ

�C χ
� �

,

sab ψ5 = �C _ψ5,
sab C = i �B,
sab �B = 0,

sab B = _B �C − B _�C,

ð20Þ

sb xμ = C _xμ,
sb pμ = C _pμ,

sb e =
d
d τ

C eð Þ,
sb ψμ = C _ψμ,

sb ψ5 = C _ψ5,

sb χ = d
d τ

C χð Þ,

sb �C = i B,
sb B = 0,

sb C = C _C,

sb �B = _�BC − �B _C,

ð21Þ

where B and �B are the Nakanishi-Lautrup auxiliary and ð�C
ÞC are the (anti-)ghost variables of our theory. As far as
the absolute anticommutativity property (i.e., fsb, sabg = 0)
of the above transformations is concerned, we note the fol-
lowing:

sb, sabf gsμ = i B + �B + i �C _C − _�C C
� �h i

_sμ,

sb, sabf gΦ = i
d
d τ

B + �B + i �C _C − _�C C
�n o

Φ
h i

,

sb, sabf gΨ = 0,
Ψ = B, �B, C, �C,

ð22Þ

where sμ = xμðτÞ, pμðτÞ, ψμðτÞ, ψ5ðτÞ and Φ = eðτÞ, χðτÞ.
Thus, we note that the absolute anticommutativity property
of the (anti-)BRST symmetry transformations (cf. Equations
(20) and (21)) is satisfied (i.e., fsb, sabg = sb sab + sab sb = 0) if
and only if we invoke the (anti-)BRST invariant (i.e., sðaÞb½B
+ �B + i ð�C _C − _�C CÞ� = 0) CF-type restriction ½B + �B + ið�C _C
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− _�C CÞ = 0�. We note, therefore, that a CF-type constraint
exists on our theory which is the root cause behind the abso-
lute anticommutativity (i.e., fsb, sabg = 0) of the (anti-)BRST
symmetry transformations and it leads to the existence of
the coupled (but equivalent) (anti-)BRST invariant Lagrang-
ians as

LB = Lf + sb sab
i
2 e2 + χψ5 −

1
2
�C C

� 	
,

L�B = Lf − sab sb
i
2 e2 + χψ5 −

1
2
�C C

� 	
,

ð23Þ

where the (anti-)BRST symmetry transformations ðsðaÞbÞ are
the quantum symmetries (cf. Equations (20) and (21)) corre-
sponding to the classical infinitesimal reparameterization
symmetry transformations (2). It will be noted that the
quantities in the square brackets of (23) are the same as
quoted in Equation (15). However, the (anti-)BRST symme-
try transformations in (23) are different from (15) as are the
notations for the Nakanishi-Lautrup-type auxiliary and
(anti-)ghost variables (cf. Equation (11), (12), (20), and
(21) for details).

The above coupled (but equivalent) Lagrangians (23) can
be expressed in terms of the auxiliary and basic variables in
an explicit form as

LB = Lf + B e _e − i 2 _�C C + �C _C
� �h i

+ B2

2 − i e2 _�C _C − i e _e _�C C − _�C �C _C C,

L�B = Lf − �B e _e − i 2 �C _C + _�C C
� �h i

+
�B2

2 − i e2 _�C _C − i e _e �C _C − _�C �C _C C:

ð24Þ

We note that the pure Faddeev-Popov ghost part (i.e.,

− _�C �C _C C) of the above coupled (but equivalent) Lagrangians
is the same. It can be readily checked that the EL-EOMs
from Lagrangians LB and L�B, w.r.t. the auxiliary variables B
and �B, lead to the following:

B = −e _e + 2 i _�C C + i �C _C,
�B = e _e − 2 i �C _C − i _�C C,

ð25Þ

which are responsible for the derivation of the CF-type

restriction: B + �B + i ð�C _C − _�C CÞ = 0. The above Lagrangians
LB and L�B of our theory respect the BRST and anti-BRST
transformations in a precise and perfect manner because it
is interesting to check that

sb LB =
d
d τ

C Lf + e2 B _C + e _e B C − i B �C _C C + B2 C
h i

,

ð26Þ

sab L�B =
d
d τ

�C Lf − e2 �B _�C − e _e �B �C − i �B _�C �C C + �B2 �C
h i

:

ð27Þ
As a consequence, the action integrals S1 =

Ð∞
−∞d τ LB

and S2 =
Ð∞
−∞d τ L�B respect the continuous and nilpotent

symmetries sb and sab because of the Gauss’s divergence the-
orem (where all the physical variables of our theory vanish
off as τ⟶ ±∞). We can also apply sb on L�B and sab on
LB. The ensuing results are as follows:

sb L�B =
d
d τ

C Lf − e2 i _�C _C C + �B _C
� �

− e _e i �C _C C + �BC
� �h

+ i 2 �B − B
� �

�C _C C + �B2 C
i
+ B + �B + i �C _C − _�C C

� �h i
� i �C €C C + e _e _C − 2 �B _C + 2 i _�C _C C
h i
+ d
d τ

B + �B + i �C _C − _�C C
� �h i

e2 _C − �BC
� �

,

ð28Þ

sab LB =
d
d τ

�C Lf + e2 i _�C �C _C + B _�C
� �

+ e _e i _�C �C C + B �C
� �h

+ i 2B − �B
� � _�C �C C + B2 �C

i
+ B + �B + i �C _C − _�C C

� �h i
� i €�C �C C − e _e _�C − 2B _�C + 2 i _�C �C _C
� �
−

d
d τ

B + �B + i �C _C − _�C C
� �h i

e2 _�C + B �C
� �

,

ð29Þ
which demonstrate that the coupled Lagrangians LB and L�B
of our theory are equivalent in the sense that both of them
respect both (i.e., BRST and anti-BRST) transformations

due to the validity of the physical CF-type restriction: B + �B

+ i ð�C _C − _�C CÞ = 0.
It is very interesting to point out that the contributions

of the term “χψ5” in Equation (23) turn out to be total
derivatives because we observe that

sb sab χψ5ð Þ = d
d τ

i Bχ − �C _C χ − �C C _χ
� �

ψ5 − �C C χ _ψ5

h i
,

−sab sb χψ5ð Þ = −
d
d τ

i �Bχ + _�C C χ + �C C _χ
� �

ψ5 + �C C χ _ψ5

h i
:

ð30Þ

As a consequence, the gauge-fixing and Faddeev-Popov
ghost terms of the Lagrangians LB and L�B of Equation (24)
originate from the same terms as the ones derived in our ear-
lier work [6] on the massless spinning relativistic particle.
Thus, we note that the variable (i.e., ψ5Þ, corresponding to
the mass term for a massive spinning relativistic particle,
does not contribute anything new to the gauge-fixing and
Faddeev-Popov ghost terms. In other words, the dynamics
of our theory (at the BRST quantized level) is unaffected
by the presence of the “χψ5” term. This is a novel observa-
tion in our theory which is radically different from our ear-
lier work [26] where the “χψ5” term contributes to the
dynamics. The observations in Equation (30) also imply that

the absolute anticommutativity property fsb, sabgðχψ5Þ = ið
d/dτÞ½B + �B + i ð�C _C − _�C CÞ� of the (anti-)BRST symmetries
ðsðaÞbÞ is satisfied (i.e., fsb, sabg = 0) only when the CF-type
restriction is imposed from outside.
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According to Noether’s theorem, the continuous sym-
metry invariance of the action integrals, corresponding to
the transformations (26) and (27), leads to the derivation
of the conserved currents (i.e., conserved charges for our
1D system) as

JB = i B �C C _C + B2 C + B e2 _C + B e _e C + 1
2 e C p2 −m2� �

+ iχC pμ ψ
μ −mψ5

� �
,

ð31Þ

J�B = i �B �C _�C C + �B2 �C − �B e2 _�C − �B e _e �C + 1
2 e �C p2 −m2� �

+ iχ �C pμ ψ
μ −mψ5

� �
:

ð32Þ
The conservation law ðdJr/dτÞ = 0 (with r = B, �B) can be

proven by using the EL-EOMs that derived from the
Lagrangians LB and L�B. For instance, we point out that the
following EL-EOMs w.r.t. the variables
(xμ, pμ, ψμ, ψ5, χ, e, B, �B, C, �C), namely,

_pμ = 0,
_xμ = e pμ − iχψμ,

ψμ = χ pμ,
_ψ5 =mχ,

pμ ψ
μ =mψ5,

B − i 2 _�C C + i e _e + �C _C
� �

= 0,

e _B + i e _�C _C − i e €�C C + 1
2 p2 −m2� �

= 0,

i _B �C − i B _�C + i e _e _�C + i e2 €�C + �C €�C C + 2 �C _�C _C = 0,
−i B _C − 2 i _BC − 3 i e _e _C − i e2 €C − i _e2 C − i e€e C + �C C €C + 2 _�C C _C = 0,

ð33Þ

are obtained from LB. The equations of motion that are dif-
ferent from (33) and emerge out from L�B (as the EL-EOMs)
are as follows:

�B + i 2 �C _C + i e _e + _�C C
� �

= 0,

−e _�B + i e _�C _C − i e �C €C + 1
2 p2 −m2� �

= 0,

i _�BC − i �B _C − i e _e _C − i e2 €C + �C C €C + 2 _�C C _C = 0,
−i �B _�C − 2 i _�B �C + 3 i e _e _�C + i e2 €�C + i _e2 �C + i e€e �C + �C €�C C + 2 �C _�C _C = 0:

ð34Þ

These conserved currents ðJB, J�BÞ lead to the definition
of the conserved charges QB and Q�B which are the same
(i.e., JB =QB, J�B =Q�B) as the conserved currents quoted in
Equations (31) and (32). This is due to the fact that we are
dealing with a 1D system.

We close this section with the following key comments.
First, we observe that the off-shell nilpotent (anti-)BRST
symmetry transformations (20) and (21) are absolutely
anticommuting in nature provided we invoke the (anti-

)BRST invariant CF-type restriction B + �B + i ð�C _C − _�C CÞ =
0 from outside. Second, this restriction can be obtained from

the coupled (but equivalent) Lagrangians LB and L�B if we use
the EL-EOMs (cf. Equation (25)) w.r.t. the Nakanishi-
Lautrup-type auxiliary variables B and �B. Third, we observe
that the term ðχψ5Þ in the square bracket of Equation (23)
does not contribute anything to the dynamics as well as to
the gauge-fixing and Faddeev-Popov ghost terms. Fourth,
the coupled Lagrangians LB and L�B are equivalent in the
sense that both of them respect both off-shell nilpotent
(anti-)BRST symmetries on a submanifold of the quantum

variables where the CF-type constraint B + �B + ið�C _C − _�C CÞ
= 0 is satisfied. This key observation is an alternative proof
of the existence of CF-type restriction on our theory. Finally,
we observe that the absolute anticommutativity (i.e., fQB,
Q�Bg = 0) of the conserved (i.e., _Qð�BÞB = 0) and off-shell nilpo-

tent (i.e., Q2
ð�BÞB = 0) (anti-)BRST charges ðQð�BÞBÞ is satisfied

only due to the validity of the existence of the CF-type
restriction (cf. Section 6).

4. Off-Shell Nilpotent Symmetries of the Target
Space Variables and CF-Type
Restriction: MBTSA

In this section, we derive the off-shell nilpotent (anti-)BRST
symmetry transformations for the target space variables ð
xμ, pμ, ψμ, ψ5Þ which are scalars w.r.t. the 1D space of the
trajectory for the massive spinning relativistic particle that
is embedded in the D-dimensional target space. For this pur-
pose, we exploit the theoretical power and potential of
MBTSA (see, e.g., [22, 25]). In this context, first of all, we
promote the 1D diffeomorphism transformation τ⟶ τ′ =
f ðτÞ ≡ τ − ε ðτÞ (where ε ðτÞ is the infinitesimal transforma-
tion parameter corresponding to the 1D diffeomorphism
(i.e., reparameterization) symmetry transformation) to its
counterpart on the ð1, 2Þ-dimensional supermanifold as

f τð Þ⟶ f τ, θ, θ
� �

= τ − θ �C − θC + θ θ h τð Þ, ð35Þ

where the general ð1, 2Þ-dimensional supermanifold is
parameterized by a bosonic (i.e., evolution) coordinate τ

and a pair of Grassmannian variables ðθ, θÞ that satisfy θ2

= θ
2 = 0, θ θ + θ θ = 0. In the above diffeomorphism trans-

formation, the function f ðτÞ is any arbitrary function of
the evolution parameter τ such that it is finite at τ = 0 and
vanishes off at τ = ±∞. In other words, f ðτÞ is a physically
well-defined function of τ. It is worth pointing out that the
coefficients of the Grassmannian variables ðθ, θÞ, in Equa-
tion (35), are nothing but the fermionic (i.e., C2 = �C2 = 0, C
�C + �C C = 0) (anti-)ghost variables ð�CÞC of the (anti-)BRST
symmetry transformations (20) and (21) corresponding to
the infinitesimal reparameterization symmetry transforma-
tions (2). In other words, the infinitesimal reparameteriza-
tion bosonic transformation parameter εðτÞ has been
replaced by the fermionic (anti-)ghost variables ð�CÞC of
the (anti-)BRST symmetry transformations. This has been
done purposely in view of the fact that in earlier works
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(see, e.g., [10–12]), it has been established that the transla-
tional generators ð∂θ, ∂θÞ, along the Grassmannian direc-

tions ðθ, θÞ, are intimately connected with the nilpotent
(anti-)BRST transformations sðaÞb in the ordinary space. In
other words, we have already taken into account sab τ = −�C
, sb τ = −C, which are the generalization of the classical infin-
itesimal 1D diffeomorphism symmetry transformation δr τ
= −εðτÞ to its quantum counterparts ðsðaÞbÞ within the
framework of BRST formalism. It is worthwhile to point
out that the secondary variable hðτÞ of the expansion (37)
has to be determined from other consistency conditions
which we elaborate in our forthcoming paragraphs.

According to the basic tenets of MBTSA, we have to gen-
eralize all the ordinary variables of the Lagrangians (24) onto
the ð1, 2Þ-dimensional supermanifold as their counterpart
supervariables where the generalization of the 1D diffeo-
morphism transformation (cf. Equation (35)) has to be
incorporated (in a suitable fashion) into the expressions for
the supervariables. For instance, we shall have the following
generalization as far as the generic target space variable sμðτÞ
(cf. Equation (22)) is concerned, namely,

sμ τð Þ⟶ ~Sμ f τ, θ, θ
� �

, θ, θ
h i

≡ ~Sμ τ − θ �C − θC + θ θ h, θ, θ
h i

,

ð36Þ

where the pair of variables ðθ, θÞ, as pointed out earlier, is

the Grassmannian variables (i.e., θ2 = θ
2 = 0, θ θ + θ θ = 0)

of the superspace coordinates ZM = ðτ, θ, θÞ that characterize
the ð1, 2Þ-dimensional supermanifold on which our 1D ordi-
nary theory of the reparameterization invariant massive
spinning particle is considered. Now, following the tech-
niques of MBTSA, we have the following super expansion
of (36) along all the possible directions of the Grassmannian
variables of the ð1, 2Þ-dimensional supermanifold, namely,

~Sμ f τ, θ, θ
� �

, θ, θ
h i

= Sμ f τ, θ, θ
� �h i

+ θ �Rμ f τ, θ, θ
� �h i

+ θRμ f τ, θ, θ
� �h i

+ θ θ Pμ f τ, θ, θ
� �h i

,

ð37Þ

where on the r.h.s., we have the secondary supervariables
which are also function of f ðτ, θ, θÞ. As a consequence, we
can have the following Taylor expansions (for those second-
ary variables that are present on the r.h.s.), namely,

Sμ τ − θ �C − θC + θ θ h
� �

= sμ τð Þ − θ �C _sμ τð Þ − θC_sμ τð Þ + θθ h _sμ − �C C€sμ
� �

,

θ �Rμ τ − θ �C − θC + θ θ h
� �

≡ θ �Rμ τð Þ − θθ _�Rμ τð Þ,

θRμ τ − θ �C − θC + θ θ h
� �

≡ θRμ τð Þ + θθ _Rμ τð Þ,

θ θ Pμ τ − θ �C − θC + θ θ h
� �

≡ θ θ Pμ τð Þ:

ð38Þ

At this juncture, we would like to lay stress on the fact
that, in the super expansion (37), all the supervariables on

the r.h.s. have to be ordinary variables as all of them are
Lorentz scalars w.r.t. the 1D trajectory of the particle (that
is embedded in the D-dimensional flat Minkowskian target
space). It is worthwhile to point out that a pure Lorentz
(bosonic or fermionic) scalar is the one which does not
transform at all under any kind of spacetime and/or internal
transformations. As a result, the expansion (37) can be writ-
ten as

~Sμ f τ, θ, θ
� �

, θ, θ
h i

= sμ τð Þ + θ �Rμ τð Þ + θRμ τð Þ + θ θ Pμ τð Þ
≡ sμ τð Þ + θ sab sμ τð Þ� �

+ θ sb sμ τð Þ� �
+ θθ sb sab sμ τð Þ� �

,

ð39Þ

where sðaÞb are the (anti-)BRST symmetry transformations
(20) and (21). This is due to fact that the (anti-)BRST sym-
metry transformations sðaÞb have been shown to be deeply
connected with the translational generators ð∂θ, ∂θÞ along

the ðθ, θÞ-directions of the ð1, 2Þ-dimensional supermanifold
(see, e.g., [10–12] for details).

It is evident that we have to compute the values of Rμ, �Rμ

, and Pμ (in terms of the auxiliary and basic variables of the
Lagrangians (24)) so that we can obtain the off-shell nilpo-
tent (anti-)BRST symmetry transformations for the generic
variable sμðτÞ. At this stage, the so called “horizontality con-

dition” (HC) comes to our help where we demand that ~Sμð
f ðτ, θ, θÞ, θ, θÞ = sμðτÞ: This relationship can be explicitly
expressed as

sμ τð Þ + θ �Rμ − �C _sμ
� �

+ θ Rμ − C _sμ
� �

+ θ θ h _sμ − �C C €xμ − C _�Rμ + �C _Rμ + Pμ

h i
≡ sμ τð Þ,

ð40Þ

where we have collected all the terms from Equation (38) to
express (36). Physically, the above requirement corresponds
to the fact that a Lorentz-scalar does not transform under
any kind of physically well-defined spacetime transforma-
tions. Needless to say, the relationship (40) implies that we
have the following explicit relationships:

Rμ = C _sμ,
�Rμ = �C _sμ,

Pμ = C _�Rμ − �C _Rμ + �C C _sμ − h€sμ:

ð41Þ

It is straightforward to note that we have already
obtained sb sμ = C _sμ and sab sμ = �C _sμ as is evident from
Equation (39). The requirement of the absolute anticommu-
tativity (that is one of the sacrosanct properties of the (anti-
)BRST symmetry transformations) implies that we have the
following equalities, namely,

sb sab sμ = −sab sb sμ,
sb, sabf g sμ = 0:

ð42Þ

On the other hand, the requirement of the off-shell
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nilpotency (that is another sacrosanct property of the (anti-
)BRST symmetry transformations) leads to the following:

sb C = C _C,

sab �C = �C _�C:
ð43Þ

On top of the already obtained off-shell nilpotent (anti-

)BRST symmetry transformations: sb sμ = C _sμ, sab sμ = �C _sμ,
sb C = C _C, sab �C = �C _�C, we take into account the standard
(anti-)BRST symmetry transformations sb �C = i B and sab C
= i �B in terms of the Nakanishi-Lautrup auxiliary variables.
These standard inputs lead to the determination of the
l.h.s. and r.h.s. of the first equality in Equation (42) as [22,
25]

sb sab sμ = i B − �C _C
� �

_sμ − �C C€sμ ≡ Pμ τð Þ,

−sab sb sμ = −i �B − _�C C
� �

_sμ − �C C€sμ ≡ Pμ τð Þ,
ð44Þ

where Pμ ðτÞ is present in the expansion (39). A close look at

Equation (44) implies that we have B + �B + ið�C _C − _�C CÞ = 0
which is nothing but the CF-type restriction. In addition,
the observation of Equation (41) implies that there is an
explicit expression for Pμ in terms of hðτÞ (that is present

in the expansion of f ðτ, θ, θÞ in Equation (35)). Plugging
in the values of Rμ = C _sμ and �Rμ = �C _sμ into Equation (41)
leads to [22, 25]

Pμ τð Þ = − _�C C + �C _C + h
� �

_sμ + �C C€sμ
h i

: ð45Þ

Comparison of (44) and (45) yields (see, e.g., [22, 25] for
details)

h = −i B − _�C C ≡ +i �B − �C _C B + �B + i �C _C + _�C C
� �

= 0: ð46Þ

Thus, we note that the comparison of the values of h ðτÞ
(that is determined from the comparison between Equations
(44) and (45)) leads to the deduction of the (anti-)BRST

invariant (i.e., sðaÞb½B + �B + ið�C _C − _�C CÞ� = 0) CF-type

restriction B + �B + ið�C _C − _�C CÞ = 0 which plays an impor-
tant role in the proof: fsb, sabg = 0.

We wrap up this section with the following useful and
important remarks. First, we have taken into account the
standard choice in the BRST formalism which is sb �C = i B,
sab C = i �B. In other words, we have made the following
(anti-)chiral super expansions for the (anti-)chiral super-
variables (in view of ∂θ ↔ sab, ∂θ ↔ sb,), namely,

C τð Þ⟶ F cð Þ τ, θð Þ = C τð Þ + θ i �B τð Þ� �
≡ C τð Þ + θ sab C τð Þ½ �,

�C τð Þ⟶ �F acð Þ τ, θ
� �

= �C τð Þ + θ i B τð Þ½ � ≡ �C τð Þ + θ sb �C τð Þ� �
,

ð47Þ

where FðcÞðτ, θÞ and �FðacÞðτ, θÞ are the chiral and antichiral
supervariables that have been defined on the ð1, 1Þ-dimen-
sional suitably chosen chiral and antichiral super submani-
folds of the general ð1, 2Þ-dimensional supermanifold.
Second, we have seen that (cf. Equation (22)) the absolute
anticommutativity property (i.e., fsb, sabg = 0) of the (anti-
)BRST transformations ðsðaÞbÞ is satisfied if and only if the
CF-type restriction (46) is satisfied. Third, we point out that
the requirement of the following

sb, sabf gC = 0,

sb �B = _�BC − �B _C,
sb, sabf g�C = 0,

sab B = _B �C − B _�C,

ð48Þ

leads to the derivation of (anti-)BRST symmetry transforma-
tions on the Nakanishi-Lautrup auxiliary variables ðBÞ�B.
Fourth, within the framework of MBTSA, the CF-type
restriction (46) is derived from the expression for hðτÞ due
to the consistency condition (i.e., sbsab sμ = −sabsb sμ ≡ Pμ).
Fifth, the (anti-)BRST symmetry transformations
(sbsμ = C _sμ, sabsμ = �C _sμ) on the generic variable sμ ≡ xμ, pμ,
ψμ, ψ5 imply that we have already obtained the following
(anti-)BRST symmetry transformations:

sab xμ = �C _xμ,

sab pμ = �C _pμ,

sab ψμ = �C _ψμ,

sab ψ5 = �C _ψ5,
sb xμ = C _xμ,
sb pμ = C _pμ,

sb ψμ = C _ψμ,

sb ψ5 = C _ψ5,

ð49Þ

for the target space variables ðxμ, pμ, ψμ, ψ5Þ of our theory
that are present in the first-order Lagrangian Lf (cf. Equa-
tion (1)) for the massive spinning (i.e., SUSY) relativistic
particle. Finally, the explicit form of Equation (39) can be
written, after the application of HC, as follows:

X hð Þ
μ f τ, θ, θ

� �
, θ, θ

� �
= xμ τð Þ + θ �C _xμ

� �
+ θ C _xμ

� �
+ θ θ i B − �C _C

� �
_xμ − �C C €xμ

h i
≡ xμ τð Þ + θ sab xμ

� �
+ θ sb xμ

� �
+ θ θ sb sab xμ

� �
,

P hð Þ
μ f τ, θ, θ

� �
, θ, θ

� �
= pμ τð Þ + θ �C _pμ

� �
+ θ C _pμ

� �
+ θ θ i B − �C _C

� �
_pμ − �C C €pμ

h i
≡ pμ τð Þ + θ sab pμ

� �
+ θ sb pμ

� �
+ θ θ sb sab pμ

� �
,
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Ψ hð Þ
μ f τ, θ, θ

� �
, θ, θ

� �
= ψμ τð Þ + θ �C _ψμ

� �
+ θ C _ψμ

� �
+ θ θ i B − �C _C

� �
_ψμ − �C C €ψμ

h i
≡ ψμ τð Þ + θ sab ψμ

� �
+ θ sb ψμ

� �
+ θ θ sb sab ψμ

� �
,

Ψ
hð Þ
5 f τ, θ, θ

� �
, θ, θ

� �
= ψ5 τð Þ + θ �C _ψ5

� �
+ θ C _ψ5ð Þ

+ θ θ i B − �C _C
� �

_ψ5 − �C C €ψ5

h i
≡ ψ5 τð Þ + θ sab ψ5ð Þ + θ sb ψ5ð Þ + θ θ sb sab ψ5ð Þ,

ð50Þ

where the superscript ðhÞ denotes the full expansion of the
supervariables after the application of HC. A straightforward
comparison of (39) with (50) shows that we have already
derived the (anti-)BRST symmetry transformations (49) as
the coefficients of ðθÞθ in the super expansions (50) along
with sb sab xμ, sb sab ψμ, sb sab pμ, sb sab ψ5 which are the coeffi-

cients of θθ. We also note, from Equation (50), that we have
a mapping: sb ↔ ∂θjθ=0, sab ↔ ∂θjθ=0. This observation is
consistent with results obtained in Refs. [10–12].

5. Off-Shell Nilpotent (Anti-)BRST
Symmetries for Other Variables of Our
Theory: ACSA

In this section, we exploit the basic principle behind ACSA
to BRST formalism to obtain, first of all, the off-shell nilpo-
tent BRST symmetry transformations (21) by generalizing
the basic and auxiliary variables of the Lagrangian LB (cf.
Equation (24)) on the antichiral ð1, 1Þ-dimensional super
submanifold (of the most general ð1, 2Þ-dimensional super-
manifold) as

B τð Þ⟶ ~B τ, θ
� �

= B τð Þ + θ f1 τð Þ,

e τð Þ⟶ E τ, θ
� �

= e τð Þ + θ f2 τð Þ,

χ τð Þ⟶ K τ, θ
� �

= χ τð Þ + θ b1 τð Þ,

C τð Þ⟶ F τ, θ
� �

= C τð Þ + θ b2 τð Þ,

�C τð Þ⟶ �F τ, θ
� �

= �C τð Þ + θ b3 τð Þ,

�B τð Þ⟶ e�B τ, θ
� �

= �B τð Þ + θ f3 τð Þ,

ð51Þ

where ð f1, f2, f3Þ are the fermionic and ðb1, b2, b3Þ are
bosonic secondary variables. These variables have to be
expressed in terms of the auxiliary and basic variables that
are present in LB. For this purpose, we exploit the BRST-
invariant restrictions. It will be noted that the antichiral ð1
, 1Þ-dimensional super submanifold is parameterized by the
superspace coordinates ZM = ðτ, θÞ where τ is the bosonic
evolution parameter and Grassmannian variable θ is fermi-

onic (θ
2 = 0) in nature. In addition to (51), we have the

antichiral limit (i.e., θ = 0) of the expansions (50) as follows:

X hað Þ
μ τ, θ

� �
= xμ τð Þ + θ C _xμ

� �
,

Ψ hað Þ
μ τ, θ

� �
= ψμ τð Þ + θ C _ψμ

� �
,

P hað Þ
μ τ, θ

� �
= pμ τð Þ + θ C _pμ

� �
,

Ψ
hað Þ
5 τ, θ

� �
= ψ5 τð Þ + θ C _ψ5ð Þ,

ð52Þ

where the superscript ðhaÞ denotes the antichiral limit of the
super expansions (of the supervariables (cf. Equation (50)))
that have been obtained after the application of HC. It is
straightforward to note that the BRST invariance (sb B = 0)
of the variable B implies that we have the following (with
f1ðτÞ = 0), namely,

~B τ, θ
� �

⟶ ~B
bð Þ

τ, θ
� �

= B τð Þ + θ 0ð Þ = B τð Þ + θ sb Bð Þ,
ð53Þ

where the superscript ðbÞ stands for the antichiral supervari-
able that has been obtained after the BRST invariant ðsb B
= 0Þ restriction. In other words, we have already obtained
the BRST symmetry transformation sb B = 0 as the coeffi-

cient of θ in (53) due to our knowledge of sb ↔ ∂θ (i.e., ∂θ
~B
ðbÞðτ, θÞ = sb B = 0).
The off-shell nilpotency of the BRST symmetry transfor-

mations (21) ensures that we have the following BRST
invariant quantities:

sb C _xμ
� �

= 0,

sb C _pμ
� �

= 0,

sb C _C
� �

= 0,

sb C _e + _C e
� �

= 0,

sb _C χ + C _χ
� �

= 0,

sb C _ψμ

� �
= 0,

sb C _ψ5ð Þ = 0,

sb
_�BC − �B _C

� �
= 0:

ð54Þ

The above quantum gauge (i.e., BRST) invariant quanti-
ties must be independent of the Grassmannian variable θ
when they are generalized onto ð1, 1Þ-dimensional antichiral
super submanifold (of the most general ð1, 2Þ-dimensional
supermanifold)) on which our 1D ordinary theory has been
generalized. In other words, we have the validity of the fol-
lowing equalities in terms of the supervariables and ordinary
variables, namely,
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F τ, θ
� �

_X
hað Þ
μ τ, θ

� �
= C τð Þ _xμ τð Þ,

F τ, θ
� �

_F τ, θ
� �

= C τð Þ _C τð Þ,

F τ, θ
� �

_Ψ
hað Þ
μ τ, θ

� �
= C τð Þ _ψμ τð Þ,

F τ, θ
� �

_Ψ
hað Þ
5 τ, θ

� �
= C τð Þ _ψμ τð Þ,

F τ, θ
� �

_P
hað Þ
μ τ, θ

� �
= C τð Þ _pμ τð Þ,

~B
bð Þ

τ, θ
� �

= B τð Þ,

_F τ, θ
� �

E τ, θ
� �

+ F τ, θ
� �

_E τ, θ
� �

= _C τð Þe τð Þ + C τð Þ_e τð Þ,

_F τ, θ
� �

K τ, θ
� �

+ F τ, θ
� �

_K τ, θ
� �

= _C τð Þχ τð Þ + C τð Þ _χ τð Þ,
_e�B τ, θ
� �

F τ, θ
� �

− e�B τ, θ
� �

_F τ, θ
� �

= _�B τð ÞC τð Þ − �B τð Þ _C τð Þ,
ð55Þ

where the supervariables with superscripts ðhaÞ and ðbÞ have
already been explained and derived in Equations (52) and
(53). The substitutions of the expansions from (52) and
(51) lead to the determination of the secondary variables of
the latter equation (cf. Equation (51)) as

f2 τð Þ = _C e + C _e,
b1 τð Þ = _C χ + C _χ,

b2 τð Þ = C _C,
b3 τð Þ = i B,

f3 τð Þ = _�BC − �B _C:

ð56Þ

The above relationships demonstrate that we have
already obtained the secondary variables of the super expan-
sion (51) in terms of the auxiliary and basic variables of LB
(and the Nakanishi-Lautrup auxiliary variable �BðτÞ of the
Lagrangian L�B (cf. Equation (24))).

The substitutions of the above expressions for the sec-
ondary variables into the super expansions (51) (besides
Equations (52) and (53)) are as follows:

E bð Þ τ, θ
� �

= e τð Þ + θ e _C + _eC
� �

≡ e τð Þ + θ sb eð Þ,

K bð Þ τ, θ
� �

= χ τð Þ + θ C _χ + _C χ
� �

≡ χ τð Þ + θ sb χð Þ,

F bð Þ τ, θ
� �

= C τð Þ + θ C _C
� �

≡ C τð Þ + θ sb Cð Þ,

�F bð Þ τ, θ
� �

= �C τð Þ + θ i Bð Þ ≡ �C τð Þ + θ sb �C
� �

,

e�B bð Þ
τ, θ

� �
= �B τð Þ + θ _�BC − �B _C

� �
≡ �B τð Þ + θ sb �B

� �
,

ð57Þ

where the superscript ðbÞ on the supervariables denotes the
antichiral supervariables that have been obtained after the
imposition of the BRST (i.e., quantum gauge) invariant
restrictions in Equation (55). It is clear from (57) that we
have a mapping ∂θ ↔ sb which demonstrates that the off-
shell nilpotency ð∂2

θ
= 0Þ of the translational generator ∂θ

along θ-direction of the ð1, 1Þ-dimensional antichiral super
submanifold and off-shell nilpotency ðs2b = 0Þ of the BRST
transformations (21) in the ordinary space are interrelated.
A careful look at Equations (50) and (57) demonstrates that
we have already derived the BRST symmetry transforma-
tions (21) for all the variables of LB as the coefficients of θ.

Now, we dwell a bit on the derivation of the anti-BRST
transformations (20) within the framework of ACSA.
Towards this end in mind, we note that the following are
the chiral (i.e., θ = 0) limit of the full super expansions in
(50), namely,

X hcð Þ
μ τ, θð Þ = xμ τð Þ + θ �C _xμ

� �
≡ xμ τð Þ + θ sab xμ

� �
,

P hcð Þ
μ τ, θð Þ = pμ τð Þ + θ �C _pμ

� �
≡ pμ τð Þ + θ sab pμ

� �
,

Ψ hcð Þ
μ τ, θð Þ = ψμ τð Þ + θ �C _ψμ

� �
≡ ψμ τð Þ + θ sab ψμ

� �
,

Ψ
hcð Þ
5 τ, θð Þ = ψ5 τð Þ + θ �C _ψ5

� �
≡ ψ5 τð Þ + θ sab ψ5ð Þ,

ð58Þ

where the superscript ðhcÞ stands for the chiral limit of the
supervariables that have been derived after the application
of HC in Equation (50). The above expansions in (58) would
be utilized in the anti-BRST invariant restrictions on the chi-
ral supervariables which we are going to discuss as follows. It
can be readily checked that we have the following interesting
anti-BRST invariant quantities:

sab �C _xμ
� �

= 0,

sab �C _pμ
� �

= 0,

sab �C _�C
� �

= 0,

sab
_�C e + �C _e

� �
= 0,

sab
_�C χ + �C _χ

� �
= 0,

sab �C _ψμ

� �
= 0,

sab �C _ψ5
� �

= 0,

sab _B �C − B _�C
� �

= 0,

ð59Þ

where the anti-BRST symmetry transformations ðsabÞ are the
ones that have been listed in Equation (20). Keeping in our
mind the mapping sab ↔ ∂θ and the observation sab �B = 0
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,we have the following:

e�B τ, θð Þ⟶ e�B abð Þ
τ, θð Þ = �B τð Þ + θ 0ð Þ = �B τð Þ + θ sab �B

� �
,
ð60Þ

where the superscript ðabÞ denotes the expansion of the
supervariable that has been obtained after the application

of the anti-BRST invariant restriction e�Bðτ, θÞ = �BðτÞ that is
obtained due to the anti-BRST invariance ðsab �B = 0Þ. We

also note that ∂θ e�BðabÞðτ, θÞ = sab �B = 0. Exploiting the basic
principle of ACSA to BRST formalism, we obtain the follow-
ing equalities in terms of chiral and ordinary variables,
namely,

�F τ, θð Þ _X hcð Þ
μ τ, θð Þ = �C τð Þ _xμ τð Þ,

�F τ, θð Þ _P hcð Þ
μ τ, θð Þ = �C τð Þ _pμ τð Þ,

�F τ, θð Þ _Ψ hcð Þ
μ τ, θð Þ = �C τð Þ _ψμ τð Þ,

�F τ, θð Þ _Ψ hcð Þ
5 τ, θð Þ = �C τð Þ _ψ5 τð Þ,

�F τ, θð Þ _�F τ, θð Þ = �C τð Þ _�C τð Þ,
e�B abð Þ

τ, θð Þ = �B τð Þ,
_�F τ, θð ÞE τ, θð Þ + �F τ, θð Þ _E τ, θð Þ = _�C τð Þe τð Þ + �C τð Þ_e τð Þ,
_�F τ, θð ÞK τ, θð Þ + �F τ, θð Þ _K τ, θð Þ = _�C τð Þχ τð Þ + �C τð Þ _χ τð Þ,
_~B τ, θð Þ�F τ, θð Þ − ~B τ, θð Þ _�F τ, θð Þ = _B τð Þ�C τð Þ − B τð Þ _�C τð Þ,

ð61Þ

where the chiral supervariables with superscripts ðhcÞ and ð
abÞ have been discussed and explained in Equations (58)
and (60). It is worth pointing out that the equalities in (61)
are nothing but the generalization of our observations in
(59) where the anti-BRST invariant quantities have been
obtained (because of the off-shell nilpotency of the anti-
BRST symmetry transformations (20)). At this stage, it is
crucial to point out that, besides our chiral supervariables
in (58) and (60), we have the following generalizations:

B τð Þ⟶ ~B τ, θð Þ = B τð Þ + θ �f 1 τð Þ,
e τð Þ⟶ E τ, θð Þ = e τð Þ + θ �f 2 τð Þ,
χ τð Þ⟶ K τ, θð Þ = χ τð Þ + θ �b1 τð Þ,
C τð Þ⟶ F τ, θð Þ = C τð Þ + θ �b2 τð Þ,
�C τð Þ⟶ �F τ, θð Þ = �C τð Þ + θ �b3 τð Þ:

ð62Þ

The above chiral supervariables are defined, and their
expansions have been carried out on a ð1, 1Þ-dimensional
super submanifold that is characterized by the superspace
coordinates ZM = ðτ, θÞ where the Grassmannian coordinate
θ is fermionic ðθ2 = 0Þ in nature. It is straightforward to

draw the conclusion that the secondary variables ð�b1, �b2, �b3
Þ and ð�f 1, �f 2, �f 3Þ, on the r.h.s. of Equation (62), are bosonic
and fermionic sets, respectively.

The stage is now set to utilize the equalities (61) where
we have to plug in the chiral super expansions (58) as well
as the chiral generalizations (62). This exercise leads to the
following relationships between the secondary variables of
(62) and the basic as well as auxiliary variables of Lagrangian
L�B (and the Nakanishi-Lautrup auxiliary variable B of the
perfectly BRST invariant Lagrangian LB), namely,

�f 1 = _B �C − B _�C,
�f 2 = �C _e + _�C e,
�b1 = �C _χ + _�C χ,

�b2 = i �B,
�b3 = �C _�C:

ð63Þ

In other words, we have already determined the second-
ary variables (i.e., the coefficients of θ) of the super expan-
sions (62). The substitutions of (63) into the chiral super
expansion (62) on the ð1, 1Þ-dimensional chiral super sub-
manifold leads to the following:

~B
abð Þ

τ, θð Þ = B τð Þ + θ _B �C − B _�C
� �

≡ B τð Þ + θ sab Bð Þ,

E abð Þ τ, θð Þ = e τð Þ + θ e _�C + _e �C
� �

≡ e τð Þ + θ sab eð Þ,

K abð Þ τ, θð Þ = χ τð Þ + θ _�C χ + �C _χ
� �

≡ χ τð Þ + θ sab χð Þ,

F abð Þ τ, θð Þ = C τð Þ + θ i �B
� �

≡ C τð Þ + θ sab Cð Þ,
�F abð Þ τ, θð Þ = �C τð Þ + θ �C _�C

� �
≡ �C τð Þ + θ sab �C

� �
,

ð64Þ

where the superscript ðabÞ denotes the chiral supervariables
that have been obtained after the application of the anti-
BRST (i.e., quantum gauge) invariant restrictions in Equa-
tion (61). It is evident, from Equation (64), that we have
already obtained the anti-BRST symmetry transformations
(cf. Equation (20)) of the variables ðB, e, χ, C, �CÞ as the coef-
ficients of θ in the chiral super expansions (62). We also
observe, in the above chiral super expansions, that there is
a mapping ∂θ ↔ sab which agrees with the result of Refs.
[10–12]. For the sake of completeness, we perform the
step-by-step computations of the mathematical relationships
obtained in Equation (63) in our Appendix A.

6. Symmetry Invariance of the
Lagrangians: ACSA

In this section, we use the results of the previous section to
capture the (anti-)BRST invariance of the Lagrangians (cf.
Equations (26)–(29)) within the framework of ACSA. To
accomplish this goal, first of all, we generalize the
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Lagrangians (24) to their counterparts (anti-)chiral super
Lagrangians as follows:

LB ⟶ ~L
acð Þ
B τ, θ

� �
= ~L

acð Þ
f τ, θ

� �
+ ~B

bð Þ
τ, θ

� �
� E bð Þ τ, θ

� �
_E
bð Þ

τ, θ
� �

− i 2 _�F
bð Þ

τ, θ
� �

F bð Þ τ, θ
� �

+ �F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �
 �� 	

+ 1
2
~B

bð Þ
τ, θ

� �
~B

bð Þ
τ, θ

� �
− i E bð Þ τ, θ

� �
E bð Þ τ, θ

� �
_�F

bð Þ
τ, θ

� �
_F

bð Þ
τ, θ

� �
− i E bð Þ τ, θ

� �
_E
bð Þ

τ, θ
� �

_�F
bð Þ

τ, θ
� �

F bð Þ τ, θ
� �

− _�F
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �

F bð Þ τ, θ
� �

,

ð65Þ

L�B ⟶ ~L
cð Þ
�B τ, θð Þ = ~L

cð Þ
f τ, θð Þ − e�B abð Þ

τ, θð Þ

� E abð Þ τ, θð Þ _E abð Þ
τ, θð Þ − i 2 �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ + _�F
abð Þ

τ, θð ÞF abð Þ τ, θð Þ

 �� 	

+ 1
2
e�B abð Þ

τ, θð Þe�B abð Þ
τ, θð Þ − i E abð Þ τ, θð ÞE abð Þ τ, θð Þ _�F abð Þ

τ, θð Þ _F abð Þ
τ, θð Þ

− i E abð Þ τ, θð Þ _E abð Þ
τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ
− _�F

abð Þ
τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ F abð Þ τ, θð Þ,
ð66Þ

where the superscripts ðacÞ and ðcÞ, on the r.h.s., denote the
antichiral and chiral versions of the first-order Lagrangian
Lf (cf. Equation (1)). In other words, we have the following:

Lf ⟶ ~L
acð Þ
f τ, θ

� �
= P bð Þ

μ τ, θ
� �

_X
μ bð Þ

τ, θ
� �

−
1
2 E

bð Þ τ, θ
� �

� P bð Þ
μ τ, θ
� �

Pμ bð Þ τ, θ
� �

−m2
h i
+ i
2 Ψ bð Þ

μ τ, θ
� �

_Ψ
μ bð Þ

τ, θ
� �

−Ψ
bð Þ
5 τ, θ
� �

_Ψ
bð Þ
5 τ, θ
� �h i

+ i ~χ bð Þ τ, θ
� �

P bð Þ
μ τ, θ
� �

Ψμ bð Þ τ, θ
� �

−mΨ
bð Þ
5 τ, θ
� �h i

,

ð67Þ

Lf ⟶ ~L
cð Þ
f τ, θð Þ = P abð Þ

μ τ, θð Þ _Xμ abð Þ
τ, θð Þ − 1

2 E
abð Þ τ, θð Þ

� P abð Þ
μ τ, θð ÞPμ abð Þ τ, θð Þ −m2

h i
+ i
2 Ψ abð Þ

μ τ, θð Þ _Ψμ abð Þ
τ, θð Þ −Ψ

abð Þ
5 τ, θð Þ _Ψ

abð Þ
5 τ, θð Þ

h i
+ i ~χ abð Þ τ, θð Þ P abð Þ

μ τ, θð ÞΨμ abð Þ τ, θð Þ −mΨ
abð Þ
5 τ, θð Þ

h i
,

ð68Þ

where the superscripts ðbÞ and ðabÞ on the supervariables of
~L
ðacÞ
f and ~L

ðcÞ
f have been already explained in the previous

section. The superscripts ðacÞ and ðcÞ on the super Lagrang-
ians, on the l.h.s. of Equations (65) and (66), denote the
antichiral and chiral generalizations of the ordinary
Lagrangians (24). Keeping in our mind the mappings: sb
↔ ∂θ, sab ↔ ∂θ, we observe the (anti-)BRST invariance of
the first-order Lagrangian in the language of ACSA to BRST

formalism as follows:

∂
∂ θ

~L
acð Þ
f = d

d τ
C Lf

� �
≡ sb Lf ,

∂
∂ θ

~L
cð Þ
f = d

d τ
�C Lf

� �
≡ sab Lf :

ð69Þ

In other words, we have accomplished the objective of
establishing a precise connection between the (anti-)BRST
invariance of Lf in the ordinary space (cf. Equations (3),
(27), and (26)) and superspace within the purview of ACSA.
The results in (69) will be useful in the proof of the (anti-
)BRST invariance (cf. Equations (27) and (26)) of the
coupled (but equivalent) Lagrangians LB and L�B. Geometri-
cally, it is clear from our observation in (69) that super

Lagrangians ~L
ðac,cÞ
f are the unique sum of (anti-)chiral super-

variables (obtained after the (anti-)BRST invariant restric-
tions) such that their translations along ðθ, θÞ-directions in
the superspace produce the total derivatives in the ordinary
space.

We now focus on the BRST and anti-BRST invariance of
LB and L�B within the purview of ACSA. In the explicit
expressions of (65) and (66), we substitute the super expan-
sions of (52), (57), (58), and (64) and apply the derivatives
ð∂θ, ∂θÞ on them due to the mappings: ∂θ ↔ sb, ∂θ ↔ sab. It
is straightforward to check that we have the following
explicit relationships between the invariances in the super-
space and ordinary space:

∂
∂ θ

~L
acð Þ
B = d

d τ
C Lf + e2 B _C + e _e B C − i B �C _C C + B2 C
h i

= sb LB,

∂
∂ θ

~L
cð Þ
�B = d

d τ
�C Lf − e2 �B _�C − e _e �B �C − i �B _�C �C C + �B2 �C

h i
= sab L�B:

ð70Þ

We would like to emphasize that the super Lagrangian
~L
ðacÞ
B is a unique sum of antichiral supervariables (derived

after the applications of the BRST invariant restrictions)
such that its translation along θ-direction of the ð1, 1Þ
-dimensional antichiral super submanifold leads to a total
derivative in the ordinary space. The latter is nothing but
the BRST invariance of the ordinary Lagrangian LB (cf.
Equation (26)). In exactly similar fashion, we can provide a
geometrical interpretation for the anti-BRST invariance of
L�B (cf. Equation (27)) in the terminology of the superspace
translational generator ð∂θÞ along the θ-direction of the suit-
ably chosen chiral ð1, 1Þ-dimensional super submanifold.

At this juncture, we concentrate on the deduction of the

CF-type restriction ½B + �B + i ð�C _C − _�C CÞ = 0� in the proof of
the equivalence between the Lagrangians LB and L�B (cf.
Equation (24)) within the ambit of ACSA to BRST formal-
ism. In other words, we capture the transformations sab LB
(cf. Equation (29)) and sb L�B (cf. Equation (28)) in the termi-
nology of the ACSA. Towards this central goal in our mind,
first of all, we generalize the ordinary Lagrangian LB to its
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counterpart chiral super Lagrangian as

LB ⟶ ~L
cð Þ
B τ, θð Þ = ~L

cð Þ
f τ, θð Þ + ~B

abð Þ
τ, θð Þ

� E abð Þ τ, θð Þ _E abð Þ
τ, θð Þ − i 2 _�F

abð Þ
τ, θð ÞF abð Þ τ, θð Þ + �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ

 �� 	

+ 1
2
~B

abð Þ
τ, θð Þ ~B abð Þ

τ, θð Þ − i E abð Þ τ, θð Þ E abð Þ τ, θð Þ _�F abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ

− i E abð Þ τ, θð Þ _E abð Þ
τ, θð Þ _�F abð Þ

τ, θð Þ F abð Þ τ, θð Þ
− _�F

abð Þ
τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ F abð Þ τ, θð Þ,
ð71Þ

where the superscripts ðcÞ and ðabÞ have already been
explained in our earlier discussions. It is very interesting to
observe that we have the following:

∂
∂ θ

~L
cð Þ
B τ, θð Þ = d

d τ
�C Lf + e2 i _�C �C _C + B _�C

� �
+ e _e i _�C �C C + B �C

� �h
+ i 2B − �B

� � _�C �C C + B2 �C
i
+ B + �B + i �C _C − _�C C

� �h i
� i €�C �C C − e _e _�C − 2B _�C + 2 i _�C �C _C
� �
−

d
d τ

B + �B + i �C _C − _�C C
� �h i

e2 _�C + B �C
� �

≡ sab LB:

ð72Þ

The above equation shows that the Lagrangian LB
respects the anti-BRST symmetry transformations (20) only
when the CF-type restriction is invoked from outside. In a

subtle manner, we have obtained the CF-type restriction B

+ �B + i ð�C _C − _�C CÞ = 0 within the ambit of ACSA while
proving the anti-BRST invariance of the Lagrangian LB.
We now demonstrate the BRST invariance of the Lagrangian

L�B and existence of the CF-type restriction B + �B + i ð�C _C −
_�C CÞ = 0 within the purview of theoretical tricks and tech-
niques of ACSA to BRST formalism. Towards these aims
in our mind, we generalize the Lagrangian L�B onto ð1, 1Þ
-dimensional antichiral super submanifold as follows:

L�B ⟶ ~L
acð Þ
�B τ, θ

� �
= ~L

acð Þ
f τ, θ

� �
− e�B bð Þ

τ, θ
� �

� E bð Þ τ, θ
� �

_E
bð Þ

τ, θ
� �

− i 2 �F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �

+ _�F
bð Þ

τ, θ
� �

F bð Þ τ, θ
� �
 �� 	

+ 1
2
e�B bð Þ

τ, θ
� � e�B bð Þ

τ, θ
� �

− i E bð Þ τ, θ
� �

E bð Þ τ, θ
� �

_�F
bð Þ

τ, θ
� �

_F
bð Þ

τ, θ
� �

− i E bð Þ τ, θ
� �

_E
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �

− _�F
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� �

F bð Þ τ, θ
� �

,

ð73Þ

where the superscripts ðacÞ and ðbÞ have been already
explained in our earlier discussions. Keeping in our mind
the mapping: ∂θ ↔ sb, we observe the following interesting
relationship between sb L�B and its counterpart in superspace,
namely,

∂
∂ θ

~L
acð Þ
�B τ, θ

� �
= d
d τ

C Lf − e2 i _�C _C C + �B _C
� �

− e _e i �C _C C + �BC
� �h

+ i 2 �B − B
� �

�C _C C + �B2 C
i
+ B + �B + i �C _C − _�C C

� �h i
� i �C €C C + e _e _C − 2 �B _C + 2 i _�C _C C
h i
+ d
d τ

B + �B + i �C _C − _�C C
� �h i

e2 _C − �BC
� �

≡ sb L�B,

ð74Þ

where the r.h.s. is nothing but the operation of sb on the
Lagrangian L�B (cf. Equation (28)). In other words, we have
established an intimate relationship between the BRST sym-
metry transformation on L�B and operation of the transla-
tional generator ∂θ on the antichiral super Lagrangian

~LðacÞ�B ðτ, θÞ (defined on the ð1, 1Þ-dimensional (anti-)chiral
super submanifold). A careful and close look on the r.h.s.
of (74) demonstrates that we have derived the CF-type

restriction B + �B + i ð�C _C − _�C CÞ = 0 while proving the BRST
invariance of L�B within the purview of ACSA.

We end this section with the following concluding
remarks. First, we have captured the (anti-)BRST invariance
(cf. Equation (69)) of the first-order Lagrangian Lf within
the ambit of ACSA. Second, we have been able to express
the (anti-)BRST invariance (cf. Equations (26) and (27)) of
the Lagrangians LB and L�B of our theory within the purview
of ACSA (cf. Equation (70)). Third, we have been able to
demonstrate that our observations in Equations (28) and
(29) can also be expressed in superspace (cf. Equations
(72) and (74)) within the ambit of ACSA. Finally, we have

derived the CF-type restriction B + �B + i ð�C _C − _�C CÞ = 0, in
a subtle manner, by expressing the transformations sb L�B
and sab LB in the language of ACSA (cf. Equations (72) and
(74) for details). In other words, in the ordinary space, what-
ever we have seen in the proof of the absolute anticommuta-
tivity of (anti-)BRST symmetry transformations (cf.
Equation (22)), the same restriction appears when we dis-
cuss sb L�B and sab LB in the superspace by using the formal
theoretical techniques of ACSA.

7. Off-Shell Nilpotency and Absolute
Anticommutativity of the Conserved (Anti-
)BRST Charges

In this section, we prove the off-shell nilpotency ½Q2
ð�BÞB = 0�

and absolute anticommutativity ½fQB,Q�Bg = 0� of the (anti-
)BRST charges Qð�BÞB which have already been derived in
our Section 3 where JB =QB and J�B =Q�B (cf. Equations
(31) and (32)). In Section 7.1, we discuss the above proper-
ties of the (anti-)BRST charges ½Qð�BÞB� in the ordinary space.
Our Section 7.2 contains the theoretical material related with
the techniques of capturing the nilpotency and anticommu-
tativity properties of the above charges within the ambit of
ACSA. It is quite interesting to state that the CF-type restric-
tion appears when we prove the absolute anticommutativity
property of the charges in the ordinary space as well as in the
superspace (within the purview of ACSA). We describe
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explicitly the computation of sbL�B in our Appendix B where
the algebra is a bit more involved, and ultimately, we dem-
onstrate the existence of the CF-type restriction in the ordi-
nary space (cf. Equation (28)) which has also appeared in
Equation (74) within the ambit of ACSA.

7.1. Off-Shell Nilpotency and Absolute Anticommutativity
Properties: Ordinary Space. In this subsection, we primarily
exploit the theoretical potential of the well-known relation-
ship between the continuous symmetry transformations
and their generators. In other words, we can prove the off-
shell nilpotency ðQ2

B =Q2
�B = 0Þ of the (anti-)BRST charges

Qð�BÞB in the ordinary space by using the standard relation-
ship between the infinitesimal continuous (anti-)BRST
transformations ðsðaÞbÞ and their generators (Qð�BÞB) as

sb QB = −i QB,QBf g = 0,
Q2

B = 0,
sab Q�B = −i Q�B,Q�Bf g = 0,

Q2
�B = 0:

ð75Þ

The above proofs of the off-shell nilpotency of the con-
served charges are nothing but the reflection of the off-
shell nilpotency ðs2ðaÞb = 0Þ of the (anti-)BRST symmetry

transformations (20) and (21) in the ordinary space. It
would be worthwhile to point out the fact that, in the com-
putation of the l.h.s. of (75), we have directly applied the
(anti-)BRST symmetry transformations (20) and (21) on
the appropriate form of the conserved (i.e., _Qð�BÞB = 0)
(anti-)BRST charges (cf. Equations (31) and (32)). In other
words, the straightforward application of sb on QB gives us
a zero result. The same is the situation (i.e., sabQ�B = 0) when
we apply the anti-BRST symmetry transformations sab on
the anti-BRST charge Q�B. Hence, the Noether conserved
charges (cf. Equations (31) and (32)) are off-shell nilpotent
of order two (i.e., Q2

ð�BÞB = 0) in the ordinary space due to

the key relationship that is given in (75).
The above explicit proof of the off-shell nilpotency of the

(anti-)BRST charges ensures that they should be able to be
written as an exact quantity w.r.t. the off-shell nilpotent ½
s2ðaÞb = 0� (anti-)BRST symmetry transformations ½sðaÞb�.
Towards this goal in mind, we use the following EL-EOMs
(derived from the Lagrangians LB and L�B), namely,

pμ ψ
μ =mψ5,

B = −e _e + 2 i _�C C + i �C _C,

e _B + i e _�C _C − i e €�C C + 1
2 p2 −m2� �

= 0,

B _C + 2 _BC + 3 e _e _C + e2 €C + _e2 C + e€e C − i �C €C C − 2 i _�C _C C = 0,
�B = e _e − 2 i �C _C − i _�C C,

e _�B − i e _�C _C + i e �C €C −
1
2 p2 −m2� �

= 0,

�B _�C + 2 _�B �C − 3 e _e _�C − e2 €�C − _e2 �C − e€e �C − i €�C �C C − 2 i _�C �C _C = 0,
ð76Þ

to get rid of the constraints ðp2 −m2Þ ≈ 0 and ðpμ ψμ −m
ψ5Þ ≈ 0 from the expressions for the (anti-)BRST charges
Qð�BÞB (cf. Equations (31) and (32)) to recast them as

Q 1ð Þ
�B = e2 _�B �C − �B _�C + i €�C �C C + _�C �C _C

� �h i
+ 2 i e _e _�C �C C,

Q 1ð Þ
B = e2 B _C − _BC − i �C €C C + _�C _C C

� �h i
− 2 i e _e �C _C C:

ð77Þ

We have discussed different forms of the (anti-)BRST
charges in our Appendix C where the emphasis is laid on
the derivation of the expressions for the (anti)BRST charges
(cf. Equation (77)). The above expressions of the conserved
(anti-)BRST charges can be mathematically expressed in
the following exact forms w.r.t. the off-shell nilpotent ½s2ðaÞb
= 0� (anti-)BRST symmetry transformations ½sðaÞb�, namely,

Q 1ð Þ
�B = sab i e2 �C _C − _�C C

� �h i
,

Q 1ð Þ
B = sb i e2 _�C C − �C _C

� �h i
:

ð78Þ

Now it is straightforward to note that sab Q
ð1Þ
�B = 0 and

sb Q
ð1Þ
B = 0 due to the off-shell nilpotency [s2ðaÞb = 0] of the

(anti-)BRST symmetry transformations ½sðaÞb�. Thus, we con-
clude, from our observations in Equation (78), that the nil-
potency of the (anti-)BRST transformations [sðaÞb] is deeply
connected with the nilpotency of their generators (anti-
)BRST charges [Qð�BÞB] which becomes completely transpar-
ent from the direct observations of the following computa-
tions:

Q 1ð Þ
�B

h i2
= 0⇔ sab Q

1ð Þ
�B = −i Q 1ð Þ

�B ,Q 1ð Þ
�B

n o
= 0⇔ s2ab = 0,

Q 1ð Þ
B

h i2
= 0⇔ sb Q

1ð Þ
B = −i Q 1ð Þ

B ,Q 1ð Þ
B

n o
= 0⇔ s2b = 0:

ð79Þ

The above equation completes our discussion on the
proof of the off-shell nilpotency of the conserved (anti-
)BRST charges in the ordinary space.

Now, we dwell on the proof of the absolute anticommu-

tativity (i.e., Qð1Þ
B Qð1Þ

�B +Qð1Þ
�B Qð1Þ

B = 0) of the conserved off-

shell nilpotent (anti-)BRST charges [Qð1Þ
ð�BÞB]. Towards this

central objective in mind, first of all, we assume the sanctity

and validity of the CF-type restriction, B + �B + i ð�C _C − _�C C
Þ = 0, right from the beginning. As a result, we can express

the (anti-)BRST charges Qð1Þ
ð�BÞB, in the alternative forms, as

follows:
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Q 1ð Þ
�B ⟶Q 2ð Þ

�B = e2 B _�C − _B �C + 2 i _�C �C _C
� �

+ 2 i e _e _�C �C C,

Q 1ð Þ
B ⟶Q 2ð Þ

B = e2 _�BC − �B _C − 2 i _�C _C C
� �

− 2 i e _e �C _C C:

ð80Þ

We point out that it is because of the use of the CF-type

restriction [B + �B + i ð�C _C − _�C CÞ = 0] that we have been able

to express Qð2Þ
�B in terms of the Nakanishi-Lautrup auxiliary

variable BðτÞ and Qð2Þ
B in the language of other Nakanishi-

Lautrup-type auxiliary variable �BðτÞ. At this crucial stage,
we observe the following interesting relationships:

Q 2ð Þ
B = sab −i e2 _C C

h i
,

Q 2ð Þ
�B = sb i e2 _�C �C

h i
:

ð81Þ

In other words, we have been able to express the anti-

BRST charge [Qð2Þ
�B ] as the BRST exact quantity. On the other

hand, we have been able to write the BRST charge [Qð2Þ
B ] as

an exact quantity w.r.t. the nilpotent anti-BRST transforma-
tion sab. A close and careful observation of (81) leads to the
following (due to the well-known relationship between the
continuous (anti-)BRST symmetry transformations ½sðaÞb�
and their generators as conserved (anti-)BRST charges ½
Qð2Þ

ð�BÞB�), namely,

sab Q
2ð Þ
B = −i Q 2ð Þ

B ,Q 2ð Þ
�B

n o
= 0⇔ s2ab = 0,

sb Q
2ð Þ
�B = −i Q 2ð Þ

�B ,Q 2ð Þ
B

n o
= 0⇔ s2b = 0:

ð82Þ

As a result, we observe that the absolute anticommuta-

tivity of the (anti-)BRST charges ½Qð2Þ
ð�BÞB� is related to the nil-

potency ½s2ðaÞb� = 0 of the (anti-)BRST symmetries.

We would like to lay stress on the key results that have
been seen in Equation (82). It is very interesting (due to
the validity of the CF-type restriction on our theory) to pin-

point that (i) the anticommutativity of the BRST charge Qð2Þ
B

with the anti-BRST charge Qð2Þ
�B is intimately connected with

the nilpotency ðs2b = 0Þ of the BRST transformations ðsbÞ and
(ii) the anticommutativity property of the anti-BRST charge

Qð2Þ
�B with the BRST charge Qð2Þ

B owes its origin to the nilpo-
tency ðs2ab = 0Þ of the anti-BRST transformations ðsabÞ. We
conclude this subsection with the following remarks. First,
we have shown that the nilpotency of the (anti-)BRST
charges ½Qð�BÞB� is deeply related with the nilpotency of the
(anti-)BRST transformations ½sðaÞb�. Second, we have been

able to express the modified form of the BRST charge ½Qð1Þ
B

� and anti-BRST charge Qð1Þ
�B as the exact expressions w.r.t.

the BRST transformations ðsbÞ and anti-BRST transforma-
tions ðsabÞ (cf. Equation (78)), respectively. Third, it is due

to the existence of the CF-type restriction on our theory that
we have been able to express another modified form of the

BRST charge Qð2Þ
B as an exact expression w.r.t. the anti-

BRST transformations ðsabÞ and the anti-BRST charge Qð2Þ
�B

in the BRST-exact form. This exercise has enabled us to

prove the absolute anticommutativity (i.e., fQð2Þ
B ,Qð2Þ

�B g = 0)
of the nilpotent (anti-)BRST charges Qð2Þ

ð�BÞB. Finally, the proof
of the absolute anticommutativity property (cf. Equation
(82)) crucially depends on the existence of the CF-type
restriction. Thus, in a subtle manner, we have derived and
corroborated the sanctity of the existence of the CF-type

restriction B + �B + ið�C _C − _�C CÞ = 0 on our theory. We have
provided an alternative proof for the appearance of the
CF-type restriction (on our 1D reparameterization invariant
SUSY theory) in our Appendix D. This completes our dis-
cussions on the absolute anticommutativity property of the
conserved (anti-)BRST charges (in the ordinary Minkowski
space).

7.2. Off-Shell Nilpotency and Absolute Anticommutativity
Properties: ACSA to BRST Formalism in Superspace. In this
subsection, we capture the properties of the nilpotency
(i.e., fermionic nature) and absolute anticommutativity
(i.e., linear independence) of the (anti-)BRST charges within
the purview of ACSA where the superspace consideration on
the ð1, 1Þ-dimensional (anti-)chiral super submanifolds has
been taken into account. First of all, we focus on the off-
shell nilpotency [Q2

ð�BÞB = 0] of the (anti-)BRST charges

[Qð�BÞB]. In this context, keeping in our knowledge the map-
pings: ∂θ ↔ sab, ∂θ ↔ sb, it can be readily seen that the
expressions for the (anti-)BRST charges that have been
quoted in Equation (78) can be translated into the super-
space as follows:

Q 1ð Þ
�B = ∂

∂ θ
i E abð Þ τ, θð ÞE abð Þ τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ − _�F
abð Þ

τ, θð ÞF abð Þ τ, θð Þ

 �� 	

≡
ð
d θ i E abð Þ τ, θð ÞE abð Þ τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ − _�F
abð Þ

τ, θð ÞF abð Þ τ, θð Þ

 �� 	

,

ð83Þ

Q 1ð Þ
B = ∂

∂ θ
i E bð Þ τ, θ

� �
E bð Þ τ, θ

� �
�F bð Þ τ, θ

� �
_F

bð Þ
τ, θ

� �
− _�F

bð Þ
τ, θ

� �
F bð Þ τ, θ

� �
 �� 	

≡
ð
d θ i E bð Þ τ, θ

� �
E bð Þ τ, θ

� �
�F bð Þ τ, θ

� �
_F

bð Þ
τ, θ

� �
− _�F

bð Þ
τ, θ

� �
F bð Þ τ, θ

� �
 �� 	
,

ð84Þ

where the supervariables with the superscripts ðabÞ and ðbÞ
have been obtained in Equations (64) and (57), respectively.

At this stage, the off-shell nilpotency ½ðQð1Þ
ð�BÞBÞ

2
= 0� of the

conserved (anti-)BRST charges ½Qð1Þ
ð�BÞB� can be written in

the superspace (by using the theoretical techniques and
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tricks of ACSA to BRST formalism) as

∂θ Q
1ð Þ
�B = 0⇔ ∂2θ = 0,

∂θ Q
1ð Þ
B = 0⇔ ∂2

θ
= 0:

ð85Þ

Thus, we conclude that the off-shell nilpotency of the

anti-BRST charge ðQð1Þ
�B Þ is deeply related to the nilpotency

ð∂2θ = 0Þ of the translational generator ð∂θÞ along the θ
-direction of the ð1, 1Þ-dimensional chiral super submani-
fold of the general ð1, 2Þ-dimensional supermanifold. Similar
type of comments can be made in the context of the off-shell

nilpotency of the BRST charge Qð1Þ
B and its intimate relation-

ship with the nilpotency ð∂2
θ
= 0Þ of the translational gener-

ator ð∂θÞ on the antichiral super submanifold.
We concentrate now on capturing the absolute anticom-

mutativity of the (anti-)BRST charges within the purview of
ACSA where the superspace of the ð1, 1Þ-dimensional (anti-
)chiral super submanifolds is taken into consideration.
Towards this central goal in our mind, we express the mod-

ified forms of the (anti-)BRST charges Qð2Þ
ð�BÞB of Equation

(81) in the following mathematical expression within the
framework of ACSA, namely,

Q 2ð Þ
�B = ∂

∂ θ
i E bð Þ τ, θ

� �
E bð Þ τ, θ

� �
_�F

bð Þ
τ, θ

� �
�F bð Þ τ, θ

� �� 	

≡
ð
d θ i E bð Þ τ, θ

� �
E bð Þ τ, θ

� �
_�F

bð Þ
τ, θ

� �
�F bð Þ τ, θ

� �� 	
,

ð86Þ

Q 2ð Þ
B = ∂

∂ θ
−i E abð Þ τ, θð ÞE abð Þ τ, θð Þ _F abð Þ

τ, θð ÞF abð Þ τ, θð Þ
h i

≡
ð
d θ −i E abð Þ τ, θð ÞE abð Þ τ, θð Þ _F abð Þ

τ, θð ÞF abð Þ τ, θð Þ
h i

,

ð87Þ
where the supervariables with the superscripts ðabÞ and ðbÞ
have been quoted in Equations (64) and (57), respectively.
At this crucial juncture, we note the following:

∂θ Q
2ð Þ
�B = 0⇔ ∂2

θ
= 0,

∂θ Q
2ð Þ
B = 0⇔ ∂2θ = 0:

ð88Þ

The above relations are nothing but the explicit proof of
the absolute anticommutativity relations of the conserved

(anti-)BRST charges Qð2Þ
ð�BÞB (within the ambit of ACSA).

We wrap up this subsection with the following com-
ments. First, the off-shell nilpotency ½Q2

ð�BÞB = 0� of the

(anti-)BRST charges Qð�BÞB is intimately connected with the

nilpotency ð∂2θ = 0, ∂2
θ
= 0Þ of the translational generators ð

∂θ, ∂θÞ along the ðθ, θÞ-directions of the ð1, 1Þ-dimensional
chiral and antichiral super submanifolds. Second, in the
ordinary space, the above statements of the off-shell nilpo-

tency are captured in Equations (75) and (79). Third, the
absolute anticommutativity of the BRST charge with the
anti-BRST charge is related to the nilpotency ð∂2θ = 0Þ of
the translational generator ð∂θÞ along the θ-direction of the
chiral super submanifold. The absolute anticommutativity
of the anti-BRST charge with the BRST charge, on the other
hand, is connected with the nilpotency ð∂2

θ
= 0Þ of the trans-

lational generator ð∂θÞ along the θ-direction of the antichiral
super submanifold. Fourth, the above statements have been
corroborated in the ordinary space by Equation (82) where
the off-shell nilpotency ½s2ðaÞb = 0� of the (anti-)BRST trans-

formations ½sðaÞb� and the anticommutativity ½fQð2Þ
B ,Qð2Þ

�B g
= 0� of the (anti-)BRST charges ½Qð2Þ

ð�BÞB� are found to be inter-

connected in an intimate and beautiful manner.

8. Conclusions

The USFA to BRST formalism (see, e.g., [10–12]) is useful in
the context of the gauge theories where the spacetime coor-
dinates do not change. Thus, it was a challenge to include the
diffeomorphism (i.e., the general spacetime transformations)
within the framework of Bonora-Tonin (BT) superfield
approach to BRST formalism (see, e.g., [10–12]). This was
achieved by Bonora in Ref. [22] which has been christened
by us as the MBTSA where the generalization of the 1D dif-
feomorphism [i.e., τ⟶ τ′ = f ðτÞ ≡ τ − ε ðτÞ] to the ð1, 2Þ
-dimensional supermanifold (cf. Equation (35)) has played
an important role in the derivation of the (anti-)BRST sym-
metry transformations (cf. Equation (50)) for the target
space variables (xμ, pμ, ψμ, ψ5). In addition, this approach
has enabled us to deduce the (anti-)BRST invariant CF-

type restriction B + �B + i ð�C _C − _�C CÞ = 0 that is responsible
for the absolute anticommutativity of the (anti-)BRST sym-
metry transformations (cf. Equations (20) and (21)) and
existence of the coupled (but equivalent) Lagrangians (24)
for our theory.

We have taken into account the standard (anti-)BRST
symmetry transformations (sb �C = i B, sab C = i �B) for the
(anti-)ghost variables ð�CÞC which have, in a subtle manner,
forced us to consider the (anti-)chiral super expansions (cf.
Equation (47)). This has provided us the clue to adopt the
ACSA to BRST formalism for the deduction of the proper
(anti-)BRST transformations for the rest of the variables of
our theory (cf. Section 5). Within the purview of ACSA,
we have derived the CF-type restriction when we have
proven the equivalence of the coupled (but equivalent)
Lagrangians (cf. Section 6). Furthermore, it is the validity

of the CF-type restriction B + �B + i ð�C _C − _�C CÞ = 0 that has
enabled us to write (i) the BRST charge as an exact quantity
w.r.t. the nilpotent anti-BRST transformation and (ii) the
anti-BRST charge as an exact expression w.r.t. the nilpotent
BRST transformation. These observations have been respon-
sible for the proof of the absolute anticommutativity of the
(anti-)BRST charges (cf. Section 7). In other words, it is
the proof of the anticommutativity of the conserved and
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nilpotent charges ½Qð2Þ
ð�BÞB� which lead to the existence of the

CF-type restriction on our SUSY theory (cf. Section 7).
We would like to emphasize that the observation of the

absolute anticommutativity property, in the context of the
conserved (anti-)BRST charges, is a novel observation
because of the fact that only the (anti-)chiral super expan-
sions have been considered within the ambit of ACSA. This
observation of the absolute anticommutativity property is
obvious when one takes into account the full super expan-
sions of the supervariables along all the possible Grassman-
nian directions of the suitably chosen supermanifold on
which the ordinary theory is generalized. Furthermore, the
appearance of the CF-type restriction in the computations
of sb L�B and sab LB (cf. Equations (28) and (29)) in the ordi-
nary space and its analogue in the superspace are very inter-
esting observations in our present endeavor (cf. Section 6).
The other observation that merits a clear and special men-

tion is the universality of the CF-type restriction B + �B + ið
�C _C − _�C CÞ = 0 in the context of the reparameterization
(i.e., 1D diffeomorphism) invariant non-SUSY theory of a
scalar relativistic particle as well as a nonrelativistic particle
[23, 24] and our present SUSY system of a spinning relativ-
istic particle (where the nilpotent SUSY transformations
exist between the specific set of bosonic and fermionic vari-
ables of our SUSY theory).

It is worthwhile to mention that, for the D-dimensional
diffeomorphism invariant theory [22, 25] where the infini-
tesimal diffeomorphism symmetry transformation is xμ
⟶ xμ′ = xμ − εμðxÞ (with μ = 0, 1, 2⋯D − 1), the general

form of the CF-type restriction has been obtained as Bμ +
�Bμ + i ð�Cρ ∂ρ Cμ + Cρ ∂ρ �CμÞ = 0 where the (anti-)ghost fields
ð�CμÞCμ correspond to the infinitesimal transformation
parameter εμðxÞ in the general coordinate transformation

xμ′ = xμ − εμðxÞ and the Nakanishi-Lautrup fields ð�BμÞBμ

appear in the (anti-)BRST symmetry transformations: sb �Cμ

= i Bμ, sab Cμ = i �Bμ. It is straightforward to note that the

CF-type restriction B + �B + ið�C _C − _�C CÞ = 0 is the limiting
case of the above general D-dimensional CF-type restriction
in the case of the BRST approach to D-dimensional diffeo-
morphism invariant theory [22, 25]. Thus, our theoretical
treatments of the reparameterization (i.e., 1D diffeomorph-
ism) invariant theories of the scalar and spinning relativistic
particles are correct.

One of the highlights of ACSA to BRST formalism is the
observation that it distinguishes between the suitably chosen
ð1, 1Þ-dimensional chiral and antichiral super submanifolds
in the proof of the absolute anticommutativity of the con-
served (anti-)BRST charges. For instance, we note that the

anticommutativity of the BRST charge ½Qð2Þ
B � with the anti-

BRST charge ½Qð2Þ
�B � is connected with the nilpotency ð∂2θ =

0Þ of the translational generator ð∂θÞ along the θ-direction
of the chiral super submanifold (cf. Equation (88)). On the
other hand, the anticommutativity of the anti-BRST charge

½Qð2Þ
�B � with the BRST charge ½Qð2Þ

B � crucially depends on the

nilpotency ð∂2
θ
= 0Þ of the translational generator ð∂θÞ (cf.

Equation (88)) along the θ-direction of the antichiral super
submanifold (cf. Section 7 for details). This observation is
a reflection of our discussion on the absolute anticommuta-
tivity property of the (anti-)BRST charges in the ordinary
space (cf. Section 7) where the off-shell nilpotency of the
(anti-)BRST transformations (cf. Equation (82)) plays a
decisive role.

We plan to extend our present study to the physical ð3
+ 1Þ-dimensional (4D) theories of the gravitation and
higher dimensional (super)string theories where there is
existence of the diffeomorphism invariance. In other words,
we plan to apply the ideas of MBTSA and ACSA together to
find out the (anti-)BRST symmetries of the above mentioned
theories. The mathematical elegance, rigor, and beauty of the
MBTSA [22, 25] should find more applications to some
physical systems of interest in theoretical high-energy phys-
ics. We envisage to take up these challenges in our future
investigations. Before we end this section, it is worthwhile
to point out that in our earlier works (see, e.g., [27, 28]),
we have applied the techniques and tricks of ACSA to obtain
the nilpotent symmetries of the N = 2 SUSY quantum
mechanical models of interest. However, we have found that
the conserved charges are not absolutely anticommuting.
Thus, our observation of the absolute anticommutativity
property in the context of (anti-)BRST charges is novel and
interesting.

Appendix

A. On the Step-by-Step Computation of the
Secondary Variables for the Off-Shell
Nilpotent Anti-BRST Transformations

In this appendix, we concentrate on the clear-cut derivation
of the secondary variables (cf. Equation (63)) in terms of the
basic and auxiliary variables of the Lagrangians (24). For this
purpose, we invoke the basic principle of ACSA which states
that the anti-BRST invariant expressions (cf. Equation (59))
should not depend on θ (i.e., Grassmannian variable) when
these quantities are promoted onto the ð1, 1Þ-dimensional
chiral version of super submanifold. First of all, we consider
sab ð�C _xμÞ = 0 which leads to the following restriction:

�F τ, θð Þ _X hcð Þ
μ τ, θð Þ = �C τð Þ _xμ τð Þ: ðA:1Þ

At this stage, we substitute the super expansions from
(62) and (58) which leads to the precise determination of

the secondary variable �b3 = �C _�C. As a consequence, we have
now the super expansion of the chiral supervariable �Fðτ, θÞ
as

�F abð Þ τ, θð Þ = �C τð Þ + θ �C _�C
� �

≡ �C τð Þ + θ sab �C
� �

, ðA:2Þ

where the superscript ðabÞ denotes the chiral super expan-
sion of �Fðτ, θÞ after the application of the anti-BRST restric-
tion (A.1). We find that the coefficient of θ is the anti-BRST
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symmetry transformation of �C (cf. Equation (20)). In other

words, we find that ∂θ �F
ðabÞðτ, θÞ = sab�C which agrees with

the mapping ∂θ ↔ sab of Refs. [10–12].
At this juncture, we take up the anti-BRST invariant

quantities (i.e., sab ½ d/d τ ð�C eÞ� = 0, sab ½ d/d τ ð�C χÞ� = 0)
which leads to the following restrictions:

d
d τ

�F abð Þ τ, θð ÞE τ, θð Þ
h i

= d
d τ

�C τð Þe τð Þ� �
,

d
d τ

�F abð Þ τ, θð ÞK τ, θð Þ
h i

= d
d τ

�C τð Þχ τð Þ� �
:

ðA:3Þ

Substitutions from (A.2) and (62) lead to the following
equations in terms of the fermionic (anti-)ghost variables
as well as secondary variables �f 2 and �b1, namely,

_�C �f 2 + �C _�f 2 − �C €�C e − �C _�C _e = 0,
_�C �b1 + �C _�b1 − �C €�C χ − �C _�C _χ = 0:

ðA:4Þ

It is straightforward to verify that we have the following
solutions:

�f 2 = �C _e + _�C e,
�b1 = �C _χ + _�C χ:

ðA:5Þ

We take now the anti-BRST invariance: sab ð _B �C − B _�CÞ
= 0. This leads to the following restrictions on the chiral
supervariables:

_~B τ, θð Þ�F abð Þ τ, θð Þ − ~B τ, θð Þ _�F abð Þ
τ, θð Þ = _B τð Þ�C τð Þ − B τð Þ _�C τð Þ:

ðA:6Þ

Substitutions of the super expansions from (62) and
(A.2) lead to the following relationship:

_B �C _�C − B �C €�C + _�f 1 �C − �f 1
_�C = 0: ðA:7Þ

It is evident that the precise solution is �f 1 = _B �C − B _�C.
Thus far, we have been able to determine the precise forms
of the secondary variables (�b1, �b3, �f 1, �f 3) in terms of the
basic, auxiliary, and (anti-)ghost variables of the Lagrangians
(24).

In our present appendix, we have followed the tricks and
techniques of ACSA to BRST formalism which was moti-
vated by our standard assumption that sb�C = i B, sab C = i �B
in the BRST approach to gauge and/or diffeomorphism
invariant theories. This standard assumption led to the
(anti-)chiral super expansions of the supervariables in Equa-
tion (47). This implies that we have already determined the
remaining secondary variable of Equation (62) as �b2 = i �B.
This completes our discussion on the step-by-step determi-
nation of the secondary variables of (cf. Equation (63))
which are present in the chiral super expansions (62).

B. On the Proof of Equations (28) and (74) in
the Ordinary Space

For the sake of completeness, we provide here the explicit
proof of Equations (28) and/or (74) in the ordinary space

that leads to the derivation of the CF-type restriction B + �B

+ i ð�C _C − _�C CÞ = 0 which demonstrates, thereby, the equiv-
alence of the Lagrangians LB and L�B w.r.t. the (anti-)BRST
symmetry transformations. This is due to our earlier obser-
vation (cf. Equation (27)) that L�B has a perfect symmetry
w.r.t. the anti-BRST symmetry transformations sab. The
direct applications of sb on L�B lead to the following:

sbL�B =
d
dτ

C Lf − e2 �B _C + i _�C _C C
� �

− e _e �BC + i �C _C C
� �h i

+ e2 _�B _C + _B _C + i �C€C _C − i €�C C _C
h i

+ e _e B _C + �B _C − i _�C C _C
h i

+ �B _�BC − �B _BC − �B2 _C − 2B �B _C − i _B �C _C C + i B _�C _C C

+ 2 i _�B �C _C C + 2 i �B �C €C C + 2 i �B _�C _C C:

ðB:1Þ

It is straightforward to note (with the input _C
2 = 0) that

the coefficients of e2 and e _e can be expressed in terms of the

CF-type restrictions ½B + �B + i ð�C _C − _�C CÞ = 0� as follows:

e2
d
dτ

B + �B + i �C _C − _�C C
� �n o� 	

_C + e _e B + �B + i �C _C − _�C C
� �h i

_C:

ðB:2Þ

At this stage, we focus on the terms �B _�BC − �B _BC − �B2

_C − 2B �B _C (from (B.1)) which can be expressed as a sum
of a total derivative and other terms, namely,

d
dτ

�B2 C
h i

− _B + _�B
� �

�BC − 2 �B2 _C − 2B �B _C

= d
dτ

�B2 C
h i

− _B + _�B + i �C €C − €�C C
�h i

�BC + i �B �C€C C

− 2 �B _C B + �B + i �C _C − _�C C
� �h i

+ 2 i �B _�C _C C:

ðB:3Þ

Now, adding the left-over terms without the total deriv-
ative terms as well as the CF-type terms from (B.1) and
(B.3), we obtain the following:

2 i �B �C €C C − i _B �C _C C + i B _�C _C C + 2 i �B _�C _C C + i �B �C €C C

+ 2 i �B _�C _C C + 2 i _�B �C _C C:

ðB:4Þ

It can be readily seen that the following is completely
true if we express the first two terms ð2 i �B �C €C C − i _B �C _CC
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Þ of the above equation, namely,

d
dτ

2 i �B�C _C C − i B �C _C C
h i

− 2 i �B _�C _C C − 2 i _�B �C _C C + i B _�C _C C

+ i B �C €C C:

ðB:5Þ

At this juncture, we add the terms from (B.4) and non-
derivative terms from (B.5) to yield the following result:

2 i B + �B
� � _�C _C C + i B + �B

� �
�C€C C, ðB:6Þ

which can be reexpressed, in terms of the CF-type restric-
tion, as follows:

2 i B + �B + i �C _C − _�C C
� �h i

_�C _C C + i B + �B + i �C _C − _�C C
� �h i

�C €C C:

ðB:7Þ

The total sum of the contributions from (B.3), (B.5), and
(B.7) is equal to

d
dτ

i 2 �B − B
� �

�C _C C + �B2 C
h i

−
d
dτ

B + �B + i �C _C − _�C C
� �h i

�BC

+ B + �B + i �C _C − _�C C
� �h i

2 i _�C _C C + i �C €C C − 2 �B _C
h i

:

ðB:8Þ

Now, adding all the terms of Equations (B.1), (B.2), and
(B.8), we obtain the same result as given in Equations (28)
and/or (74) in the ordinary space for the computation of sb
L�B.

We wrap up this appendix with the following concluding
remarks. We have already demonstrated the existence of the
CF-type restriction in the ordinary space (cf. Equation (28))
and superspace (cf. Equation (74)) by expressing the BRST
symmetry transformation (i.e., sbL�B) of L�B. Exactly in a sim-
ilar manner, it can be shown that the quantity sabLB can be
expressed in the ordinary space (cf. Equation (29)) and
superspace (cf. Equation (72)) leading to the appearance of
the CF-type restriction. It is interesting, furthermore, to
point out that this restriction also appears when we prove
the absolute anticommutativity of the conserved and off-
shell nilpotent (anti-)BRST charges in the ordinary space
as well as in the superspace (cf. Appendix D for details) using
the ACSA to BRST formalism.

C. On the Different Forms of the Conserved
(Anti-)BRST Charges

Besides the expressions for the (anti-)BRST charges in (31)
and (32), we require different forms of these charges to
prove their nilpotency (i.e., fermionic nature) and anticom-
mutativity (i.e., linear independence) in a straightforward
manner. This exercise has been found to be advantageous
in the context of our discussion on ACSA, too. First and
foremost, we concentrate on the derivation of the BRST
charge in (77) and its usefulness. In this connection, we note

that the Noether charge (31) can be rewritten as follows:

QB ⟶ ~QB = e2 B _C − _BC − i _�C _C C
h i

+ B2 C + e _e BC − i B �C _C C,

ðC:1Þ

where we have used the following EL-EOMs (and their mod-
ified version), namely,

pμ ψ
μ =mψ5,

e C
2 p2 −m2� �

= −e2 _BC − i e2 _�C _C C:
ðC:2Þ

At this juncture, we note that B = −e _e + i ð2 _�C C + �C _CÞ.
The substitution of this expression leads to the following
observations, namely,

B2 C + e _e B C = −i e _e �C _C C,
−i B �C _C C = i e _e �C _C C:

ðC:3Þ

Thus, we obtain the modified form of the BRST charge
ð~QBÞ as

~QB ⟶ ~Q
1ð Þ
B = e2 B _C − _BC − i _�C _C C

h i
: ðC:4Þ

This is because of the fact that the sum of last three terms
in (C.1) is zero. It can be readily checked that the above form
of the charge (cf. Equation (C.4)) is not off-shell nilpotent.
Hence, it is not suitable for our further discussions.

Let us focus on the derivation of an alternative form of
this BRST charge. In the expression for the charge ~QB (cf.
Equation (C.1)), we can express ½−i B �C _C C�, from the third
equation from the top in (76) which yields the following:

−i B �C _C C = i e2 �C €C C + 3 i e _e �C _C C: ðC:5Þ

Using (C.3) and (C.5), we obtain

~Q
1ð Þ
B ⟶ ~Q

2ð Þ
B = e2 B _C − _BC + i �C €C C − _�C _C C

� �h i
+ 2 i e _e �C _C C:

ðC:6Þ

It is elementary exercise to check that the above expres-
sion for the BRST charge is still not off-shell nilpotent of
order two. Hence, it cannot be expressed as an exact quantity
w.r.t. the BRST transformations ðsbÞ. At this crucial point,
we reexpress (C.5) in a different type of mathematical form
as follows:

i B �C _C C = −i e2 �C €C C − 2 i e _e �C _C C − i e _e �C _C C: ðC:7Þ

From the relationship: B = −e _e + i ð2 _�C C + �C _CÞ, it is

clear that i �C _C = B + e _e − 2 i _�C C. As a result, we have the
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following:

i B �C _C C = B B + e _e − 2 i _�C C
� �

C ≡ B2 C + e _e BC: ðC:8Þ

Substituting the above equality into (C.7), we obtain

B2 C + e _e B C + i e _e �C _C C = −i e2 �C €C C − 2 i e _e �C _C C:

ðC:9Þ

However, we also note that i e _e �C _C C = −i B �C _C C (cf.

Equation (C.3)) due to the fact that B = −e _e + i ð2 _�C C + �C
_CÞ. Thus, we observe that the equality in (C.9) reduces to

B2 C + e _e B C − i B _�C _C C = −i e2 �C €C C − 2 i e _e �C _C C:

ðC:10Þ

The above equation leads to the following:

~QB ⟶Q 1ð Þ
B = e2 B _C − _BC − i _�C _C C + �C €C C

� �h i
− 2 i e _e �C _C C,

ðC:11Þ

where ~QB is quoted in (C.1) and Qð1Þ
B is written in Equation

(77) of the main body of our text. The importance of (C.11)
is the observation that it can be written as an exact quantity
w.r.t. the BRST transformations ðsbÞ. As a result, the charge
Qð1Þ

B is off-shell nilpotent of order two (i.e., sb Q
ð1Þ
B = −i f

Qð1Þ
B ,Qð1Þ

B g = 0⇒ ½Qð1Þ
B �2 = 0Þ. Exactly similar kinds of argu-

ments can be provided for the derivation of Qð1Þ
�B in Equation

(77). As a consequence, we observe that sab Q
ð1Þ
�B = −i fQð1Þ

�B ,
Qð1Þ

�B g = 0⇒ ½Qð1Þ
�B �2 = 0. This observation proves the off-

shell nilpotency of Qð1Þ
�B in a straightforward fashion.

D. On an Alternative Proof of the Existence of
the CF-Type Restriction on Our
SUSY System

Our present appendix provides an alternative proof of the

existence of the CF-type restriction B + �B + i ð�C _C − _�C CÞ =
0 which is straightforward and different from our derivation
in Section 7 where the proof is a bit subtle. In this context,
we apply, first of all, directly the BRST symmetry transfor-
mations ðsbÞ on the expression for the anti-BRST charge

Qð1Þ
�B (cf. Equation (77)). In other words, we derive sb Q

ð1Þ
�B

= −i fQð1Þ
�B ,Qð1Þ

B g which is nothing but the anticommutator

of the anti-BRST charge ðQð1Þ
�B Þ with the BRST charge ðQð1Þ

B

Þ. The outcome of this exercise can be explicitly expressed as

sb Q
1ð Þ
�B = 2 e2 �B _�C C − 2 e2 _�B �C _C − 2 e _e _�B �C C + 2 e _e �B _�C C

− e2 €�B �C C + e2 �B �C €C + 2 i e _e _�C �C _C C + e2 B €�C C

− e2 €B �C C + 2 e _e B _�C C − 2 e _e _B �C C + i e2 €�C �C _C C

+ i e2 _�C�C €C C + e2 B _�C _C − e2 _B �C _C + i e2 B _�B

− i e2 �B _B + e2 _�B _�C C − e2 �B _�C _C:

ðD:1Þ

The above expression can be rearranged in such a man-
ner that we shall have the coefficients of e2 and 2 e _e sepa-
rately and independently as illustrated below:

sb Q
1ð Þ
�B = 2 e _e B _�C C + �B _�C C − _B �C C − _�B �C C − i _�C �C _C C

h i
+ e2 2 �B _�C − _�B �C

� �
_C − i €�C _C + _�C €C

� �
�C C + €�BC − �B €C

� �
�C

h
− _�BC − �B _C
� �

_�C + i B _�B − i �B _B + B €�C − €B �C
� �

C + B _�C − _B �C
� �

_C
i
:

ðD:2Þ

At this stage, the straightforward algebraic exercise pro-
duces the following result:

sb Q
1ð Þ
�B = −i Q 1ð Þ

�B ,Q 1ð Þ
B

n o
≡ 2 e _e B + �B + i �C _C − _�C C

� �n o
_�C C −

d
d τ

B + �B + i �C _C − _�C C
� �n o

�C C
� 	

+ e2
d
d τ

B + �B + i �C _C − _�C C
� �h i

_�C C − i �B
� �n�

−
d
d τ

B + �B + i �C _C − _�C C
� �h i

�C C
�
+ 2 i _�B B + �B + i �C _C − _�C C

� �h ii
,

ðD:3Þ

which demonstrates explicitly that the absolute anticommu-

tativity property ðfQð1Þ
�B ,Qð1Þ

B g = 0Þ is satisfied if and only if

the CF-type restriction B + �B + i ð�C _C − _�C CÞ = 0 is invoked
from outside. In other words, the requirement of the absolute
anticommutativity of the (anti-)BRST charges leads to the
existence of a CF-type restriction on our theory.

We now concentrate on the computation of sab Q
ð1Þ
B = −

i fQð1Þ
B ,Qð1Þ

�B g which leads to the following as the sum of
the coefficients of e2 and 2 e _e, namely,

sab Q
1ð Þ
B = 2 e _e B �C _C − _B �C C + �B �C _C − _�B �C C − i _�C �C _C C

h i
+ e2 2B _�C _C − 2 _B _�C C − i _�C �C €C C − i €�C �C _C C − €B �C C

h
+ B €�C C + _B �C _C − B _�C _C − i _B �B + i B _�B + �B _�C _C − _�B _�C C

+ �B �C €C − €�B �C C
i
:

ðD:4Þ

The above expression can be rearranged by performing
some algebraic tricks in the following form (in terms of the
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CF-type restrictions B + �B + i ð�C _C − _�C CÞ = 0), namely,

sab Q
1ð Þ
B = e2

d
d τ

B + �B + i �C _C − _�C C
� �h i

i B + �C _C
� �n�

−
d
d τ

B + �B + i �C _C − _�C C
� �h i

�C C
�

− 2 i _B B + �B + i �C _C − _�C C
� �h ii

+ 2 e _e �C B + �B + i �C _C − _�C C
� �� �

_C
h

−
d
d τ

B + �B + i �C _C − _�C C
� �h i

C
	
:

ðD:5Þ

The above expression demonstrates that the absolute

anticommutativity property (i.e., sab Q
ð1Þ
B = −i fQð1Þ

B ,Qð1Þ
�B g =

0) is satisfied if and only if the validity of the CF-type restric-
tion is invoked at the quantum level in our BRST quantized
theory. There is another way of stating this observation. That
is to say the fact that the sanctity of anticommutativity prop-

erty (i.e., fQð1Þ
B ,Qð1Þ

�B g = 0) leads to the deduction of the CF-
type restriction in a straightforward manner.

We close our appendix with the final remark that we can
capture the derivation of the CF-type restriction within the
purview of ACSA. Towards this central objective in our
mind, first of all, we generalize the expressions for the BRST
and anti-BRST charges (cf. Equation (77)) on the ð1, 1Þ
-dimensional chiral and antichiral supermanifold as

Q 1ð Þ
B ⟶ ~Q

1cð Þ
B τ, θð Þ = E abð Þ τ, θð ÞE abð Þ τ, θð Þ ~B

abð Þ
τ, θð Þ _F abð Þ

τ, θð Þ
h

− _~B
abð Þ

τ, θð ÞF abð Þ τ, θð Þ − i �F abð Þ τ, θð Þ€F abð Þ
τ, θð ÞF abð Þ τ, θð Þ

�
+ _�F

abð Þ
τ, θð Þ _F abð Þ

τ, θð ÞF abð Þ τ, θð Þ
�
�

− 2 i E abð Þ τ, θð Þ _E abð Þ
τ, θð Þ �F abð Þ τ, θð Þ _F abð Þ

τ, θð Þ F abð Þ τ, θð Þ,

Q 1ð Þ
�B ⟶ ~Q

1acð Þ
�B τ, θ

� �
= E bð Þ τ, θ

� �
E bð Þ τ, θ

� � _e�B bð Þ
τ, θ

� �
�F bð Þ τ, θ

� ��

− e�B bð Þ
τ, θ

� �
_�F

bð Þ
τ, θ

� �
+ i €�F

bð Þ
τ, θ

� �
�F bð Þ τ, θ

� �
F bð Þ τ, θ

� �


+ _�F
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �

_F
bð Þ

τ, θ
� ��

�

+ 2 i E bð Þ τ, θ
� �

_E
bð Þ

τ, θ
� �

_�F
bð Þ

τ, θ
� �

�F bð Þ τ, θ
� �

F bð Þ τ, θ
� �

,

ðD:6Þ

where the superscripts ð1cÞ and ð1acÞ, on the BRST and anti-
BRST charges, denote the chiral and antichiral versions of
Equation (77). The other notations have already been
explained earlier. It can now be checked that we have the fol-
lowing:

∂
∂ θ

~Q
1cð Þ
B τ, θð Þ = e2

d
d τ

B + �B + i �C _C − _�C C
� �h i

i B + �C _C
� �n�

−
d
d τ

B + �B + i �C _C − _�C C
� �h i

�C C
�
− 2 i _B B + �B + i �C _C − _�C C

� �h i
�

+ 2 e _e �C B + �B + i �C _C − _�C C
� �� �

C
h

−
d
d τ

B + �B + i �C _C − _�C C
� �h i

C
	
⇔ sab Q

1ð Þ
B = −i Q 1ð Þ

B ,Q 1ð Þ
�B

n o
,

∂
∂ θ

~Q
1acð Þ
�B τ, θ

� �
= 2 e _e B + �B + i �C _C − _�C C

� �n o
_�C C

h
−

d
d τ

B + �B + i �C _C − _�C C
� �n o

�C C
	

+ e2
d
d τ

B + �B + i �C _C − _�C C
� �h i

_�C C − i �B
� �n�

−
d
d τ

B + �B + i �C _C − _�C C
� �h i

�C C
�

+ 2 i _�B B + �B + i �C _C − _�C C
� �h ii

⇔ sb Q
1ð Þ
�B = −i Q 1ð Þ

�B ,Q 1ð Þ
B

n o
:

ðD:7Þ

Thus, a careful and close look at the r.h.s. of (D.7) dem-

onstrates that we have deduced the CF-type restriction B +
�B + i ð�C _C − _�C CÞ = 0 within the ambit of ACSA in the proof
of the absolute anticommutativity of the conserved (anti-
)BRST charges. It is worthwhile to mention here that our
Equation (D.7) captures the absolute anticommutativity of
the (anti-)BRST charges ½Qð�BÞB� in the ordinary space as well
as in the superspace provided the whole theory is considered
on the subspace (of the entire quantum Hilbert space) of

variables where the CF-type restriction B + �B + i ð�C _C − _�C C
Þ = 0 is satisfied.
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