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We investigate the exclusive semileptonic and rare D⟶ πðKÞ decays within the standard model together with the light-front quark
model (LFQM) constrained by the variational principle for the QCD-motivated effective Hamiltonian. The form factors are obtained
in the q+ = 0 frame and then analytically continue to the physical timelike region. Together with our recent analysis of the current-
component independent form factors f ±ðq2Þ for the semileptonic decays, we present the current-component independent tensor
form factor f Tðq2Þ for the rare decays to make the complete set of hadronic matrix elements regulating the semileptonic and rare
D⟶ πðKÞ decays in our LFQM. The tensor form factor f Tðq2Þ are obtained from two independent sets ðJ+⊥T ,J+−T Þ of the tensor
current JuvT . As in our recent analysis of f −ðq2Þ, we show that f Tðq2Þ obtained from the two different sets of the current
components gives the identical result in the valence region of the q+ = 0 frame without involving the explicit zero modes and the
instantaneous contributions. The implications of the zero modes and the instantaneous contributions are also discussed in
comparison between the manifestly covariant model and the standard LFQM. In our numerical calculations, we obtain the q2

-dependent form factors (f ±, f T) for D⟶ πðKÞ and branching ratios for the semileptonic D⟶ πðKÞℓvℓðℓ = e, μÞ decays. Our
results show in good agreement with the available experimental data as well as other theoretical model predictions.

1. Introduction

The three flavors of charged leptons, ðe, μ, τÞ, are the same in
many respects. In the standard model (SM), the couplings of
leptons to gauge bosons are supposed to be independent of
lepton flavors, which is known as lepton flavor universality
(LFU) [1]. The experimental tests of LFU in various semi-
leptonic B decays have been reported [2–6] by measuring
the ratios of branching fractions RDð∗Þ = BrðB⟶Dð∗ÞτντÞ/
BrðB⟶Dð∗ÞℓνℓÞðℓ = e, μÞ. Currently, the SM prediction is
roughly three standard deviations away from the global aver-
age of results from the BABAR, Belle, and LHCb experiments.
Many theoretical efforts have been made in resolving the
issue ofRDð∗Þ anomaly and searching for new physics beyond
the SM [7–10]. In view of this, tests of LFU in D decays are
also intriguing complementary endeavors.

Exclusive semileptonic and rareD decays provide rigorous
tests of the SM in the charm sector including not only the LFU
but also the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments [11, 12], which describe the mixings among the quark
flavors in the weak decays and hold the key to theCP violation
issues in the quark sector. Compared to the semileptonic D
⟶ πðKÞℓνðℓ = e, μÞ decays induced by flavor-changing
charged current, the rare D⟶ πðKÞℓℓ decays are induced
by the flavor-changing neutral current (FCNC). Since the rare
decays are loop-suppressed in the SM as they proceed through
FCNC, they are also pertinent to test the SM and search for
physics beyond the SM. Recent BES III measurements
[13–20] for many exclusive semileptonic charm decays also
allow one to test the SM in the charm sector more precisely.

While the experimental measurements of exclusive
decays are much easier than those of inclusive ones, the
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theoretical knowledge of exclusive decays is sophisticated
essentially due to the hadronic form factors entered in the
long-distance nonperturbative contributions. Along with
new particle effects beyond the SM, which may amend the
Wilson coefficients of the effective weak Hamiltonian that
describes physics below the electroweak scale, the reliable
and precise calculations of the hadronic form factors are
very important to constrain the SM and search for new
physics effects beyond the SM.

The calculations of hadronic form factors for semilep-
tonic and rare D decays have been made by various theoret-
ical approaches, such as lattice QCD (LQCD) [21–24], QCD
sum rules [25, 26], QCD light-cone sum rules [27–29],
symmetry-preserving continuum approach to the SM
strong-interaction bound-state problem [30], quark poten-
tial model [31–33], relativistic quark model(RQM) based
on the quasipotential approach [34], covariant confining
quark model (CCQM) [35], chiral quark model [36], and
constituent quark model [37].

Perhaps, one of the most apt formulations for the analy-
sis of exclusive processes involving hadrons may be provided
in the framework of light-front (LF) quantization [38]. The
semileptonic and rare D decays have also been analyzed by
the light-front quark model (LFQM) [39–47] based on the
LF quantization.

In the standard LFQM that we use in this work, the con-
stituent quark and antiquark in a bound state are required to
be on-mass shells, and the spin-orbit wave function (WF) is
obtained by the interaction-independent Melosh transfor-
mation [48] from the ordinary equal-time static spin-orbit
WF assigned by the quantum number JPC . For the radial
part, we use the phenomenologically accessible Gaussian
WF ϕðx, k⊥Þ. Since the standard LFQM itself is not amena-
ble to pin down the zero modes, the exactly solvable mani-
festly covariant Bethe-Salpeter (BS) model with the simple
multipole type q�q vertex was utilized [45, 46, 49, 50] to help
identify the zero modes in a systematic way. On the other
hand, this BS model is less realistic than the standard LFQM.
Thus, as an attempt to apply the zero modes found in the BS
model to the standard LFQM, the effective replacement [45,
46, 49] of the LF vertex function χðx, k⊥Þ obtained in the BS
model with the more realistic Gaussian WF ϕðx, k⊥Þ in the
standard LFQM has been made.

However, we found [51–53] that the correspondence
relation between χ and ϕ proposed in [45, 46, 49] encounters
the self-consistency problem, e.g., the vector meson decay
constant obtained in the standard LFQM was found to be
different for different sets of the LF current components
and polarization states of the vector meson [51]. We also
resolved [51–53] this self-consistency problem by imposing
the on-mass shell condition of the constituent quark and
antiquark in addition to the original correspondence relation
between χ and ϕ. Specifically, our new finding for the con-
straint of the on-mass shell condition corresponds to the
replacement of physical meson mass M with the invariant
mass M0 in the calculation of the matrix element. The
remarkable feature of our new additional correspondence
relation ðM⟶M0Þ between the two models in the calcula-
tions of the two-point functions such as the weak decay

constants and the distribution amplitudes of mesons
[51–53] was that the LF treacherous points such as the zero
modes and the off-mass shell instantaneous contributions
appeared in the BS model are absent in the standard LFQM.
This prescription ðM⟶M0Þ can be regarded as an effec-
tive inclusion of the zero modes in the valence region of
the LF calculations.

As an extension our analysis of the two-point functions
[51–53] to the three-point ones, in our very recent LFQM
analysis [54] of the semileptonic B⟶Dℓνℓ decays, we pre-
sented the self-consistent descriptions of the weak transition
form factors (TFFs) f +ðq2Þ and f −ðq2Þ. Especially, f −ðq2Þ
should be obtained by using least two components of the
weak vector current JμV while f +ðq2Þ can be obtained from
the single and “good” component (J+V ) of the current.
Because of this, f −ðq2Þ has been known to receive the zero
mode mainly due to the unavoidable usage of the so-called
“bad” components of the current, i.e., J⊥V = ðJx, JyÞ and J−V ,
many efforts have been made to obtain the Lorentz covariant
form factors [45, 46, 49] within the standard LFQM by prop-
erly handling the zero-mode as well as the instantaneous
contributions. Applying the same correspondence relations
found in [51–53] to the B⟶Dℓνℓ decays, we found that
the zero modes and instantaneous contributions to f −ðq2Þ
are made to be absent in the standard LFQM while they exist
in the BS model. In other words, we obtained the current-
component independent form factor f −ðq2Þ in the standard
LFQM, i.e., f −ðq2Þ obtained from ðJ+, J−ÞV is exactly the same
as the one obtained from ðJ+, J⊥ÞV numerically, and both are
expressed as the convolution of the initial and final state
LFWFs in the valence region of the q+ = 0 frame. This verifies
that our new correspondence relations found in the two-point
functions are also applicable to the three-point functions.

The purpose of this paper is to extend our previous anal-
ysis [54] of the form factors f ±ðq2Þ for the semileptonic
decays between the two pseudoscalar mesons to obtain the
current-component independent tensor form factor f Tðq2Þ
for the rare decays, which complete the set of hadronic
matrix elements regulating the exclusive semileptonic and
rare decays between the two pseudoscalar mesons. We then
apply our Lorentz covariant form factors ð f ±, f TÞ for the
analysis of the semileptonic and rare D⟶ πðKÞ decays
within the standard model and the light-front quark model
(LFQM) constrained by the variational principle for the
QCD-motivated effective Hamiltonian [49, 55–57].

The paper is organized as follows: in Section 2, we intro-
duce three form factors ð f ±, f TÞ for the semileptonic and
rare decays between two pseudoscalar mesons. In the q+ =
0 frame, we define the form factors extracted from the vari-
ous combinations of vector and tensor currents. In Section 3,
we set up the current matrix elements for the form factors in
an exactly solvable model based on the covariant BS model
of (3 + 1) dimensional fermion field theory. We then present
our LF calculations of tensor form factor f T in the BS model
using the two different sets (J+⊥T and J+−T ) of the tensor
current JμνT . For completeness, we also present the results
of the current-component independent form factors f ±ðq2Þ
found [54]. We note that while f Tðq2Þ obtained from J+⊥T
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is immune to the zero mode and the instantaneous contribu-
tion, f Tðq2Þ obtained from J+−T cannot avoid those contribu-
tions in this BS model. Linking the covariant BS model to the
standard LFQM with our new correspondence relations
between the two models [51–53], however, we find that f T
ðq2Þ obtained from J+−T in the standard LFQM is made to
be free of the zero mode as well as the instantaneous contri-
bution. In other words, we obtained the current-component
independent tensor form factor f Tðq2Þ in the standard LFQM
regardless of using J+⊥T or J+−T as in the case of f −ðq2Þ calcula-
tion [54]. Finally, we present the current-component
independent TFFs ð f ±, f TÞ in the q+ = 0 frame of the stan-
dard LFQM. In Section 4, we present our numerical
results of the form factors for the semileptonic and rare
D⟶ πðKÞ decays as well as the branching ratios for
the semileptonic D⟶ πðKÞℓνℓðℓ = e, μÞ. Summary and
discussion follow in Section 5.

2. Theoretical Framework

The matrix elements of the vector JμV = �qγμc and the tensor
JμνT = �qσμνc currents for the weak c⟶ qðq = u, d, sÞ transi-
tions between the initial D meson and the final π or K
meson can be parametrized by the following set of invariant
form factors, (f +, f −, s) [33]:

M
μ
V ≡ P2 JμV

�� ��P1
� �

= f + q2
� �

Pμ + f − q2
� �

qμ, ð1Þ

M
μν
T ≡ P2 JμνT

�� ��P1
� �

= is q2
� �

Pμqν − qμPν½ �, ð2Þ

where P = P1 + P2 and q = P1 − P2 are the four-
momentum transfer to the lepton pair (ℓνℓ) with m2

ℓ ≤ q2

≤ ðM1 −M2Þ2 for the semileptonic decays or to the pair
(ℓ+ℓ−) with 4m2

ℓ ≤ q2 ≤ ðM1 −M2Þ2 for the rare decays,
respectively. The antisymmetric tensor in Eq. (2) is given
by σμν = ði/2Þ½γμ, γν�.

On many occasions, it is useful to express Eq. (1) in
terms of the form factors f +ðq2Þ and f0ðq2Þ, which are
related to the transition amplitude with the exchange of a
vector (1−) and a scalar (0+) boson in the t-channel, respec-
tively, and satisfy

f0 q2
� �

= f + q2
� �

+
q2

M2
1 −M2

2
f − q2
� �

: ð3Þ

Likewise, the tensor form factor sðq2Þ in Eq. (2) can also
be redefined by

s q2
� �

=
f T q2
� �

M1 +M2
, ð4Þ

to make f Tðq2Þ dimensionless.
Including the nonzero lepton mass (mℓ), the differential

decay rate for the semileptonic P1 ⟶ P2ℓνℓ process is given
by [58, 59].

dΓ
dq2

=
G2

F

96π3 p
!∗��� ��� VQ1 �Q2

�� ��2 q2

M2
1

1 −
m2

ℓ

q2

� �2

× 1 +
m2

ℓ

2q2

� �
H+j j2 + 3m2

ℓ

2q2
H0j j2

	 

,

ð5Þ

where GF = 1:166 × 10−5 GeV −2 is the Fermi constant,
VQ1 �Q2

is the relevant CKM mixing matrix element, and

p
!∗��� ��� = 1

2M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 +M2
2 − q2

� �2 − 4M2
1M

2
2

q
, ð6Þ

is the modulus of the three-momentum of the daughter
meson in the parent meson rest frame, and the helicity
amplitudes H+ and H0 are given by

H+ =
2M1 p

!∗��� ���ffiffiffiffiffi
q2

p f + q2
� �

,H0 =
M2

1 −M2
2ffiffiffiffiffi

q2
p f0 q2

� �
: ð7Þ

We note that q2 = q2max corresponds to the zero-recoil of
the final meson in the initial meson rest frame, and the q2

= 0 corresponds to the maximum recoil of the final meson

recoiling with the maximum three momentum jP!2j = ðM2
1

−M2
2Þ/2M1.
In the LF calculation of the form factors, we use the met-

ric convention a · b = ð1/2Þða+b− + a−b+Þ − a⊥ · b⊥. Perform-
ing the LF calculation in the q+ = 0 frame (i.e.,
q2 = −q2⊥ = −Q2 < 0) with P1 = ðP+

1 , P−
1 , P1⊥Þ = ðP+

1 ,M2
1/P+

1 ,
0⊥Þ, we utilize all three components (μ, ν = +, − , ⊥) of the
current JμV and JμνT in Eqs. (1) and (2) to obtain f +ðq2Þ,
f −ðq2Þ [or f0ðq2Þ], and f Tðq2Þ. The form factors obtained
in the spacelike region ðq2 < 0Þ are then analytically con-
tinued to the timelike region by changing q2⊥ to −q2 in
the form factors as we show in our numerical calculations.

While the form factor f +ðq2Þ can be obtained from the
plus component (J+V ) of the vector current, one cannot but
use two different combinations of the current to obtain
f −ðq2Þ such as ðJ+, J⊥ÞV or ðJ+, J−ÞV . That is, using those
sets of the current components in the q+ = 0 frame, one
obtains the relations between the weak form factors f ±ðq2Þ
and the current matrix elements in Eq. (1) as follows [54]:

f + q2
� �

=
M+

V

2P+
1
, ð8Þ

f +⊥ð Þ
− q2
� �

=
M+

V

2P+
1
+
M⊥

V · q⊥
q2⊥

, ð9Þ

f +−ð Þ
− q2
� �

= −
M+

V

2P+
1

ΔM2
+ + q2⊥

M2
− − q2⊥

� �
+

P+
1M

−
V

ΔM2
− − q2⊥

, ð10Þ

where ΔM2
± =M2

1 ±M2
2, and we denote f −ðq2Þ obtained
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from ðJ+, J⊥ÞV and ðJ+, J−ÞV as f ð+⊥Þ− ðq2Þ and f ð+−Þ− ðq2Þ,
respectively. It is prerequisite to show that f ð+⊥Þ− ðq2Þ =
f ð+−Þ− ðq2Þ to assert the Lorentz invariance of the form
factor and the self-consistency of the model.

Likewise, the tensor form factor sðq2Þ can be obtained
from using either J+⊥T or J+−T . In this case, the relations
between sðq2Þ and the current matrix element in Eq. (2)
are given by

s +⊥ð Þ q2
� �

= −
iM+⊥

T · q⊥
2q2⊥P+

1
, ð11Þ

s +−ð Þ q2
� �

= −
iM+−

T

2 ΔM2
− − q2⊥

� � , ð12Þ

where sð+⊥Þðq2Þ and sð+−Þðq2Þ represent the form factor
sðq2Þ obtained from J+⊥T and J+−T , respectively. Of course,
sð+⊥Þðq2Þ = sð+−Þðq2Þ should be satisfied in the self-
consistent model calculation.

Our aim in this work is to show sð+⊥Þðq2Þ = sð+−Þðq2Þ in
addition to our previous verification of f ð+⊥Þ− ðq2Þ = f ð+−Þ− ðq2Þ
[54] in our LFQM, which completes the analysis of the exclu-
sive semileptonic and rare decays between two pseudoscalar
mesons. For this purpose, we start from the exactly solvable
manifestly covariant BS model and then connect it to our
phenomenologically accessible LFQM. Although we ana-
lyzed f ±ðq2Þ in [54], we shall include them again in the next
section for the completeness of the analysis.

3. Model Description

3.1. Manifestly Covariant Model. In the solvable model,
based on the covariant BS model of (3 + 1)-dimensional
fermion field theory [50, 54], the matrix elements M =
ðMμ

V ,M
μν
T Þ are given by

M = iNc

ð
d4k

2πð Þ4
Hp1

THp2

Np1
NkNp2

, ð13Þ

where the corresponding trace terms T = ðSμ, TμνÞ
are given by

Sμ = Tr γ5 np1 +m1
� �

γμ np2 +m2
� �

γ5 −k +mq

� �� 

, ð14Þ

for the vector current and

Tμν = Tr γ5 np1 +m1
� �

σμν np2 +m2
� �

γ5 −k +mq

� �� 

, ð15Þ

for the tensor current, respectively. Nc is the number of
colors, and pj = Pj − kðj = 1, 2Þ and k are the internal
momenta carried by the quark and antiquark propagators
of mass mj and mq, respectively. The corresponding denom-

inators are given by Npj
= p2j −m2

j + iε and Nk = k2 −m2
q + iε.

We take the q�q bound-state vertex functions Hpj
ðp2j , k2Þ =

gj/ðp2j −Λ2
j + iεÞ of the initial (j = 1) and final (j = 2) state

pseudoscalar mesons, where gj and Λj are constant parame-
ters in this manifestly covariant model.

Performing the LF calculation in the q+ = 0 frame, one
obtains the following identity nq = nqon + ð1/2Þγ+Δ−

q , where
Δ−
q = q− − q−on and the subscript (on) denotes the on-mass

shell quark momentum, i.e., p2jon =m2
j and k2on =m2

q. Using
this identity, one can separate the trace terms into the
“on”-mass shell propagating part and the “off”-mass shell
instantaneous one, i.e., Sμ = Sμon + Sμoff for the vector current
and Tμν = Tμν

on + Tμν
off for the tensor current.

The explicit LF calculation in parallel with the manifestly
covariant calculation of Eq. (13) to compute f ±ðq2Þ can be

found in [49] where f −ðq2Þ was obtained from f ð+⊥Þ− ðq2Þ.
The identical result for f ð+⊥Þ− ðq2Þ was also obtained in [45,
46] using the so-called “covariant LFQM” analysis. As
shown in Ref. [45, 46, 49], while f +ðq2Þ obtained from the
plus current was immune to the zero mode, the form factor
f −ðq2Þ received both instantaneous and zero-mode contri-

butions. The same situation happens for f ð+−Þ− ðq2Þ although
the zero-mode and the instantaneous contributions may
differ quantitatively from f ð+⊥Þ− ðq2Þ. However, as we have

shown in [54], f ð+⊥Þ− ðq2Þ and f ð+−Þ− ðq2Þ obtained in the stan-
dard LFQM by using our new correspondence relations
between the BS model and the standard LFQM show identi-
cal result in the valence region of the q+ = 0 frame without
involving explicit zero modes and instantaneous contribu-
tions. In this work, we shall show that the tensor form factor
sðq2Þ in the standard LFQM is independent of the compo-
nents of the current, i.e., sð+⊥Þðq2Þ = sð+−Þðq2Þ. We should
note that all of those equalities, i.e., f ð+⊥Þ− ðq2Þ = f ð+−Þ− ðq2Þ
and sð+⊥Þðq2Þ = sð+−Þðq2Þ are derived from the constraint of
the on-mass shellness of the quark and antiquark propaga-
tors together with the zero-binding energy limit (i.e., M =
M0) used in the standard LFQM.

Therefore, from now on, we discuss only for the on-
mass shell contributions in the valence region of the q+

= 0 frame between the manifestly covariant BS model
and the standard LFQM. The on-shell contributions to
Sμ and Tμν are given by

Sμon = 4 pμ1on p2on · kon +m2mq

� �
+ pμ2on p1on · kon +m1mq

� ��
+ kμon m1m2 − p1on · p2onð Þ
,

ð16Þ

and

Tμν
on = 4i pμ1on m2k

ν
on +mqp

ν
2on

� �
− pμ2on m1k

ν
on +mqp

ν
1on

� ��
+ kμon m1p

ν
2on −m2p

ν
1onð Þ
,

ð17Þ

respectively. The LF four-momenta of the on-mass
shell quark and antiquark propagators in the q+ = 0 (i.e.
P+
1 = P+

2 ) frame are given by
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p1on = xP+
1 ,

m2
1 + k2⊥
xP+

1
,−k⊥

	 

, ð18Þ

p2on = xP+
1 ,

m2
2 + k⊥ + q⊥ð Þ2

xP+
1

,−k⊥ − q⊥

" #
, ð19Þ

kon = 1 − xð ÞP+
1 ,

m2
q + k2⊥

1 − xð ÞP+
1
, k⊥

" #
, ð20Þ

where x = p+1 /P+
1 and �x = k+/P+

1 are the LF longitudinal
momentum fractions of the quark and antiquark, which
satisfy x + �x = 1.

By the integration over k− in Eq. (13) and closing the
contour in the lower half of the complex k− plane, one
picks up the residue at k− = k−on in the valence region of
0 < k+ < P+

2 (or 0 < x < 1). We denote the on-mass shell
contribution to M

μ
V and M

μν
T in the valence region as

½Mμ
V �BSon and ½Mμν

T �BSon , respectively. The explicit forms of

½Mμ
V �BSon and ½Mμν

T �BSon are obtained as [54].

MBS
on =Nc

ð1
0

dx
�x

ð
d2k⊥
16π3 χ1 x, k⊥ð Þχ2 x, k⊥′

� �
T on, ð21Þ

where M = ðMμ
V ,M

μν
T Þ pairs with T = ðSμ, TμνÞ. The

LF quark-meson vertex function χ1ð2Þ of the initial (final)
state is given by

χ1 2ð Þ x, k
0ð Þ
⊥

� �
=

g1 2ð Þ

x2 M2
1 2ð Þ −M

0ð Þ2
0

� �
M2

1 2ð Þ −M
0ð Þ2

Λ1 Λ2ð Þ

� � ,

ð22Þ

where k⊥′ = k⊥ + ð1 − xÞq⊥ and

M2
0 =

k2⊥ +m2
1

x
+
k2⊥ +m2

q

1 − x
, ð23Þ

M0′ 2 =
k⊥′ 2 +m2

2
x

+
k⊥′ 2 +m2

q

1 − x
, ð24Þ

are the invariant masses of the initial and final states,
respectively. Likewise, MΛ1ð2Þ is obtained as MΛ1

=M0ðm1

⟶Λ1Þand MΛ2
′ =M0′ðm2 ⟶Λ2Þ.

For the trace T = ðSμ, TμνÞ calculations relevant to the
form factors, the on-mass shell contributions Sμon obtained
from all three components μ = ð+, ⊥, − Þ of the vector
current JμV are given by [54].

S+on =
4P+

1
�x

k⊥ · k⊥′ +A1A2

� �
, ð25Þ

S⊥on =
−2k⊥
x�x

2k⊥ · k⊥′ + �x q2⊥ +m2
1 +m2

2
� �

+ 2x2m2
q

h
+ 2x�x m1mq +m2mq −m1m2

� �i
−
2q⊥
x�x

k2⊥ +A2
1

� �
,

ð26Þ

S−on =
4

x2�xP+
1

�x m1A1 + k2⊥
� �

m2
2 + k⊥ + q⊥ð Þ2� 
�

+ x2�xM2
0 k2⊥ + k⊥ · q⊥
� �

+ x2m1m2 m2
q + k2⊥

� �
+ x�xm2mq m2

1 + k2⊥
� �


,

ð27Þ

where Aj = ð1 − xÞmj + xmqðj = 1, 2Þ. Likewise, the on-
shell contributions Tμν

on obtained from the two sets of the
tensor current JμνT , i.e., ðμ, νÞ = ð+,⊥Þ and ð+, − Þ, are
given by

T+⊥
on = −4iP+

1 m1 −m2ð Þk⊥ +A1q⊥½ �, ð28Þ

T+−
on =

4i
x�x

1 − 2xð Þ m1 −m2ð Þk2⊥ + 2�xA1k⊥ · q⊥
�

+ �xA1q2⊥ + m2 −m1ð ÞA1A2


:

ð29Þ

Using Eqs. (8), (9), (10), (11), (12), and (21), one
obtains the on-mass shell contributions to the weak form
factors ð f +, f −, sÞ as follows

FBS
on =Nc

ð1
0

dx
�x

ð
d2k⊥
16π3 χ1 x, k⊥ð Þ Oh iBSonχ2 x, k⊥′

� �
, ð30Þ

where the form factors F = f f +,f ð+⊥Þ− ,f ð+−Þ− ,sð+⊥Þ,sð+−Þg
obtained from different combinations of the vector and
tensor currents pair with the following corresponding
operators hOiBSon = fO+,Oð+⊥Þ

− ,Oð+−Þ
− ,Oð+⊥Þ

s ,Oð+−Þ
s g including

the spin and external momenta factors:

O+ =
S+on
2P+

1
, ð31Þ

O +⊥ð Þ
− =

S+on
2P+

1
+
S⊥on · q⊥

q2⊥
, ð32Þ

O +−ð Þ
− = −

S+on
2P+

1

ΔM2
+ + q2⊥

ΔM2
− − q2⊥

� �
+

P+
1S

−
on

ΔM2
− − q2⊥

, ð33Þ

O +⊥ð Þ
s = −

iT+⊥
on · q⊥
2q2⊥P+

1
, ð34Þ

O +−ð Þ
s = −

iT+−
on

2 ΔM2
− − q2⊥

� � : ð35Þ

In the manifestly covariant BS model given by Eq.
(13), we note that only the two form factors f +ðq2Þ and
sð+⊥Þðq2Þ defined by Eqs. (31) and (34), respectively, are
immune to the zero modes as well as the instantaneous
contributions and thus exactly equal to the full exact solu-
tion (i.e., manifestly covariant solution), i.e., ½ f +�BSon = f Cov+
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and ½sð+⊥Þ�BSon = sCov, without involving such LF treacherous

points. However, since the other three form factors f ð+⊥Þ− ,

f ð+−Þ− , and sð+−Þ are contaminated by the zero modes as
well as the instantaneous contributions, the on-mass shell

contributions ½ f ð+⊥Þ− �BSon , ½ f ð+−Þ− �BSon , and ½sð+⊥Þ�BSon themselves
can never be the same as the exact solutions unless the
zero modes and the instantaneous contributions are taken
into account. Furthermore, one can easily check that

½ f ð+⊥Þ− �BSon ≠ ½ f ð+−Þ− �BSon and ½sð+−Þ�BSon ≠ ½sð+⊥Þ�BSon .
However, in the following subsection, we shall show in

the standard LFQM (denoted by SLF) that f SLF− = ½ f ð+⊥Þ− �SLFon

= ½ f ð+−Þ− �SLFon and sSLF = ½sð+−Þ�SLFon = ½sð+⊥Þ�SLFon without involv-
ing explicit zero-mode and instantaneous contributions,
which comes after using our new correspondence relations
between the BS model and the standard LFQM.

3.2. The Standard LFQM. In the standard LFQM [39, 41, 42,
55–57, 60, 61], the LF wave function (LFWF) of a ground
state pseudoscalar meson as a q�q bound state is given by

Ψλ�λ x, k⊥ð Þ = ϕ x, k⊥ð ÞRλ�λ x, k⊥ð Þ, ð36Þ

where Rλ�λðx, k⊥Þ is the spin-orbit WF that is obtained
by the interaction-independent Melosh transformation from
the ordinary spin-orbit WF assigned by the quantum num-
ber JPC . The covariant form of Rλ�λ with the definite spin
ðS, SzÞ = ð0, 0Þ constructed out of the LF helicity λð�λÞ of a
quark (antiquark) is given by

Rλ�λ =
�uλ pq
� �

γ5v�λ p�q
� �

ffiffiffi
2

p
M2

0 − m1 −mq

� �2h i1/2 , ð37Þ

which satisfies the unitarity condition, ∑λ�λR
†
λ�λ
Rλ�λ = 1.

Its explicit matrix form is given by

Rλ�λ =
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2⊥ +A2
1

q −kL A1

−A1 −kR

 !
, ð38Þ

where kR = kx + iky and kL = kx − iky .
For the radial WF ϕðx, k⊥Þ in Eq. (36), we use the Gauss-

ian WF

ϕ x, k⊥ð Þ = 4π3/4

β3/2

ffiffiffiffiffiffiffi
∂kz
∂x

r
exp −k

!2
/2β2

� �
, ð39Þ

where k
!2

= k2⊥ + k2z and β is the variational parameter.
The longitudinal component kz is defined by kz = ðx − 1/2Þ
M0 + ðm2

q −m2
1Þ/2M0, and the Jacobian of the variable trans-

formation fx, k⊥g⟶ k
!
= ðk⊥, kzÞ is given by ∂kz/∂x =

ðM0/4xð1 − xÞÞ½1 − ðm2
1 −m2

qÞ2/M4
0�. The normalization of

our Gaussian radial WF is then given by

ð1
0
dx
ð
d2k⊥
16π3 ϕ x, k⊥ð Þj j2 = 1: ð40Þ

In particular, the key idea in our LFQM [49, 55–57] for
mesons is to treat ϕðx, k⊥Þ as a trial function for the varia-
tional principle to the QCD-motivated effective Hamiltonian
saturating the Fock state expansion by the constituent quark
and antiquark. Using this Hamiltonian, we analyze the
meson mass spectra and various wave-function-related
observables, such as decay constants, electromagnetic form
factors of mesons in a spacelike region, and the weak form
factors for the exclusive semileptonic and rare decays of
pseudoscalar mesons in the timelike region [49, 51–57].

In this standard LFQM, the matrix elements of the vec-
tor and tensor currents in Eqs. (1) and (2) are obtained by
the convolution formula of the initial and final state LFWFs
in the q+ = 0 frame as follows:

MSLF
on =〠

λ′s

ð1
0
dx
ð
d2k⊥
16π3 ϕ1 x, k⊥ð Þϕ2 x, k⊥′

� �

×R†
λ2
�λ

�uλ2 p2ð Þffiffiffiffiffi
p+2

p Γ
uλ1 p1ð Þffiffiffiffiffi

p+1
p Rλ1

�λ,
ð41Þ

where M = ðMμ
V ,M

μν
T Þ pairs with Γ = ðγμ, σμνÞ.

Then, we first compute the zero-mode free form factors,

i.e. ½ f +�SLFon and ½sð+⊥Þ�SLFon , in the SLF formulation as follows

FSLF
on =

ð1
0
�xdx

ð
d2k⊥
32π3

ϕ1 x, k⊥ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 + k2⊥
q Oh iSLFon

ϕ2 x, k⊥′
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 + k⊥′2
q , ð42Þ

where the form factors F = f f +,sð+⊥Þg pair with the
following corresponding operators hOiSLFon = hOiBSon = fO+,
Oð+⊥Þ
s g given by Eqs. (31) and (34).
We should note that the main differences between the

covariant BS model and the standard LFQM are attributed
to the different spin structures of the q�q system (i.e., off-
shellness in the BS model vs. on-shellness in the standard
LFQM) and the different meson-quark vertex functions (χ
vs. ϕ). In other words, while the results of the covariant BS
model allow the nonzero binding energy EB:E =M2 −M2

0,
the SLF result is obtained from the condition of on-mass
shell quark and antiquark (i.e., M⟶M0).

Comparing these two form factors F = f f +,sð+⊥Þg
defined in Eq. (30) in the BS model and Eq. (42) in the stan-
dard LFQM, one can easily find the correspondence relation
between the two models as follows:

ffiffiffiffiffiffiffiffi
2Nc

p χ1 2ð Þ x, k
0ð Þ
⊥

� �
1 − x

⟶
ϕ1 2ð Þ x, k

0ð Þ
⊥

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 2ð Þ + k
0ð Þ2
⊥

q : ð43Þ

In many previous LFQM analyses [40, 45, 46, 49], the
correspondence in Eq. (43) has also been used for the map-
ping of other physical observables contaminated by the zero
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modes and/or the instantaneous contributions. However,
applying Eq. (43) together with the same operators given
by Eqs. (32), (33), and (35) to the other form factors F
= f f ð+⊥Þ− ,f ð+−Þ− ,sð+−Þg obtained from the only on-mass shell
contributions, one encounters the same problems as the BS

model, i.e., ½ f ð+⊥Þ− �SLFon ≠ ½ f ð+−Þ− �SLFon and ½sð+−Þ�SLFon ≠ ½sð+⊥Þ�SLFon
implying that the same physical quantities obtained from
different components of the current yield different results.

In our previous analysis [51–53], however, we found that
the correspondence relation including only LF vertex func-
tions given by Eq. (43) brings about the self-consistency
problem, i.e., the same physical quantity obtained from dif-
ferent components of the current and/or the polarization
vectors yields different results in the standard LFQM.
Furthermore, we also discovered the additional requirement
for the correct correspondence relation between the two
models to obtain the current-component independent phys-
ical observables in the standard LFQM.

Our new correspondence relation (denoted by “CJ-
scheme” for convenience) to restore the self-consistency in
the standard LFQM is given by [51–54]:

ffiffiffiffiffiffiffiffi
2Nc

p χ1 2ð Þ x, k
0ð Þ
⊥

� �
1 − x

⟶
ϕ1 2ð Þ x, k

0ð Þ
⊥

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 2ð Þ + k
0ð Þ2
⊥

q ,M1 2ð Þ ⟶M
0ð Þ
0,

ð44Þ

that is, the physical massM1ð2Þ included in the integrand

of the BS amplitude, e.g., the operators hOiBSon in Eqs. (31)
(32), (33), (34), and (35) should be replaced by the invariant

mass Mð
0′Þ as all constituent quark and antiquarks are

required to be on their respective mass shell in the standard
LFQM. We should note that this “CJ-scheme” has been
verified through our previous analyses for the decay con-
stants and the twist-2 and-3 DAs of pseudoscalar and vector
mesons [51–53] and the form factor f −ðq2Þ for the semilep-
tonic B decays [54].

We now show in this work that the “CJ-scheme” is
also valid to obtain the current-component independent
tensor form factor sðq2Þ in addition to f −ðq2Þ [54]. That

is, applying Eq. (44) to the form factors F = f f ð+−Þ− ,sð+−Þg
defined in Eq. (30) implies the replacements of the current
operators hOiBSon = fOð+−Þ

− ,Oð+−Þ
s g in the BS model with

hOiSLFon = fO~ð+−Þ
− ,O~ð+−Þ

s g in the standard LFQM, i.e.,

O~ +−ð Þ
− = −

S+on
2P+

1

ΔM2
0+ + q2⊥

ΔM2
0− − q2⊥

� �
+

P+
1S

−
on

ΔM2
0− − q2⊥

, ð45Þ

O~ +−ð Þ
s = −

iT+−
on

2 ΔM2
0− − q2⊥

� � , ð46Þ

where ΔM2
0± =M2

0 ±M0′2. Then, we obtain from Eqs.
(42), (45), and (46) the current-component independent

form factors, i.e., ½ f ð+⊥Þ− �SLFon ≐½ f ð+−Þ− �SLFon and ½sð+−Þ�SLFon ≐

½sð+⊥Þ�SLFon in the standard LFQM, where “≐” represents
the equality of both sides numerically. The additional

requirement in the “CJ-scheme”, i.e., M1ð2Þ ⟶Mð
0′Þ, can

therefore be regarded as the effective inclusion of the zero
modes in the valence region of the q+ = 0 frame in the

standard LFQM. This replacement M1ð2Þ ⟶Mð
0′Þ is not

possible in the BS model due to the form of the LF vertex
function χ given by Eq. (22).

The final results for f +, f − = f ð+⊥Þ− ≐f ð+−Þ− , and s = sð+⊥Þ≐
sð+−Þ in the standard LFQM are given by

f + q2
� �

=
ð1
0
dx
ð
d2k⊥
16π3

ϕ1 x, k⊥ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 + k2⊥
q ϕ2 x, k⊥′

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 + k⊥′2
q A1A2 + k⊥ · k⊥′

� �
,

ð47Þ

f +⊥ð Þ
− q2
� �

=
ð1
0
�xdx

ð
d2k⊥
16π3

ϕ1 x, k⊥ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 + k2⊥
q ϕ2 x, k⊥′

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 + k⊥′2
q

� −�xM2
0 + m2 −mq

� �
A1 −mq m1 −mq

� �
+
k⊥ · q⊥
q2

�

� M2
0 +M ′20 − 2 m1 −mq

� �
m2 −mq

� �h i�
,

ð48Þ

f +−ð Þ
− q2
� �

=
ð1
0

dx
x2

ð
d2k⊥
16π3

ϕ1 x, k⊥ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 + k2⊥
q ϕ2 x, k⊥′

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 + k⊥′2
q n

a0 x2�xM2
0 k2⊥ + k⊥ · q⊥
� ��

+ �x m1A1 + k2⊥
� �

m2
2 + k⊥ + q⊥ð Þ2� 


+ x2m1m2 m2
q + k2⊥

� �
+ x�xm2mq m2

1 + k2⊥
� �� − x2b0 k⊥ · k⊥′ +A1A2

� �o
,

ð49Þ
for the vector current, and

s +⊥ð Þ q2
� �

= −
ð1
0
1 − xð Þdx

ð
d2k⊥
16π3

ϕ1 x, k⊥ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 + k2⊥
q ϕ2 x, k⊥′

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 + k⊥′2
q

� m1 −m2ð Þ k⊥ · q⊥
q2⊥

+A1

	 

,

ð50Þ

s +−ð Þ q2
� �

=
ð1
0

dx
x

ð
d2k⊥
16π3

ϕ1 x, k⊥ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 + k2⊥
q ϕ2 x, k⊥′

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2 + k⊥′2
q a0

2
1 − 2xð Þ m1 −m2ð Þk2⊥

�

+ 2 1 − xð ÞA1k⊥ · q⊥ + 1 − xð ÞA1q2⊥ + m2 −m1ð ÞA1A2


,

ð51Þ
for the tensor current, where a0 = 2/ðM2

0 −M0′ 2 − q2⊥Þ
and b0 = ðM2

0 +M0′ 2 + q2⊥Þ/ðM2
0 −M0′ 2 − q2⊥Þ. Indeed, our

prescription M1ð2Þ ⟶Mð
0′Þ is applied through the two terms

ða0, b0Þ in f ð+−Þ− and sð+−Þ. Finally, we confirm from the
numerical calculations the current independencies of the
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form factors, i.e., f −ðq2Þ = f ð+⊥Þ− ≐f ð+−Þ− and sðq2Þ = sð+⊥Þ≐sð+−Þ,
which supports the universality of the “CJ-scheme” given by
Eq. (44) and the self-consistency of our standard LFQM.

For our numerical calculations in the following section,
we use the tensor form factor f Tðq2Þ = sðq2ÞðM1 +M2Þ as
defined in Eq. (4). We should emphasize that the physical
masses M1ð2Þ used in defining f T is nothing to do with our
correspondence relations. Only the physical masses M1ð2Þ
appeared as a result from the choice of minus component
(μ, ν = −) of the vector and tensor currents given by Eqs.
(1) and (2) are eligible for the transformation into the corre-

sponding invariant masses Mð
0′Þ as shown in Eq. (10).

4. Numerical Results

In our numerical calculations for the semileptonic and rare
D⟶ ðπ, KÞ decays, we use the model parameters
(mq�q, βq�q) for the harmonic oscillator (HO) confining poten-
tial given in Table 1 obtained from the calculation of the
ground state meson mass spectra [49, 57]. The decay con-
stants of ðπ, K ,DÞ mesons obtained from the HO parame-
ters are given by ð f π, f K , f DÞ = ð131,155,197Þ MeV
compared to the experimental data [62], ð f exp:π , f exp:K , f exp:D Þ
= ð130:2ð1:2Þ, 155:7ð3Þ, 212:6ð7ÞÞ MeV. While the decay
constant of D meson is not quite sensitive to the quark mass
variation, e.g., f D = 199−2+1 MeV for mc = 1:7+0:1−0:1 GeV, we find
that the form factors are somewhat sensitive to mc. Thus, as
a sensitivity check of our LFQM, we use this charm quark
mass variation for the calculations of the form factors and
the branching ratios. For the physical ðD, K , πÞ meson
masses, we use the central values quoted by the Particle Data
Group (PDG) [62].

In principle, it is possible to use the q+ ≠ 0 frame satisfy-
ing q2 = q+q− − q2⊥ > 0 for this timelike semileptonic and rare
decays. However, in this q+ ≠ 0 frame, it is inevitable to con-
front the particle-number-nonconserving Fock state (or
nonvalence) contribution [63, 64]. The main source of diffi-
culty in the LFQM phenomenology is the paucity of infor-
mation on the nonwave-function vertex [50] in the
nonvalence diagram arising from the quark-antiquark pair
creation/annihilation. This should contrast with the usual
LFWF used in the valence region. Contrary to the q+ ≠ 0
frame, the q+ = 0 frame does not suffer from the nonvalence
contribution although one needs to be cautious about the
zero-mode problem as we discussed already. Once the
zero-mode issue is resolved as we proved in this work, it is
straightforward to analytically continue the form factors
given by Eqs. (47), (48), (49), (50), and (51) obtained in
the spacelike region to the timelike physical region.

Our results of the form factors ð f ±, f0, f TÞ obtained
from Eqs. (47), (48), (49), (50), and (51) can also be com-
pared with several parametric forms. Among several
forms, a more systematic and model-independent parame-
trization of semileptonic form factors, often referred to as
“z-expansion” or “z-parametrization” [65, 66], has been
developed based on general properties of analyticity,
unitarity, and crossing symmetries. Especially, this z

-parametrization provides better control of theoretical
uncertainties in LQCD calculations [23, 24].

Our direct LFQM results for the form factors f iðq2Þ
ði = ±,0, TÞ are also well described by the “z-parametri-
zation,” which takes the form [23, 24]

f j q
2� �

=
f j 0ð Þ + cj z − z0ð Þ 1 + z + z0ð Þ/2ð Þ

1 − bjq2
, ð52Þ

where

z =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ − q2

p
+ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t+ − t0
p , ð53Þ

and z0 = zðq2 = 0Þ with t± = ðM1 ±M2Þ2 and t0 = t+
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − t−/t+
p Þ.
The fitted parameters ðbj, cjÞðj = +,0, TÞ for the D⟶ π

and D⟶ K TFFs ð f +, f0, f TÞ are summarized in Tables 2
and 3, respectively, where the errors occur due to the choice
of mc = 1:7+0:1−0:1 GeV. In Table 4, we also compare the form
factors f +ð0Þ and ∣f Tð0Þ ∣ for D⟶ ðπ, KÞ transitions at
q2 = 0 with those obtained from various theoretical model
predictions and experimental data [13, 67, 68].

In Figure 1, we show the q2 dependences of f Dπ+ ðq2Þ
(black lines), f Dπ0 ðq2Þ (blue lines), and f DπT ðq2Þ (red lines)
for D⟶ π decay, where the solid and dashed lines repre-
sent the results obtained from mc = 1:8GeV and 1.6GeV,
respectively. That is, the bands correspond to the sensitivity
coming from the charm quark mass variation, mc = 1:7+0:1−0:1
GeV in our LFQM. We should note that the form factors
are displayed not only for the whole timelike kinematic
region [0 ≤ q2 ≤ ðMD −MπÞ2] (in unit of GeV 2) but also
for the spacelike region (−0:5 ≤ q2 ≤ 0) (in unit of GeV 2)
to demonstrate the validity of our analytic continuation
from spacelike region to the timelike one by changing q2⊥
to −q2 in the form factors. For comparison, the data (circles)
of the form factors ð f +, f0, f TÞ from the LQCD (for the ETM
Collaboration) [23, 24] and the data of f + (squares)
extracted from the BABAR [67] are shown. Our results for

f Dπ+ ð0Þ = 0:613−ð21Þ+ð22Þ and ∣f DπT ð0Þ ∣ = 0:501+ð36Þ−ð39Þ are in good

agreement with f Dπ+ ð0Þ = 0:610ð25Þ from the BABAR [67]
and f Dπ+ ð0Þ = 0:637ð24Þ from the BES III [13], as well as
f Dπ+ ð0Þ = 0:612ð35Þ and ∣f DπT ð0Þ ∣ = 0:506ð79Þ from the
LQCD [23, 24]. As one can see from Figure 1, the sensitivity
to the charm quark mass is more pronounced at the zero-
recoil (q2 = q2max) of the final meson than the maximum
recoil (q2 = 0). Especially, the q2-dependent behaviors of

Table 1: The constituent quark mass (GeV) and the Gaussian
parameters β (GeV) for the HO potential obtained by the
variational principle [49, 57]. q = u and d.

mq ms mc βqq βqc βsc

0.25 0.48 1.8 0.3194 0.4216 0.4686
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our results show better agreement with the data from the
BABAR [67] and LQCD [23, 24] when we use mc ≃ 1:6
GeV rather than 1.8GeV.

In Figure 2, we show the q2 dependences of ð f DK+ , f DK0 ,
f DKT Þ for D⟶ K decay, compared with the results from
the LQCD [23, 24]. The same line codes are used as in

Figure 1. Our predictions of f DK+ ð0Þ = 0:744−ð22Þ+ð23Þ and ∣f DKT ð0Þ
∣ = 0:660+ð42Þ−ð45Þ agree with f DK+ ð0Þ = 0:737ð4Þ from the BES III

[13] and f DK+ ð0Þ = 0:727ð11Þ from the BABAR [68], as well
as f DK+ ð0Þ = 0:764ð31Þ and ∣f DKT ð0Þ ∣ = 0:687ð54Þ from the
LQCD [23, 24] within the error bars. As in the case of D
⟶ π decay, the q2-dependent behaviors of our results show
better agreement with the data from the LQCD [23, 24] when
we use mc ≃ 1:6GeV rather than 1.8GeV.

Figures 3 and 4 show our predictions for the differential
decay rates of D⟶ πeνe and D⟶ Keνe decays, respec-
tively, compared with the experimental data from the
BABAR [67, 68] (black circles), CLEO [69] (blue squares),
and BES III [13, 14] for neutral D0 (red diamonds) and
charged D+ with the account of isospin factor (green trian-
gles). In our numerical calculations of the branching ratios,
we use the CKM matrix elements jVcdj = 0:221 ± 0:004 and
jVcsj = 0:987 ± 0:011 quoted by the PDG [62]. Considering
uncertainties coming from the CKM elements and the
constituent charm quark mass mc = 1:7+0:1−0:1 GeV, we made
band plots, i.e., the solid (dashed) lines represent the
results obtained from mc = 1:8ð1:6ÞGeV with lower
(upper) limits of the CKM elements. Our results are
shown to be consistent with the current available experi-
mental data within those uncertainties.

Table 2: Fitted parameters ðbj, cjÞ in Eq. (52) for the D⟶ π TFFs with mc = 1:7+0:1−0:1 GeV. bj is in unit of (GeV −2).

f +,0ð Þ 0ð Þ b+ c+ b0 c0 f T 0ð Þ bT cT

0:613− 21ð Þ
+ 22ð Þ 0:1899− 208ð Þ

+ 233ð Þ −0:8200+ 275ð Þ
− 317ð Þ 0:2986−0:0882+11:8745 1:9051−0:5986+107:077 −0:501+ 36ð Þ

− 39ð Þ 0:1957− 216ð Þ
+ 242ð Þ 0:6290− 417ð Þ

+ 481ð Þ

Table 3: Fitted parameters ðbj, cjÞ in Eq. (52) for the D⟶K decay with mc = 1:7+0:1−0:1 GeV. bj is in unit of (GeV −2).

f +,0ð Þ 0ð Þ b+ c+ b0 c0 f T 0ð Þ bT cT

0:744− 22ð Þ
+ 23ð Þ 0:1787− 157ð Þ

+ 176ð Þ −1:1711+ 571ð Þ
− 618ð Þ −0:0563+5:0348+0:1426 −2:3039+78:3509+1:8289 −0:660+ 42ð Þ

− 45ð Þ 0:1826− 163ð Þ
+ 182ð Þ 0:9893− 794ð Þ

+ 897ð Þ

Table 4: Form factors f +ð0Þ and j f Tð0Þj for D⟶ ðπ, KÞ transitions at q2 = 0 compared with various model predictions and experimental
data.

F 0ð Þ This work [23, 24] [27] [34] [35] [44] [47] BES III [13] BABAR [67, 68]

f Dπ+ 0ð Þ 0:613− 21ð Þ
+ 22ð Þ 0.612 (35) 0.63 (11) 0.640 0.63 (9) − 0.66 (1) 0.637 (24) 0.610 (25)

f DπT 0ð Þ�� �� 0:501+ 36ð Þ
− 39ð Þ 0.506 (79) − − − 0:84+ 16ð Þ

− 13ð Þ − − −

f DK+ 0ð Þ 0:744− 22ð Þ
+ 23ð Þ 0.765 (31) 0.75 (12) 0.716 0.77 (11) − 0.79 (1) 0.737 (4) 0.727 (11)

f DKT 0ð Þ�� �� 0:660+ 42ð Þ
− 45ð Þ 0.687 (54) − − − 0:96+ 17ð Þ

− 15ð Þ − − −
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Figure 1: (Color online): the q2 dependent form factors (f +, f0, f T)
of the D⟶ π decay for both spacelike and the kinematic timelike
regions, −0:5 ≤ q2 ≤ ðMD −MπÞ2 GeV 2. For comparison, the data
taken from the LQCD (circles) [23, 24] and BABAR [67]
(squares) are shown.
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In Tables 5 and 6, we summarize our results for the
branching ratios for D⟶ πℓνℓ and D⟶ Kℓνℓ (ℓ = e, μ),
respectively, and compare with the experimental data from
PDG [62]. Our results for Br(D⟶ π) are best fit to the data
with mc = 1:6GeV but those for Br(D⟶ K) prefers mc =
1:7 GeV.

Finally, as a test for the LFU, the R ratios of the semilep-
tonic D⟶ ðπ, KÞ decays are defined by

RP =
Br D⟶ Pμνμ
� �

Br D⟶ Peνeð Þ , ð54Þ

where P = ðπ, KÞ. Our predictions for RP obtained from
using mc = 1:7+0:1−0:1 GeV are as follows: ðRπ0 , Rπ−Þ = ð0:98
0+0:165−0:003, 0:983−0:001−0:003Þ, ðRK− , R�K0Þ = ð0:974−0:002+0:001, 0:973−0:001−0:001Þ.
Our results are consistent with the recent measurements
from the BES III, ðRπ0 , Rπ−Þ = ð0:942 ± 0:046,0:905 ± 0:035Þ
[15], and RK− = 0:974 ± 0:014 [18], as well as other theoreti-
cal predictions such as Rπ = 0:985ð2Þ and RK = 0:975ð1Þ
from the LQCD [70], Rπ = 0:985 and RK = 0:980 from the
RQM [34], and Rπ = 0:98 and RK = 0:97 from the
CCQM [35].

5. Summary and Discussion

In this work, we discussed the self-consistence description
on the weak form factors f +, f − (or f0), and f T for the exclu-

sive semileptonic D⟶ ðπ, KÞℓνℓðℓ = e, μ, τÞ and rare D
⟶ ðπ, KÞℓℓ decays in the standard LFQM. It has been
known in the LF formulation that while the plus component
(J+) of the LF current Jμ in the matrix element can be
regarded as the “good” current, the perpendicular (J⊥) and
the minus (J−) components of the current were known as
the “bad” currents since ðJ⊥, J−Þ is easily contaminated by
the treacherous points such as the LF zero mode and the
off-mass shell instantaneous contributions.

For a systematic analysis of such treacherous points in
case one cannot avoid the use of J⊥ or J−, we utilized the
exactly solvable manifestly covariant BS model to carry out
the LF calculations for three form factors, ð f +, f −, f TÞ. In
particular, we obtained f − from two sets of the vector cur-
rent, ðJ+, J⊥ÞV and ðJ+, J−ÞV , and f T from two sets of tensor
current, J+⊥T and J+−T . In this BS model, we found that while
f + obtained from J+ and f T obtained from J+⊥T are free from
the zero modes, f − obtained from both ðJ+, J⊥ÞV and
ðJ+, J−ÞV sets and f T obtained from J+−T receive the zero-
mode contributions as well as the instantaneous ones. We
then linked the BS model to the standard LFQM using the
“CJ-scheme” [51–54] given by Eq. (44) for the correspon-
dences between the two models and replaced the LF vertex
function in the BS model with the more phenomenologically

-0.5 0 0.5 1 1.5 2

q2 (GeV2)
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1

2

f (+
, 0

, T
) (

q2 )
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f0

fT

mc = 1.6 GeV
mc = 1.8 GeV
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Figure 2: (Color online): the q2 dependent form factors (f +, f0, f T)
of the D⟶ K decay for both spacelike and the kinematic timelike
regions, −0:5 ≤ q2 ≤ ðMD −MKÞ2 GeV 2. For comparison, the data
taken from the LQCD (circles) [23, 24] are shown.

0 0.5 1 1.5 2 2.5 3
q2 (GeV2)

0

10

20

30

40

dΓ
/d

q2  (1
0–1

6  G
eV

–1
)

mc = 1.6 GeV with Vcd = 0.225
mc = 1.8 GeV with Vcd = 0.217
BABAR
CLEO
BESIII-D0

BESIII-D+

D → 𝜋

Figure 3: Differential decay rate for the D⟶ πeνe decay
compared with the experimental data from the BABAR [67, 68]
(black circles), CLEO [69] (blue squares), and BES III [13, 14] for
neutral D0 (red diamonds) and charged D+ with the account of
isospin factor (green triangles).
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accessible Gaussian wave function provided by the LFQM
analysis of meson mass spectra [55, 56]. As in the case of
previous analysis [51–54], it is astonishing to discover that
the zero modes and the instantaneous contributions present
in the BS model become absent in the standard LFQM. In
other words, our LFQM results of ð f −, f TÞ are shown to be
independent of the components of the current without
involving any of those treacherous contributions. Since the
absence of the zero mode found in the standard LFQM is
mainly due to the replacement of the physical mass M1ð2Þ
with the invariant mass Mð

0′Þ in the course of linking the
two models, this replacement could be regarded as an effec-
tive treatment of the zero mode in the standard LFQM.

In the standard LFQM, the constituent quark and anti-
quark in a bound state are required to be on-mass shell,
which is different from the covariant formalism, in which
the constituents are off-mass shell. The common feature of
the standard LFQM is thus to use the sum of the LF energy
of the constituent quark and antiquark for the meson mass
in the spin-orbit wave function, which is obtained by the
interaction-independent Melosh transformation from the
ordinary equal-time static spin-orbit wave function assigned
by the quantum number JPC . Under these circumstances, it

is natural to apply the replacement M1ð2Þ ⟶Mð
0′Þ in the cal-

culation of the physical observables in the standard LFQM.
Indeed, we have shown explicitly that this correspondence
relation for the calculations of the decay constants and weak
transition form factors between two pseudoscalar mesons
provide the current-component independent predictions in
the standard LFQM.

We then apply our current-component independent
form factors ð f ±, f TÞ for the self-consistent analysis of semi-
leptonic and rare D⟶ ðπ, KÞ decays using our LFQM con-
strained by the variational principle for the QCD-motivated
effective Hamiltonian with the HO plus Coulomb interac-
tion [49, 57]. The form factors ð f ±, f TÞ obtained in the q+

= 0 frame (q2 = −q2⊥ < 0) are then analytically continued to
the timelike region by changing q2⊥ to −q2 in the form
factors. In our numerical calculations, we also checked the
sensitivity of the constituent charm quark mass mc = 1:
7+0:1−0:1 GeV through the analysis of the form factors ð f ±, f TÞ
for D⟶ ðπ, KÞ decays. Our results for the form factors
and branching ratios for D⟶ ðπ, KÞ decays show in
good agreement with the available experimental data as
well as other theoretical predictions. Especially, the smaller
charm quark mass mc ≃ 1:6GeV seems preferable to larger
mc = 1:8GeV for D⟶ ðπ, KÞ decays while they are not
much different for the analysis of the decay constant of
the D meson. Finally, we obtained the the R ratios of the
semileptonic D⟶ ðπ, KÞ decays as a test for the LFU,
and our results are consistent with the recent measure-
ments from the BES III [15, 18] as well as other theoreti-
cal results [34, 35, 70].

While the rare decay analyses including the tensor form
factor can in principle be made, I just focused on the extrac-
tion of the current-component independent weak transition
form factors as well as the comparison with the available
experimental data in the present work. More complete

0 0.5 1 1.5 2
q2 (GeV2)

0

10

20

30

40

50

60

70

80

dΓ
/d

q2  (1
0–1

5  G
eV

–1
)

D → Κ

mc = 1.6 GeV with Vcs = 0.998
mc = 1.8 GeV with Vcs = 0.976
BABAR
CLEO
BESIII-D0

BESIII-D+

Figure 4: Differential decay rate for the D⟶ Keνe decay
compared with the experimental data from the BABAR [67, 68]
(black circles), CLEO [69] (blue squares), and BES III [13, 14] for
neutral D0 (red diamonds) and charged D+ with the account of
isospin factor (green triangles).

Table 5: Branching ratios (in 10−3) for D⟶ πℓνℓ (ℓ = e, μ)
obtained from using mc = 1:7+0:1−0:1 GeV together with ∣Vcd ∣ = 0:221
± 0:004 [62].

Channel Ours PDG [62]

D+ ⟶ π0e+νe 3:03+0:57−0:44 3:72 ± 0:17

D+ ⟶ π0μ+νμ 2:97+0:58−0:44 3:50 ± 0:15

D0 ⟶ π−e+νe 2:37+0:45−0:34 2:91 ± 0:04

D0 ⟶ π−μ+νμ 2:33+0:44−0:34 2:67 ± 0:12

Table 6: Branching ratios (in %) for D⟶Kℓνℓðℓ = e, μÞ decays
obtained from using mc = 1:7+0:1−0:1 GeV together with jVcsj = 0:987
± 0:011 [62].

Channel Ours PDG [62]

D+ ⟶ �K0e+νe 8:88+1:10−0:80 8:73 ± 0:10

D+ ⟶ �K0
μ+νμ 8:64+1:07−0:79 8:76 ± 0:19

D0 ⟶K−e+νe 3:50+0:43−0:31 3:54 ± 0:034

D0 ⟶K−μ+νμ 3:41+0:41−0:30 3:41 ± 0:004
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phenomenological analyses regarding on the rare decays of
heavy D and B mesons are also under consideration.
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