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Abstract

Accurate and reliable state estimation and mapping are the foundation of most autonomous

driving systems. In recent years, researchers have focused on pose estimation through geo-

metric feature matching. However, most of the works in the literature assume a static sce-

nario. Moreover, a registration based on a geometric feature is vulnerable to the

interference of a dynamic object, resulting in a decline of accuracy. With the development of

a deep semantic segmentation network, we can conveniently obtain the semantic informa-

tion from the point cloud in addition to geometric information. Semantic features can be

used as an accessory to geometric features that can improve the performance of odometry

and loop closure detection. In a more realistic environment, semantic information can filter

out dynamic objects in the data, such as pedestrians and vehicles, which lead to information

redundancy in generated map and map-based localization failure. In this paper, we propose

a method called LiDAR inertial odometry (LIO) with loop closure combined with semantic

information (LIO-CSI), which integrates semantic information to facilitate the front-end pro-

cess as well as loop closure detection. First, we made a local optimization on the semantic

labels provided by the Sparse Point-Voxel Neural Architecture Search (SPVNAS) network.

The optimized semantic information is combined into the front-end process of tightly-cou-

pled light detection and ranging (LiDAR) inertial odometry via smoothing and mapping (LIO-

SAM), which allows us to filter dynamic objects and improve the accuracy of the point cloud

registration. Then, we proposed a semantic assisted scan-context method to improve the

accuracy and robustness of loop closure detection. The experiments were conducted on an

extensively used dataset KITTI and a self-collected dataset on the Jilin University (JLU)

campus. The experimental results demonstrate that our method is better than the purely

geometric method, especially in dynamic scenarios, and it has a good generalization ability.
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1 Introduction

State estimation and mapping are fundamental parts of an autonomous driving system, which

are also the kernel idea of simultaneous localization and mapping (SLAM). Hence, SLAM

plays an important role in the research of autonomous driving technology, which is the basis

of map-based positioning, navigation, and planning. Typically, light detection and ranging

(LiDAR)-based SLAM methods collect real-time data from various sensors, such as LiDAR,

inertial measurement units (IMUs), global navigation satellite system (GNSSs), etc., to calcu-

late the trajectory of the current vehicles and complete the mapping task. The state-of-the-art

methods use the geometric feature matches of previous and current frames to estimate the

pose (e.g., LiDAR odometry and mapping (LOAM) [1], LOAM-Livox [2], and LeGO-LOAM

[3]). Such approaches generally assume that the scenarios are static without great change, and

most extracted features of a point cloud are fixed in space. However, such scenarios are not

common in outdoor environments [4, 5]. The majority of the data collection processes are

exposed to dynamic scenarios where moving objects are unavoidable. The geometric features

extracted in such dynamic scenarios increase the uncertainty due to the inability to confirm

the source, which increases in inaccuracy of the odometry pose estimation. The objects in

dynamic scenarios also cause the failure of place recognition because these dynamic objects

may not be in their original positions when the vehicle returns to the same place. This brings

challenges for loop closure detection and map-based relocation.

Loop closure detection plays a significant role in SLAM, which is essential for reducing the

accumulated drift error, eliminating ghosting phenomenon and building a globally consistent

map. Research on loop closure detection is plentiful [6–9], but the open-source available work

is less known [10]. For works using the graph SLAM [11], LeGO-LOAM [3], and LIO-SAM

[12], or filter SLAM [13], the loop closure part still uses traditional Euclidean distance. The

scan-context [9] is also known as an available loop closure work. However, it adopts the strat-

egy of maximum-height information encoding, which cancels out the feature extraction pro-

cess. Thus, it indicates that practical and robust loop closure detection based on the 3D point

cloud is still an open issue. The main reason is that the 3D point cloud does not contain as

much information as 2D images, it can only provide geometric information.

Thanks to the development of deep semantic segmentation network, we can conveniently

obtain semantic information from point clouds. Semantic features can be used as an accessory

of geometric features to improve the performance of odometry. Some works integrate seman-

tic information into a LiDAR-based SLAM framework. Although LeGO-LOAM [3] does not

adopt the strategy of deep learning, it introduces label information into the odometry by the

clustering method. SLOAM [14] adds deep semantic information on the basis of LOAM,

which is specially designed for the timber inventory problem of the Unmanned Aerial Vehicle

(UAV). SUMA++ [15] is a pure LiDAR SLAM framework based on semantics, which has a

good performance on highway sequences from the KITTI odometry benchmark. Most of the

preceding methods mainly aim at integrating semantics into the front-end process to improve

the accuracy of pose estimation. Loop closure combined with semantic information is not

taken into consideration, A complete SLAM framework is still a blank in this field.

To address the above issues, we propose a method called lidar inertial odometry with loop

closure combined with semantic information (LIO-CSI). LIO-CSI is an extension to LIO-SAM

[12] and incorporates the semantic information obtained from a deep learning network called

Sparse Point-Voxel Neural Architecture Search (SPVNAS). Tang et al. [16] developed their

own 3D Neural Architecture Search (3D-NAS) designed to outperform previous methods

with a large margin. The authors ranked 1st on the competitive SemanticKITTI [17] leader-

board upon publication. It can also be transferred to object detection and achieves consistent
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improvement. In this paper, we used the SPVNAS network to provide semantics for the point

cloud of each scan. We then optimized the noise and outliers in labels using a clustering strat-

egy. We furthermore used the optimized semantic information to filter dynamic objects which

can alleviate the impact of dynamic scenarios on mapping results. The semantic information

was then integrated into the front-end odometry and loop closure detection steps based on

LIO-SAM framework. We conducted our experiments on a classical benchmark dataset and a

self-collected dataset. The main contributions of our work can be summarized as follows:

1. We optimized the semantic information provided by the SPVNAS network, and combined

it with the front-end odometry of LIO-SAM to achieve accurate registration, especially in

situations with a large number of moving objects.

2. By combining semantic information, we propose a semantic assisted scan-context method

and replaced it with the loop closure detection strategy of LIO-SAM, which can correct

drift errors and improve the performance of mapping results.

3. We evaluate our approach on the public dataset KITTI [18] and our own dataset collected

on the Jilin University (JLU) campus. The KITTI dataset results illustrate that our proposed

method outperforms LeGO-LOAM and LIO-SAM. Furthermore, the results of the JLU

dataset indicate that our method has a good generalization ability.

The paper is organized as follows: Section 2 briefly introduces some related work. Section 3

presents the proposed Lidar Inertial Odometry with Loop Closure Combined with Semantic

Information (LIO-CSI). The experimental results on the KITTI and JLU Campus datasets are

shown and analyzed in Section 4. Section 5 offers a brief summary of the paper’s primary

achievements.

2 Related work

2.1 LiDAR-based odometry

The main goal of odometry is to find the homography matrix between two consecutive frames

by point cloud registration, which is an estimation of vehicle pose. Lidar-based odometry can

be divided into two categories: matching-based and feature-based [19]. The iterative closest

point (ICP) method [20] proposed by Besl et al. provides the foundation of matching-based

odometry. ICP calculates the relationship between frames point by point iteratively until the

stop condition is satisfied. Mendes et al. [21] adopted the ICP algorithm to build a pose graph-

based SLAM framework, which achieves a good performance based on the Velodyne high defi-

nition LiDAR (HDL) sensor. The normal distribution transformation (NDT) [22], proposed

by Biber et al., is another common method in matching-based odometry. This method esti-

mates the pose via the distribution of the point cloud approximated by voxels. Koide et al. [11]

propose a mapping method based on NDT and graph optimization, which provides a scalable

multi-sensor fusion SLAM solution. The matching-based odometry has great limitations.

When the point clouds are sparse or the consecutive frames do not scan the same position of

the same object, there will be a large deviation in pose estimation.

In addition to the matching-based approach described above, the feature-based method

mentioned in the LiDAR odometry and mapping (LOAM) method has become a popular

front-end process solution. LOAM [1] presents a calculation of smoothness between points in

the local region to distinguish the edge feature and plane feature, respectively. LeGO-LOAM

[3] adds segmentation processing on the basis of LOAM to filter some discrete points.

Although some interference features are filtered, some features are also lost due to the removal

of some points that should not be filtered. This method proposed in this paper is an extension
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of LIO-SAM [12], which is a famous SLAM framework of feature matching. The main idea of

LIO-SAM is to convert the pose estimation problem into a maximum posterior problem [23]

based on factor graph optimization. Even though these methods have excellent mapping accu-

racy, they are not applicable under some working conditions, especially in scenarios with

many dynamic objects. The existence of dynamic objects increases the uncertainty of odome-

try registration, which leads to the decline of pose estimation accuracy. At the same time, the

motion trajectory of dynamic objects is also generated in the map, which brings challenges to

loop closure detection and relocation. Therefore, in order to eliminate the impact of dynamic

objects, semantic assisted odometry should also be considered.

2.2 LiDAR-based loop closure

The essence of loop closure detection is place recognition. It calculates the similarity between

the current frame and historical frame to judge whether the same places are revisited. If there

is a loop closure, a new constraint will be added into the optimization process to eliminate the

error caused by the cumulative calculation between frames. Existing lidar-based loop closure

detection methods can be divided into two categories: local descriptors and global descriptors

[9]. The main idea of local descriptor methods is to generate the description of local features

around the key points and calculate the similarity between scenes by constructing a bag-of-

words (BoW) model. Steder et al. [8] proposed a place recognition method using a combina-

tion of BoW and point features based on the relative pose estimation, which is a method of

applying local descriptors to a SLAM framework. However, most of these methods are

designed for 3D model registration, rather than place recognition. Therefore, some extracted

local descriptors are not suitable for outdoor loop closure detection. In addition, these local

descriptors are not discriminative enough to distinguish highly similar scenes.

Different from the local descriptors, the global descriptors do not need to detect key points.

They encode the geometric relationship between points into a histogram or matrix to calculate

the similarity between frames [6, 7, 9]. Both the ensemble of shape functions (ESF) [6] and the

viewpoint feature histogram (VFH) [7] improve the matching ability and robustness of the

algorithms by extracting a global descriptor represented in the form of histograms. The scan-

context method [9] maps the 3D point cloud into a matrix through a bin encoding function

and improves its efficiency using a two-step search strategy. Compared with the local descrip-

tors, although the previously mentioned global descriptors improve the robustness of the algo-

rithms to a certain extent, the problem of discrimination still exists. To improve the

distinguishability of global descriptors, it is necessary to introduce the semantic information

into the descriptor coding process.

2.3 Motivation of our work

According to the above review and analysis, the current lidar-based SLAM methods suffer

from the following limitations: First, the insufficient feature extracted by the existing SLAM

framework leads to the poor accuracy of cloud point registration, especially in dynamic scenar-

ios. Second, the effect of filtering dynamic objects in the existing framework is not ideal, result-

ing in a large number of non-scene elements in the generated map. Third, the existing loop

closure detection cannot accurately recognize similar scenes. These three limitations motivate

us to propose a semantic assisted SLAM framework (i.e., LIO-CSI) to overcome them. Inspired

by image features, semantic information is combined with geometric information for registra-

tion to improve the accuracy of scan matching. To address the second limitation, the opti-

mized semantic information is used to filter dynamic objects. Moreover, a global descriptor
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combined with semantic information is proposed to improve the performance of loop closure

detection.

3 Method description

3.1 System overview

The pipeline of our proposed framework is shown in Fig 1. The overall framework is divided

into seven modules. First, the segmentation module, referred to as the SPVNAS network, takes

a single scan’s points and predicts the semantic label for each point. Then, the label correction

module uses a clustering strategy to correct the results sent by the SPVNAS network. The

semantic point cloud is then sent to the dynamic object filtering module. Semantic assisted

LiDAR odometry and the loop closure module use points processed by the previous module to

calculate the relative pose and loop closure factors. The results are further sent to the graph fac-

tor module to get a globally consistent pose estimate. At last, the mapping module joins each

scan according to the final pose estimate to form a global point cloud map. The details of these

modules are introduced in Section 3.

3.2 Label correction

Although we can obtain a class label for each point predicted by the SPVNAS network, the

results of semantic segmentation still suffer from noise and annotation errors, which lead to

low confidence and misclassification. The problem of semantic label errors needs to be dealt

with because it affects the accuracy of the subsequent point cloud registration process. To

reduce these errors, a clustering strategy based on Euclidean distance was used to correct the

label information. Because objects with the same semantic information appear in blocks in the

point cloud, we can recalculate the labels with points showing low confidence predicted by a

network according to the semantic distribution of points around them. The closer the objects

are to the point with low confidence, the greater the reference value of its label. In other words,

the smaller the Euclidean distance, the more consistent the label information between points

will be. Fig 2 demonstrates label correction.

Let P = {P1, P2,. . .,Pn} be the point cloud acquired by LiDAR, where Pi is a point in P. After

the point cloud P is processed by SPVNAS, the label probability vector can be expressed as:

Li ¼ fpi;1; pi;2; . . . ; pi;ng ð1Þ

Fig 1. Pipeline of LIO-CSI.

https://doi.org/10.1371/journal.pone.0261053.g001
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where pi,j is the probability of the i-th point in each class, and n is set to 19 which is the total

number of the classes. The function max(�) means finding the maximum value in the vector. If

max(Li) is less than our set threshold θ, we recalculate the probability vector and reassign the

label for the i-th point using Eqs (2) and (3) according to the distribution of the surrounding

points.

L0i ¼
1

kþ 1

X

Pj2Plocal

Lj

kPi � Pjk
þ Li

( )

ð2Þ

p0i;j ¼
pi;j

Pn
m¼1

pi;m
ð3Þ

where Plocal is a set of k points with a threshold greater than θ around point Pi. Meanwhile, pi,j,
pi;m 2 L0i, and p0i;j represent the probability of each class calculated after normalizing L0i. In the

final step, the label of pi,j in L0i is assigned to the i-th point.

3.3 Dynamic object filtering

It is inevitable that some dynamic objects are recorded into the data during the data collection

process, such as pedestrians, vehicles, etc. These dynamic elements which should not appear in

the map will not only cause the current observation to be incorrectly associated with the local

generated map, but they also affect the accuracy of the map-based localization algorithm. Most

existing SLAM systems don’t give much consideration to this issue, and most of them assume

that the environment is static.

In our approach, dynamic objects are filtered based on the results of deep network percep-

tion. Specifically, we exploit the label information provided by the deep semantic segmentation

network to handle the dynamic elements. In this case, we let Ppiror be the point cloud of current

observation. Pfiltered represents the point cloud labeled as a dynamic object, which needs to be

filtered. PMap is the point cloud used for mapping after filtering, which can be obtained as fol-

lows:

PMap ¼ Pprior � Pfiltered ð4Þ

where Pfiltered = {(x,y,z)|Cx,y,z2D}, Cx,y,z is the class of point cloud. D represents the set of

dynamic object classes that need to be filtered. Fig 3 depicts the visualization of our dynamic

object filtering results.

Fig 2. Schematic diagram of label correction.

https://doi.org/10.1371/journal.pone.0261053.g002
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3.4 Semantic assisted lidar odometry

The semantic assisted LiDAR odometry module extracts features and estimates the motion of

the sensor. The feature extraction process mentioned in LOAM, or LIO-SAM rely on geomet-

ric information to assess the environment and use these geometric features to establish associa-

tion between scans. We extend the method with semantic information to improve the

accuracy and efficiency of feature matching. The details are described as follows:

1) Feature extraction. We adopted the feature extraction method used in LOAM, which

extracts edge and plane features by calculating the roughness of points in the local region. In

addition to extracting geometric features, we were also able to obtain the semantic information

of each point after deep semantic network processing. In our simulation process, we let S = {Pi|

max(Li)>α}, and S serve as a set of points with a label confidence greater than α. The rough-

ness, ci, of point Pi in S is then calculated as:

ci ¼
1

n
k
Pn

j¼1
ðPi � PjÞk ð5Þ

where the points with ci are smaller than threshold β and represent the semantic planar fea-

tures; moreover, the points with ci, which are larger than β, are semantic edge features. We

denoted Fk ¼ hF
p
k ; Fe

ki as extracted features combining semantic and geometric information at

time k, where Fp
k is the set of all semantic planar features and Fe

k is the set of all semantic edge

features. When selecting feature points, we comprehensively consider their geometric and

semantic features. In other words, the matching correspondence we need should come from

the same object between two consecutive scans. Using such feature points to find the corre-

spondence not only improves the accuracy, but also narrows down the potential candidates

and improves the efficiency of matching.

2) Semantic loss function. Calculating the relative position between frames requires huge

computing resources in order to use every LiDAR frame for calculating and adding the results

to the factor graph. To reduce the amount of computation, we adopt the strategy of keyframe

selection. We select a LiDAR frame as the keyframe when the number of feature points and

the change of the pose exceeds a defined threshold. Since the factor added to the graph is calcu-

lated by two consecutive keyframes, the above selection strategy not only ensures the balance

between computational expense and map density, but it also ensures that the factor graph is

sparse.

Let Fe
k and Fp

k be the edge feature point set and planar feature point set generated in frame k
respectively, and their correspondences in frame k+1 be established as Fe

kþ1
and Fp

kþ1. Let the

initial pose of node Nk+1 in the factor graph be Tk+1 with Tk+1 serving as a 4×4 homography

Fig 3. Visualization of dynamic object filtering.

https://doi.org/10.1371/journal.pone.0261053.g003
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matrix. Through the relative pose of TkT � 1
kþ1

, we can reproject Fe
kþ1

and Fp
kþ1 to time k, which

enables us to obtain F̂ e
kþ1

and F̂ p
kþ1. The semantic losses, le and lp, between keyframes can be cal-

culated as:

le Pe
i

� �
¼ φe Pe

i ; P
e
u; P

e
v

� �
�
jðPe

i � Pe
uÞ � ðP

e
i � Pe

vÞj

jPe
u � Pe

vj
ð6Þ

lp Pp
ið Þ ¼ φp Pp

i ; Pp
u; P

p
v ; P

p
w

� �
�

ðPp
i � Pp

uÞ

ðPp
u � Pp

vÞ � ðP
p
u � Pp

wÞ

�
�
�
�
�

�
�
�
�
�

jðPp
u � Pp

vÞ � ðPp
u � Pp

wÞj
ð7Þ

where Pe
i 2 F̂ e

kþ1
; Pe

u 2 Fe
k; P

e
v 2 Fe

k; P
p
i 2 F̂ p

kþ1; Pp
u 2 Fp

k ; Pp
v 2 Fp

k , and Pp
w 2 Fp

k .

φ(�) is the weight function. Normally, the closer the label of surrounding points is to point

Pi, the larger the weight is. In this case, the opposite is true; thus, the greater the label differ-

ence, the smaller the weight. The end result is the reduction of the front-end odometry mis-

match effects on pose optimization. Fig 4 shows the extracted edge and planar feature points

as well as the built constraint relationship between frames. Let the 19×19 confusion matrix of

the SPVNAS network on our dataset be C. Additionally, Ci,j represents the probability that the

predicted label is i, while the true label is j.

φeðP
e
i ; P

e
u; P

e
vÞ ¼ a minðCi;m; Cu;m; Cv;mÞ ð8Þ

φpðP
p
i ; Pp

u; P
p
v ; P

p
wÞ ¼ aminðCi;n; Cu;n; Cv;n; Cw;nÞ ð9Þ

where m = argmax(Li, Lu, Lv) and n = argmax(Li, Lu, Lv, Lw). Notably, argmax(�) is a function

that calculates the most likely label based on the predicted value of each point. Assuming that

Fig 4. Comparison of feature points and constraint relationships between frames: (a) edge feature points and loss le,
(b) planar feature points and loss lp. Different color points represent different semantic labels.

https://doi.org/10.1371/journal.pone.0261053.g004
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the labels of all points are n or m, the minimum value of the corresponding probability of each

point is calculated as a weighted term. To prevent the overall error from being too small and

affecting the optimization quality, the threshold is set as α.

The Levenberg-Marquardt (L-M) method is then used to solve for the optimal transforma-

tion by minimizing the following equation:

min
TkT� 1

kþ1

f
P

pei2F̂
e
kþ1

leðP
e
i Þ þ

P
ppi 2F̂

p
kþ1

lpðP
p
i Þg ð10Þ

At last, we can obtain the relative pose, DT ¼ TkT � 1
kþ1

, and assign it to the observation edge

between pose node k and k+1 in the factor graph.

3.5 Semantic assisted loop closure

Loop closure is a very important and challenging problem in SLAM. It can effectively correct

the drift problem. The existing 3D loop closure algorithms often focus on local- or global-geo-

metric feature-level descriptors without considering semantic information. However, human-

ity always uses semantic information to complete scene recognition in life. Hence, we added

semantic information to the scan context and propose a new global descriptor.

First, point cloud frames are encoded into semantic-assisted scan-context images. When

constructing semantic-assisted scan-context images, point clouds are organized in the form of

sector blocks. The radial direction is evenly divided by distance, which is called a ring. It is also

evenly divided by an angle, which is called a sector. The fan-shaped area is also formed in this

way as shown in Fig 5. That area is called a bin. Let Nc and Nr be the number of columns and

rows of the semantic-assisted scan-context image. dmax is the farthest distance of the point

Fig 5. Semantic-assisted scan-context image encoding process.

https://doi.org/10.1371/journal.pone.0261053.g005
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cloud. In this experiment, Nc is set to 60, Nr is set to 20, and dmax is set to 80. Then the seman-

tic-assisted scan-context image, Q, can be described as follows:

Q ¼ [i2Nr ;j2Nc
wðsi;jÞ �maxzðPi;jÞ ð11Þ

where w(si,j) is the semantic information weight corresponding to the block (i,j). Pi,j is the

coordinate information corresponding to block (i,j). At the same time, z(�) is the function

used to obtain height information of the point Pi,j.

We then introduce a two-step loop closure search method here. First, the ring keys are

extracted from the semantic-assisted scan-context image, and a KD tree is built to quickly find

candidates. The closest multiple semantic-assisted scan-context images are filtered in these

candidates. Then, the similarity score of these semantic-assisted scan-context images can be

calculated, and the frame corresponding to the image with the highest score is detected as the

loop closure frame. Finally, if there is a loop closure pair between the i-th and j-th frame, an

observation edge can be added into the factor graph.

4 Experiments

In this section, we evaluate our proposed approach on two different datasets and compare its

performance with the baseline LIO-SAM [12] and another state-of-the-art method, the

LeGO-LOAM [3].

4.1 Sensor setup

In this subsection, we introduce the experimental sensors and platform used in our experi-

ments. Fig 6 shows the sensor we use to collect the JLU Campus dataset. More specifically, it

consists of Velodyne’s HDL-32E surround LiDAR sensor, a 3DM-GX5 inertial measurement

unit (IMU) sensor and a single board Trimble BD982 GNSS receiver module. The data

recorded by the LiDAR and IMU is used to generate the global map. We recorded the ground

truth poses generated by the Trimble BD982 GNSS. which was referenced to a base station to

evaluate the accuracy of the mapping results. All the above sensors are integrated into our

Volkswagen Tiguan mobile platform, as shown in Fig 7. The LiDAR is placed on a self-made

aluminum frame in the center of the roof rack to obtain a better field of view. The inertial mea-

surement unit (IMU) is placed 17 centimeters directly below the LiDAR. The GNSS mobile

station is placed in the trunk of the Tiguan. Three GNSS antennas are placed around the roof

rack to form two baselines along the lateral and longitudinal directions to obtain the pose

information of the vehicle.

Fig 6. The sensor setup used in our experiments: (a) a Velodyne HDL-32E surround LiDAR sensor, (b) a 3DM-GX5

IMU, and (c) a Trimble BD982 GNSS receiver module with antennas.

https://doi.org/10.1371/journal.pone.0261053.g006
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4.2 Datasets

We conducted experiments on the KITTI dataset and the JLU Campus dataset to qualitatively

and quantitatively compare the performance of our proposed method with LeGO-LOAM and

LIO-SAM.

KITTI dataset. KITTI is a public classical benchmark dataset, which is widely used for

the tasks of visual odometry, SLAM and 3D object detection. We used 11 sequences (00–10)

from the KITTI raw benchmark to build the global map, which contains the point clouds and

IMU data required for mapping. We evaluated the performance of mapping on the KITTI

odometry benchmark, which provided the ground truth trajectories of the previously men-

tioned 11 sequences. The scan number and trajectory length of each sequence are shown in

Table 1.

Fig 7. Recording platform (Volkswagen Tiguan) with sensors.

https://doi.org/10.1371/journal.pone.0261053.g007

Table 1. KITTI dataset details.

Sequence Scans Trajectory length (m)� Loop closure (Y/N)

00 4541 - Y

01 1101 2453 N

02 4661 5067 Y

03 801 - N

04 271 393 N

05 2761 2205 Y

06 1101 1232 Y

07 1101 694 Y

08 5171 3222 Y

09 1591 1705 Y

10 1201 919 N

�Note: The trajectory length of the sequences 00 and 03 cannot be calculated due to missing data.

https://doi.org/10.1371/journal.pone.0261053.t001
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JLU campus dataset. We also take advantage of our autonomous driving platform for the

Tiguan Volkswagen to develop a more challenging dataset with dynamic scenarios at Jilin Uni-

versity. The JLU Campus Dataset contains five sequences of data, providing point clouds, IMU

data for mapping and GNSS data for accuracy evaluation. The details of the JLU Campus data-

set are shown in Table 2.

4.3 Experimental results and analysis

1) Benchmarking results. We compared the proposed LIO-CSI method with two purely

geometric information methods based on tightly-coupled LiDAR inertial odometry, LeGO-

LOAM and the baseline method LIO-SAM. We first tested these methods on the KITTI dataset

and used the mean relative pose error (mRPE) to evaluate the results. Note that the sequence

00 and 03 in Table 3 have no results. The reason is that the timestamp of IMU data in sequence

00 cannot match its LiDAR data; moreover, the ground truth trajectory of sequence 03 in the

KITTI odometry benchmark cannot find its corresponding LiDAR raw data in the KITTI raw

benchmark.

Table 3 shows that our proposed LIO-CSI method has a great improvement on the KITTI

Dataset compared to LeGO-LOAM and LIO-SAM. Among the three methods, the average

RPE result of LIO-CSI is the best. The average mean relative translational error of our pro-

posed method is 2.6975%. Compared with LeGO-LOAM and LIO-SAM, our LIO-CSI method

improved results by 3.201% and 1.0997% respectively. Our method is effective in most

Table 2. JLU Campus dataset details.

Sequence Scans Trajectory length (m) Loop closure (Y/N)

JLU_042800 3676 766 Y

JLU_042801 1646 382 N

JLU_042802 7591 1829 Y

JLU_050500 7763 1970 Y

JLU_050501 10605 3221 Y

https://doi.org/10.1371/journal.pone.0261053.t002

Table 3. Relative pose error on KITTI dataset.

Method

Sequence

LeGO-LOAM LIO-SAM LIO-CSI

00 -/- -/- -/-

01 0.0170/24.1277 0.0118/6.4019 0.0114/6.0156

02 0.0326/8.0823 0.0148/2.9097 0.0100/2.2866

03 -/- -/- -/-

04 0.0116/1.6022 0.0108/1.4198 0.0112/2.1670

05 0.0139/2.0792 0.0128/1.6909 0.0072/1.2058

06 0.0172/3.2835 0.0107/2.1312 0.0090/1.5534

07 0.0206/2.0103 0.0162/2.8697 0.0193/1.4258

08 0.0175/3.9161 0.0175/3.8697 0.0172/3.2835

09 0.0148/4.7493 0.0188/7.9129 0.0181/3.7669

10 0.0190/3.2337 0.0217/4.9693 0.0160/2.5726

Average 0.0182/5.8985 0.0150/3.7972 0.0133/2.6975

Note: The mean relative pose error over trajectories of 100 to 800 m with relative rotational error in degrees per meter / relative translational error in %. Bold numbers

indicate the best performance.

https://doi.org/10.1371/journal.pone.0261053.t003
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sequences, especially in long-distance sequences such as 01, 02, 05, and 08. On sequences over

2 kilometers, our average mean relative translational error is improved by 6.3534% and

0.5202% when compared to LeGO-LOAM and LIO-SAM, respectively. The average mean rela-

tive rotational error in degrees per meter is 0.0133. Compared with LeGO-LOAM and LIO-

SAM, our method reduces the error 26.9% and 11.3% respectively. In addition, some details

also indicate that our proposed method performs better than the compared methods in rota-

tion estimation. Figs 8 and 9 show trajectories on sequences 05 and 06 of the KITTI dataset.

The figures from the trajectories estimated by our method are closest to the ground truth com-

pared with other methods. Sequence 09 has a total length of 1.7 kilometers and contains only

Fig 8. Trajectory comparison on sequence 05 of the KITTI dataset.

https://doi.org/10.1371/journal.pone.0261053.g008

Fig 9. Trajectory comparison on sequence 06 of the KITTI dataset.

https://doi.org/10.1371/journal.pone.0261053.g009
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one loop closure whose start point coincides with the end point. Among all the methods, only

our method successfully detects the closed loop and produces a globally consistent map, as

shown in Fig 10. Moreover, the colored point cloud in Fig 11 is the map generated by our

method on sequence 09, and the blue one is generated by the baseline LIO-SAM. Our method

not only finds the consistency between the start and end points in the horizontal direction, but

also finds global consistency in a vertical direction. All the above experimental results illustrate

the effectiveness of our proposed method. The combination of semantic information and

SLAM framework can significantly improve the accuracy of the position and rotation

estimate.

2) Ablation experiment. To further verify the benefits of introducing semantic informa-

tion into the odometry and loop closure detection, we added two ablation experiments to the

KITTI dataset. One set of experiments was created to compare the original LIO-SAM with the

LIO-SAM based on semantic-assisted odometry (LIO-SAM-ODOM). Another set of experi-

ments is to compare LIO-SAM-ODOM with the method proposed in this paper. The differ-

ence between them is the strategy of loop closure detection. The former uses the loop closure

detection method based on Euclidean distance, and the latter uses the semantic-assisted scan-

context method described in Section 3.4.

Table 4 shows the mRPE results of LIO-SAM and LIO-SAM-ODOM. This test is designed

to show that the semantic-assisted odometry can improve the scan matching accuracy and

improve the performance of the SLAM framework. In Table 4, we find that LIO-SAM-ODOM

Fig 10. Trajectory comparison and semantic maps of sequence 09.

https://doi.org/10.1371/journal.pone.0261053.g010

Fig 11. Vertical global consistency comparison.

https://doi.org/10.1371/journal.pone.0261053.g011
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has a significant improvement in average mRPE results compared to LIO-SAM. We can also

find that LIO-SAM-ODOM appears to be more accurate on sequences with a distance over 2

kilometers (referring to the results of sequence 01, 02 and 05 in Table 4). One possible explana-

tion is that the number of similar geometric features increases with the increase of distance,

but constraints can be established through assisted semantic information to filter some similar

geometric features and reduce the occurrence of false matching. Therefore, it can be concluded

that the proposed semantic-assisted odometry method can greatly improve the accuracy of

odometry. The effect is more obvious in long-distance mapping tasks.

In addition to the above experiments, we verify the effectiveness of the semantic- assisted

loop closure detection proposed in this paper by comparing with LIO-SAM-ODOM. The

experiments were conducted on sequences 02, 05, 06, 07, 08 and 09, which are with loop clo-

sures. Table 5 clearly shows that the use of semantic-assisted loop closure detection can elimi-

nate the accumulated error of the odometry. Except for sequences 05 and 09, the results

obtained by our method are better than those of LIO-SAM-ODOM. The result of sequence 05

is slightly worse than LIO-SAM-ODOM. One possible reason is that the trajectory of sequence

05 is complex because it contains so many loop closures. Compared with Euclidean distance,

the semantic- assisted method has a higher computational complexity and cannot process data

in a timely manner. The relative rotational result of sequence 09 is slightly higher than the

comparison method, but the relative translation error is greatly reduced.

3) JLU campus dataset. To mimic a challenging dynamic scenario, we collected five

sequences of data on the JLU campus with a large flow of pedestrians and vehicles. During the

data gathering, the vehicle speed was maintained at about 30 km/h.

Table 4. Relative pose error of LIO-SAM and LIO-SAM-ODOM.

Method

Sequence

LIO-SAM LIO-SAM-ODOM

01 0.0118/6.4019 0.0114/6.0266

02 0.0148/2.9097 0.0129/2.7694

04 0.0108/1.4198 0.0074/1.9278

05 0.0128/1.6909 0.0069/1.0806

06 0.0107/2.1312 0.0115/2.3138

07 0.0162/2.8697 0.0197/1.4742

08 0.0175/3.8697 0.0231/4.5125

09 0.0188/7.9129 0.0167/4.8907

10 0.0217/4.9693 0.0222/5.1645

Average 0.0150/3.7972 0.0146/3.3511

https://doi.org/10.1371/journal.pone.0261053.t004

Table 5. Relative pose error of LIO-SAM-ODOM and LIO-CSI.

Method

Sequence

LIO-SAM-ODOM LIO-CSI

02 0.0129/2.7694 0.0100/2.2866

05 0.0069/1.0806 0.0072/1.2058

06 0.0115/2.3138 0.0090/1.5534

07 0.0197/1.4742 0.0193/1.4258

08 0.0231/4.5125 0.0172/3.2835

09 0.0167/4.8907 0.0181/3.7669

Average 0.0146/3.3511 0.0135/2.2537

https://doi.org/10.1371/journal.pone.0261053.t005
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In this test, the results are evaluated in the same way as on the KITTI dataset. Table 6 shows

that our proposed LIO-CSI method outperforms the compared methods. The mean relative

rotational error and translational error of sequence 042800, 050500, 050501 and the average

results are less than LeGO-LOAM and LIO-SAM. Compared with the LeGO-LOAM and

LIO-SAM methods, the average mean rotational error is reduced by 5.6% and 6.2% respec-

tively, and the average mean translational error is reduced by 0.6162% and 1.6081%, respec-

tively. Fig 12 shows the actual effect of our method on the JLU Campus dataset. From the

comparison between the generated map and the available USGS National Map imagery, we

can see that they are highly consistent. It is worth noting that in the Table 6, some results of

LeGO-LOAM are better than LIO-SAM. This is possibly because the clustering strategy in

LeGO-LOAM provides additional label information in the registration progress. The combi-

nation of features helps to obtain better results, especially in dynamic scenarios. This test illus-

trates that our method not only improves the accuracy of odometry and reduces the

accumulated error, but also has a good robustness and good generalization ability.

Table 6. Relative pose error on JLU campus dataset.

Method

Sequence

LeGO-LOAM LIO-SAM LIO-CSI

JLU_042800 0.0166/1.9177 0.0152/1.8044 0.0142/1.6945

JLU_042801 0.0111/1.6337 0.0088/3.3934 0.0095/3.6723

JLU_042802 0.0265/3.2008 0.0260/4.9488 0.0261/3.4284

JLU_050500 0.0064/1.3017 0.0115/4.1364 0.0064/1.3017

JLU_050501 0.0277/10.2588 0.0273/8.9888 0.0272/5.1347

Average 0.0177/3.6625 0.0178/4.6544 0.0167/3.0463

https://doi.org/10.1371/journal.pone.0261053.t006

Fig 12. USGS national map imagery and mapping results of LIO-CSI. The green track in USGS National Map imagery is the

actual trajectory of Tiguan Volkswagen movement.

https://doi.org/10.1371/journal.pone.0261053.g012
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5 Conclusions

In this paper, we proposed the novel and highly efficient LIO-CSI, a method based on the

LIO-SAM framework and the SPVNAS deep semantic segmentation network. The accuracy of

registration is improved by integrating semantic and geometric information. The accumulated

error is eliminated by a semantic-assisted loop closure detection method. Our KITTI dataset

experiments illustrate that our method achieves better performance than the other state-of-

the-art methods. The ablation experiments on the KITTI dataset illustrate that our semantic-

assisted LiDAR odometry method significantly improves the registration accuracy, and our

semantic-assisted loop closure detection method produces a globally consistent map. The eval-

uation results on the JLU campus dataset demonstrate that our proposed LIO-CSI method has

a good generalization ability and robustness. Also, the results indicate that the computational

complexity of the proposed method can be improved. Future work includes compressing net-

work parameters to improve computational efficiency and designing a rotation invariant

global descriptor based on the current loop closure detection work.
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