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Abstract: The difference in the degree of cure of the composite in an autoclave is one of the main
characterization parameters of the uniformity of the degree of cure of the composite material. Therefore,
it is very important to develop an effective method for predicting the difference in the curing degree
of a composite autoclave to improve the uniformity of the curing degree of the composite materials.
We researched five machine learning models: a fully connected neural network (FCNN) model,
a deep neural network (DNN) model, a radial basis function (RBF) neural network model, a support
vector regression (SVR) model and a K-nearest neighbors (KNN) model. We regarded the heating rate,
holding time and holding temperature of the composite material’s two holding-stage cure profile as
input parameters and established a rapid estimation model of the maximum curing degree difference
at any time during the molding process. We simulated the molding process of the composite material
in an autoclave to obtain the maximum difference in the curing degree as the test sample data to
train five machine learning models and compared and verified the different models after the training.
The results showed that the RBF neural network model had the best prediction effect among the five
models and the RBF was the most suitable algorithm for this model.

Keywords: composites materials; machine learning; estimation; curing process; autoclave; resid-
ual stress

1. Introduction

Composite materials have the advantages of high specific strength, high specific stiff-
ness and designability of the mechanical properties of materials. They are ideal materials for
lightweight and efficient structural designs. Due to their excellent characteristics, composite
materials are widely used in aerospace and military industries. Autoclave forming is one
of the most common forming processes, which refers to a process method in which a single
layer of pre-preg is stacked in a predetermined direction to place a composite material
blank in a thermopressed tank and complete the curing process at a given temperature
and pressure. The curing process is a critical stage in the manufacture of composite parts.
The final quality of the part depends largely on the curing curve used in the curing process.
Due to the exothermic phenomenon and low thermal conductivity of composites, the cure
process will considerably lead to a nonuniform degree of cure, which is the major factor
that causes the residual stress. Therefore, it is of great significance to study the effect of
the curing process curve on the uniformity of the degree of cure of the composite material
during the molding process of the composite in an autoclave.

So far, the research on the formation of a composite in an autoclave has mostly
been in the simulation and experimental stages. Loos and Springer [1] studied 1D cure
simulation and provided a temperature distribution and degree of cure of the resin. Bogetti
and Gillespie [2] conducted a two-dimensional (2D) cure simulation for thick thermoset
composites using the finite difference method by which the transient anisotropic heat
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transfer equation coupled with cure kinetics was solved to predict the temperature and
degree of cure distributions as a function of the autoclave temperature history. Johnston and
Joshi [3] introduced an approach using an implicit FE method to simulate the cure process
of 2D laminates. Johnston [4] measured the heat transfer coefficient of the thermal history
of three types of autoclaves to predict the temperature field distribution of the autoclave
and found that the pressure could significantly improve the uniformity of the temperature
field of the autoclave and shorten the thermal history time. Although simulations and
experiments can provide good results they consume a lot of time and manpower. In order
to solve the above problems, this paper investigates different machine learning models,
proposes a prediction method for the uniformity of composite materials in an autoclave
forming based on machine learning and trains five models including the fully connected
neural network (FCNN) model, the deep neural network (DNN) model, the radial basis
function (RBF) neural network model, the support vector regression (SVR) model and
the K-nearest neighbors (KNN) model. In this paper, a two holding-stage cure profile is
considered; a total of six parameters including two heating rates, a1 and a2, two holding
times, tp and tg, and two holding temperatures, T1 and T2, are chosen to represent the
cure profile [5]. Blest [6] studied the resin flow, heat transfer models and simulations of
the curing composites in an autoclave and found that the numerical simulation results
were considered to be approximately valid compared with the existing test data. Therefore,
this paper considers sufficient ABAQUS finite element modelings and analysis results as
real data to train, test and verify the five models. “One machine learning algorithm may
show optimum performance for the discriminative features of a particular problem but fails
for others” [7]. Based on the comparison of the training results, this paper draws the best
solution. The innovation of this article lies in the application of traditional machine learning
methods to the field of composite materials. These models provide a new and effective
method for the estimation of the maximum ∆α of a composite in an autoclave forming.

2. Material Description

The composite material was a thermosetting resin matrix composite material, the re-
inforcement was an AS4 unidirectional fiber and the matrix was epoxy resin. The manu-
facturing technology of resin matrix composites largely determines the quality, cost and
performance of the composite parts. As a currently widely used composite structure mold-
ing process, autoclave molding uses a uniform temperature and pressure provided in the
tank for curing and molding. When the autoclave is formed, the composite material blank
structure is sealed on the surface of the mold with a vacuum bag and vacuum treatment
is performed. After the process of heating, pressurizing, heat preservation, cooling and
pressure relief, the part is formed.

In this paper, we established a three-dimensional classic temperature field calculation
model in ABAQUS first. According to the calculation model of Cheung [8,9] et al., a flat
plate with a thickness of 8 mm, a length of 200 mm and a width of 80 mm was established.
The material system was an AS4/3501-6 resin matrix composite material and its curing
kinetic model is shown in Equation (1) [10]. The thermodynamic properties and curing
kinetic model [11] parameters are shown in Table 1.

dα

dt
= (k1 + k2α)(1− α)(0.47− α)(α ≤ 0.3)

dα

dt
= k3(1− α)(0.3 < α ≤ 1) (1)

where α is the degree of cure and ki(i = 1, 2, 3) are the curing reaction rate constants,
which follow the Arrhenius equation.
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Table 1. Thermal properties and cure kinetic constants for AS4/3501-6 composites.

ρ/
(
kg/m3) Cp(J/kg·K) KT(W/M·K) KL(W/M·K) Hr(J/kg)

1578 1578 0.4135 12.83 198.6 × 103

A1

(
min−1

)
A2

(
min−1

)
A3

(
min−1

)
∆E1(J/mol) ∆E2(J/mol) ∆E3(J/mol)

2.102 × 109 2.014 × 109 1.960 × 105 8.07 × 104 7.78 × 104 5.66 × 104

ρ is the density of the composites; Cp is the specific heat; KT and KL are the transverse and longitudinal
thermal conductivities of the composite; Hr is the ultimate heat of reaction; Ai is the frequency factor; ∆Ei is the
activation energies.

In this paper, according to the subroutine in Gao’s dissertation [11] that calculated
the solidification temperature field and stress-strain field, we simulated the solidification
temperature field of the three-dimensional model ABAQUS to realize the simulation of the
solidification temperature field of the composite in the autoclave forming process. Gao [11]
compared the finite element models according to the parameters in references [8,9] and
simulated the temperature field of the resin based carbon fiber pre-preg used in his paper,
which verified the accuracy of his method and program. The material parameters of the
four parts needed to be set for the heat transfer were the density, depvar, user defined
field and user material. The section selected was solid and homogeneous. The analysis
step type selected the heat transfer. There was convective heat transfer between the flat
plate and the surface of the hot air so the surface film condition was set in the interaction
part. The cell type was heat transfer. A two holding-stage cure profile was considered,
which is shown in Figure 1. A total of six parameters including two heating rates, a1 and
a2, two holding times, tp and tg, and two holding temperatures, T1 and T2 were changed to
conduct experimental research according to the range of process parameters commonly
used in the actual production and processing. The value range of these six parameters
are shown in Table 2. The simulation results are shown in Figure 2. After the simulation,
we discovered the maximum difference of the degree of cure at all times in the ABAQUS
post-processing, which was recorded as ∆α. Eighty sets of simulation results regarded as
training data were obtained by changing the six parameters. The test data of a1, a2, tp, tg,
T1, T2 and ∆α of the curing curve of the molded parts are shown in Table 3. Due to space
limitations, only 10 of them are listed here.

Figure 1. Typical cure profile.
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Table 2. Range of process parameters.

a1
◦C/min

a2
◦C/min

T1
◦C

T2
◦C

tp
min

tg
min

Range [1, 5] [1, 5] [115, 155] [175, 215] [0, 100] [0, 150]

Figure 2. Schematic diagram of the simulation results.

Table 3. Curing data.

a1
◦C/min

a2
◦C/min

T1
◦C

T2
◦C

tp
min

tg
min ∆α

4 2 135 212 133 15 0.013438
3 1 134 198 5 98 0.006745
3 4 135 212 129 15 0.010842
4 2 127 204 133 14 0.018056
3 3 120 180 120 60 0.007668
3 1 115 194 122 24 0.00391
4 3 147 199 22 82 0.00553
1 3 146 198 84 10 0.011303
1 4 141 190 87 46 0.007735
5 2 116 201 8 35 0.00844

a1 and a2 are the two heating rates; tp and tg are the two holding times; T1 and T2 are the two holding
temperatures.

3. Estimation Model

Five machine learning regression models were trained including a fully connected
neural network (FCNN) model, a deep neural network (DNN) model, a radial basis
function (RBF) neural network model, a support vector regression (SVR) model and a
K-nearest neighbors (KNN) model. The tool that was used to implement the machine
learning algorithm was TensorFlow. TensorFlow is an open source software library for
high performance numerical computations that was originally developed by researchers
and engineers from the Google brain team for machine learning and deep neural network
research. The system has good generality and can be used in many other fields.
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3.1. Data Processing

Due to the large differences in dimensions between the two heating rates of the
composite material autoclave forming, the two holding times, the two holding temperatures
and the maximum ∆α, all data needed to be normalized to avoid the inaccuracy of the
estimation models [12]. We converted all data into [−1, 1]. The processing formula for data
normalization was as follows:

X′k =
Xk − Xmin

Xmax − Xmin
(2)

where X′k were the data after normalization, Xk were the raw data, Xmin was the minimum
value in a class of data and Xmax was the maximum value in a class of data. From the
normalized 100 sets of sample data, 80 sets were randomly selected as the training data of
the estimation model; the remaining 20 sets of data were randomly selected as the test data
and 5 sets were the verification data.

3.2. FCNN
3.2.1. Fully Connected Neural Network

A neural network (ANN) is an information processing system that simulates the
structure and function of the human brain by a large number of simple processing units
(neurons) connected to each other in a certain topology [13,14]. Among many kinds
of ANN models, the fully connected neural network has good nonlinear mapping and
reasoning capabilities with the characteristics of self-adaptive, self-organizing and real-
time learning [15]. A fully connected neural network consists of an input layer, a hidden
layer and an output layer. All neurons in adjacent layers are fully connected while there
is no connection between neurons in each layer [16]. The main advantage of a fully
connected neural network is that it has an extremely strong nonlinear mapping ability.
In theory, a fully connected neural network with three or more layers can approximate a
nonlinear function with arbitrary precision as long as the number of hidden layer neurons
is sufficient [17].

3.2.2. The Establishment of a Fully Connected Neural Network

A fully connected neural network model can be described by the following expression:{
zj = f (∑m

i−1 wijxi + bj)
yk = f (∑n

j=1 wjkzj + bk)
(3)

where xi is the input layer, zj is the hidden layer, yk is the output layer, wij and wjk are the
weights, wij is the weight between the i-th neuron in the input layer and the j-th neuron in
the hidden layer, wjk is the weight between the j-th neuron in the hidden layer and the k-th
neuron in the output layer, f is the activation function and bj and bk are the biases [18].

The activation function expression is as follows:

Sigmoid(x) =
1

1 + e−x . (4)

The neural network model includes many weights and biases so an algorithm is
needed to adjust these weights. The training of a fully connected neural network includes
the forward propagation of the input signal and the backward propagation of the output
error. In the forward propagation process, the input samples are transmitted from the
input layer to the output layer after being processed by the hidden layer neurons. If the
error between the actual output and the expected output of the output layer does not meet
the requirements, the process goes to the error reverse propagation process. During back
propagation, the error signal is distributed back to the neurons of each layer along the
original connection path. At the same time, the network adjusts the connection weight of
the neuron according to the gradient descent method. The forward and back propagation
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processes are iterated continuously to make the error reduce until the actual output of the
network is close to the expected output, so as to obtain the ideal network.

The network structure of the fully connected estimation model in this paper is shown
in Figure 3.

Figure 3. Structure of a fully connected network model.

When designing the fully connected neural network according to the test, the number
of network layers adopted a three-layer structure in which the input layer was one, the hid-
den layer was one and the output layer was one. This paper took six factors as the input
and one factor as the output so the number of input layer nodes was six and the output
layer node was one. The number of nodes in the hidden layer is usually determined by
the Kolmogorov theorem [19]. In order to find the optimal number of hidden layer nodes,
we selected the value near the optimal hidden layer node number obtained by Equation (5)
for a trial calculation where Q was the number of nodes in the hidden layer and d was the
number of nodes in the input layer in the Formula.

Q = 2× d + 1. (5)

The result is shown in Figure 4. The MSE are the mean square errors of the 20 sets of
test data.

Figure 4. The results of trials to establish the optimum architecture of the FCNN.

Combining empirical formulas and trial calculations, it was found that when the
number of hidden layer nodes of the fully connected neural network model was eight,
the estimated training effect of the model could meet the training requirements better.
In this paper, the transfer function was selected as the Sigmoid function, the learning rate
was 0.003 and the training target was the mean square error MSE ≤ 0.002. When the mean
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square error met the requirements, the training ended. Using Python to write code to
realize the training model, we found that after training 623 times, the MSE met the set error
requirements and the operation took 0.374 s.

3.3. DNN
3.3.1. Deep Neural Network

A DNN can be understood as a neural network with many hidden layers. Empirically,
a greater depth does seem to result in better generalization for a wide variety of tasks.
This suggests that using deep architectures does indeed express a useful priority over the
space of functions that the model learns [20].

3.3.2. The Establishment of a DNN

The number of network layers of the neural network described in Section 3.1 adopted a
three-layer structure in which the hidden layer was one. In order to enhance the expressive
ability of the model, the hidden layer of the DNN neural network estimation model became
two. As there were many combinations of double-layer hidden layers and we discovered
that the mean square error of the models was not much different from each other after a
trial calculation, we decided to choose the same number of nodes in the two hidden layers.
Considering the total training time, the optimal number of hidden layer nodes of the DNN
was nine and the remaining parameters were the same as the previous fully connected
neural network estimation model.

3.4. RBF Neural Network

The RBF neural network was a three-layer neural network, which also included an
input layer, a hidden layer and an output layer. The transformation from input space to
hidden layer space was nonlinear while the transformation from hidden layer space to
output layer space was linear. The basic idea of implementing an RBF neural network was
to use the RBF as the “base” of the hidden unit to form a hidden layer space. The basis
function in the hidden layer locally responded to the input signal and transformed the low-
dimensional pattern data into the high-dimensional space, making the hidden layer nodes
produce a larger output so that linearly inseparable problems in the low-dimensional space
could be linearly separable in the high-dimensional space. The RBF neural network could
approximate any nonlinear function and had a good generalization ability. The activation
function used a radial basis function:

gi(xk) = exp
(
−γ‖xk − ci‖2

)
(6)

where xk(1 ≤ k ≤ n) was the input vector, ci(1 ≤ i ≤ c) was the basis function center, γ was
the radius of the RBF kernel function, n was the number of samples and c was the number
of hidden layer nodes.

The relationship between the input and output of the RBF neural network was:

yi =
c

∑
i=1

ωigi(xk) (7)

where ωi indicated the connection weight of the hidden layer nodes. The remaining
parameters were the same as the fully connected neural network model above. The network
structure of the RBF estimation model in this paper is shown in Figure 5.
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Figure 5. The structure of the RBF network model.

For the RBF neural network regression model of autoclave forming in this paper,
the model training effect could be optimized by modifying the number of hidden layer
nodes and the radius of the kernel function, γ. We used the GridSearchCV function of the
“Scikit-Learn” package in Python to perform a grid search to find the optimal parameters
for the model. After the calculation, the best parameter combination of the RBF neural
network regression model in this paper was that Q = 21, γ = 0.4 and the mean square error
was 0.000115 at that time.

3.5. SVR Model

A support vector machine (SVM) is a class of generalized linear classifiers that perform
binary classifications on data by supervised learning. The basic principle of the SVM is
to follow the inner product function. SVR (support vector regression) is an important
application branch in the SVM. The difference between the SVR and the SVM classification
was that there was only one type of sample point in the SVR, which sought the optimal
hyperplane to minimize the total deviation of all sample points from the hyperplane.
The SVR transformed the input space into a high-dimensional feature space through a
nonlinear transformation defined by an inner product kernel function and returned in the
high-dimensional feature space, which was as follows:

f (x) = w ·Φ(x) + b (8)

where Φ(x) was the feature space, w was the weight and b was the bias. According to the
principle of structural risk minimization, the weight coefficient w and the deviation b could
be minimized to obtain the following objective function [21]:

R(x) =
1
2
‖w‖2 +

1
l

l

∑
i=1
| f (xi)− yi|g (9)

where | f (xi)− yi|g was loss function. In order to minimize the Euler norm ‖w‖2 and also

to control the fitting error beyond precision, the relaxation variables {ξi}l
i=1 and

{
ξ∗i
}l

i=1
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were introduced where one was the number of samples. The optimization problem in
Equation (9) could then be transformed into a constraint minimization problem, namely:

R(w, ξi, ξ∗i ) =
1
2
‖w‖2 + C

l

∑
i=1

(ξi + ξ∗i )s.t.


yi − wΦ(xi)− b ≤ ε + ξi
wΦ(xi) + b− yi ≤ ε + ξ∗i , (i = 1, . . . , l)
ξi, ξ∗i ≥ 0

(10)

where C was the penalty coefficient. To derive the dual problem of the original problem
in Equation (10), the Lagrange multiplier αi, α∗i , ηi, η∗i was introduced to establish the
Lagrange equation of the original problem. We then found the partial derivative of the
Lagrange function separately (the partial derivative value was zero). Substituting the result
into the Lagrange equation, the dual problem of the original problem could be obtained:

min
α(∗)∈R2l

1
2

l
∑

i,j=1

(
α∗i − αi

)(
α∗j − αj

)[
Φ(xi) ·Φ

(
xj
)]

+ ε
l

∑
i=1

(
α∗i + αi

)
−

l
∑

i=1
yi
(
α∗i − αi

)
s.t.


l

∑
i=1

(
αi − α∗i

)
= 0

0 ≤ α
(∗)
i ≤ C, i = 1, . . . , l

.
(11)

In this way, the original problem became a convex quadratic programming problem.
By solving this quadratic programming problem, we obtained the model of the support
vector regression machine:

f (x) = w ·Φ(x) + b =
l

∑
i=1

(α∗i − αi)K(xi, x) + bK(xi, x) = exp
(
−γ‖xi − x‖2

)
(12)

where K(xi, x) was the kernel function, xi was the input vector, x was the sample vector
that was already known and γ was the radius of the RBF kernel function.

For the autoclave forming SVR model in this paper, the model training effect could
be optimized by modifying the penalty coefficient C and the kernel function radius γ.
We used the GridSearchCV function of the “Scikit-Learn” package in Python to perform a
grid search to find the optimal parameters for the model. After the calculation, we found
that the optimal parameter combination of the SVR model in this paper was C = 200 and
γ = 0.2. At that time, the MSE was 0.005769.

3.6. KNN Regression Model

The idea of KNN (K-Nearest Neighbor) is that if most of the K most similar samples
in a feature space (that is, the nearest neighbors in a feature space) belong to a certain
category, then the sample also belongs to this category. The principle of the KNN regression
model in this paper was the same as the KNN classification problem. For the input vector
xi, we picked k samples that were nearest xi and regarded the average of their yi as
the predicted value in order to find the corresponding value on the regression curve.
For the distance between the sample data and the data to be predicted, we used the
Euclidean distance:

d(xi, x) =

√
n

∑
i
(xi − x)2 (13)

where x indicated the sample vector that was already known and n indicated the number
of input nodes.

For the KNN regression model of autoclave forming in this paper, the K value could be
modified to make the model training effect the best. We used the GridSearchCV function of
the “Scikit-Learn” package (Scikit-Learn, 0.14, open-source, France) in Python to perform a
grid search to find the optimal parameters for the model. After the calculation, we found
that the optimal parameter combination of the KNN regression model in this paper was
K = 1. At that time, the MSE was 0.000122.
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4. Results and Discussion

By comparing the MSE of the five prediction models, as shown in Table 4, the accuracy
of these five prediction models could be judged.

Table 4. The MSE of the five prediction models.

Models FCNN DNN RBF SVR KNN

MSE 0.00203 0.000722 0.000115 0.005769 0.000122

It can be seen from Table 4 that the MSE of the RBF prediction model was the smallest
and its prediction effect was the best; the KNN, DNN, RBF prediction models were not
much different from each other in the MSE and they were in the same order of magnitude.
In general, the MSE of the five prediction models were all less than 0.006, which could
complete the prediction task accurately. We then took the remaining five sets of verification
data in the sample shown in Table 5 and used the trained model to predict it and normalize
the results. The results are shown in Table 6.

Table 5. Five sets of verification data.

Group a1
◦C/min

a2
◦C/min

T1
◦C

T2
◦C

tp
min

tg
min Actual Value

1 3 3 120 181 120 60 0.008564
2 2 1 119 178 120 60 0.003828
3 1 1 119 178 120 60 0.003957
4 1 1 117 177 111 66 0.003597
5 1 1 116 176 105 70 0.003512

Table 6. Actual value and predicted value.

Group Actual
Value

FC
Predicted

Value

DNN
Predicted

Value

RBF
Predicted

Value

SVR
Predicted

Value

KNN
Predicted

Value

1 0.008564 0.007715 0.007767 0.008355 0.008082 0.008237
2 0.003828 0.003707 0.003657 0.003602 0.004 0.003828
3 0.003957 0.004324 0.004044 0.004027 0.004311 0.003995
4 0.003597 0.003797 0.003625 0.003561 0.004291 0.003645
5 0.003512 0.003823 0.003609 0.003417 0.00441 0.003645

In order to make the results more intuitive, the absolute errors of the five prediction
models are listed in Table 7 and the relative errors of the five prediction models are listed
in Table 8:

Table 7. The absolute errors of the five prediction models.

Group FC DNN RBF SVR KNN

1 −0.00031 −0.0008 −0.00021 −0.00048 −0.00033
2 −0.00051 −0.00017 −0.00023 0.000171 2.49 × 10−11

3 −2.7 × 10−5 8.68 × 10−5 6.97 × 10−5 0.000354 3.8 × 10−5

4 −0.00017 2.82 × 10−5 −3.6 × 10−5 0.000693 4.73 × 10−5

5 −3.7 × 10−5 9.68 × 10−5 −9.5 × 10−5 0.000898 0.000132
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Table 8. The relative errors of the five prediction models.

Group FC DNN RBF SVR KNN

1 −0.03655 −0.09301 −0.02434 −0.05625 −0.03816
2 −0.13318 −0.04485 −0.05916 0.044781 6.51 × 10−9

3 −0.00677 0.021937 0.017619 0.089503 0.009611
4 −0.0465 0.007825 −0.01004 0.192761 0.013157
5 −0.01056 0.027568 −0.02696 0.255647 0.037712

It could be seen that when the five prediction models predicted the difference of the
maximum curing degree of the verification set, except for the large error of the SVR model,
the rest were within −10% to 10%, which was consistent with the test results. In order to
make the observation intuitive, all of the predicted and actual values of the verification sets
are depicted in Figure 6. The NU in Figure 6 is the numerical value. As shown in Figure 6,
the predicted value of the SVR was generally far away from the actual value. However,
these five sets of data were simply to verify the prediction effect of the model. There might
have been a few errors between the different sets of data that could be reduced by obtaining
more sets of verification data. The five sets of data could not reflect the overall accuracy
so we estimated the accuracy of the models according to the MES. The calculation with
ABAQUS took about 1200 s each time, while it only took a few seconds for the machine
learning model to complete the calculation after the five kinds of machine learning models
were trained with the appropriate amount of original data. For a new set of input values,
using a trained machine learning prediction model could greatly save computing time.
The value predicted by machine learning could meet the actual needs to guide production.
However, the quality of the model was not only reflected in the model error. In many
cases, we considered additional requirements: the smoothness of the model, the ability to
handle noise, the uncertainty estimation and so on. In the future, we will continue other
research to improve the evaluation of the model. This technology is of great significance
for engineering practice because the composite parts with a good curing degree have
good properties.

Figure 6. Actual values of the verification set.

Stefaniak et al. [22] proposed that due to the uneven curing of composite laminates
and the existence of the stress gradient, the residual stress will be generated after curing,
resulting in the deformation of composite laminates. The uniformity of the curing degree
could be obtained in a short time, which could quickly identify whether the selected process
parameters could produce good quality composite parts.
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5. Conclusions

1. The models based on machine learning for the prediction of the uniformity of the
degree of cure of the composite in an autoclave had a small error margin and high
efficiency, greatly saving manpower and time. These models provided a new and
effective method for the estimation of the maximum ∆α of a composite in autoclave
forming.

2. Based on the estimated maximum curing degree difference, we could quickly find
the curing process parameter group with the smaller maximum ∆α so as to reduce
the residual stress in the composite molded parts and provide convenience for the
optimization of the composite molding process.

3. In the five machine learning prediction models including a fully connected (FC) neural
network model, a deep neural network (DNN) model, a radial basis function (RBF)
neural network model, a support vector regression (SVR) model and a K-nearest
neighbors (KNN) model, the prediction effect of the RBF neural network model was
the best, the prediction effect of the SVR model was the worst and the prediction effects
of the KNN model and the DNN model were better when predicting the maximum ∆α.

4. Compared with the experimental test method, the machine learning prediction models
had the advantages of low cost and high speed but the method had certain errors.
If sufficient data cannot be provided, the calculation result will be inconsistent with
the true value. The accuracy of the result also depends on the training data. Compared
with a numerical simulation, this method also had the advantages of low cost and
high speed but this method could only obtain the final numerical results and could
not dynamically reflect the reaction process. Therefore, the specific method to be used
must be analyzed in conjunction with the actual situation.

5. In future work, in order to improve the accuracy of the prediction model, an ensemble
learning of five machine learning models will be constructed to obtain excellent
generalization performance. the integration method may be boosting, bagging or
random forest.
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