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Abstract: Compressive sensing (CS) creates a new framework of signal reconstruction or approximation 
from a smaller set of incoherent projection compared with the traditional Nyquist-rate sampling theory. Re-
cently, it has been shown that CS can solve some signal processing problems given incoherent measurements 
without ever reconstructing the signals. Moreover, the number of measurements necessary for most compres-
sive signal processing application such as detection, estimation and classification is lower than that necessary 
for signal reconstruction. Based on CS, this paper presents a novel identification algorithm of frequency hop-
ping (FH) signals. Given the hop interval, the FH signals can be identified and the hopping frequencies can be 
estimated with a tiny number of measurements. Simulation results demonstrate that the method is effective 
and efficient. 
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1. Introduction 

With so many good advantages such as anti-jam, anti- 
interception, high security and so on, the technique of 
frequency hopping spread spectrum (FHSS) has been 
extensively applied in many areas, especially in military 
domain. The detection and interception of FH signals can 
be addressed in several methods of which wide band or 
channelized receiver, time-frequency distribution, and 
cyclostationary processing are typical ones [1-4]. For all 
the methods above, the extremely large requirement of 
measurements is one of the most serious disadvantages, 
which can be a bottleneck in the application of identifi-
cation of high speed wide band FH signals. Recently, 
there have been some active attempts on signal process-
ing with the advantage of CS for the sparse or compres-
sive signals [5-8]. However, most of them are limited 
within the area of statistical inference tasks which need 
the prior knowledge of the probability density distribu-
tion of signals. Besides, it is seldom to be studied on how 
to develop the potential of CS to make processing of FH 
signal which is one of the most important sparse or com-
pressive signals. 

This paper makes use of the sparsity of FH signals on 
the local Fourier basis, and then presents a novel identi-
fication algorithm of FH signals with the compressive 
measurements. Given the hop interval, the FH signals 
can be identified and the hopping frequencies can be es-
timated without reconstructing the signals. 

2. Compressive Sensing Background 

2.1 Representation and Sparsity of Signal 

Nyquist-rate sampling is the classical method to describe 

a signal with its bandlimitedness, while CS aims to com-

pletely describe a signal with its sparsity or compressibil-

ity to reduce the required number of measurements [9]. 
A signal can be viewed as an  column vector 

in  with elements 

x 1N

, 2,...,N [ ], 1x n n N . Let the ma-

trix  1 2 ,...,   N

N

   have columns which form a 

basis of vectors in . And then, any signal  can be 
expressed as: 

x

1

x 


 
N

i i
i

s    or            (1) x s 

where  is the s 1N  column vector of weighting co-

efficients x,si i . 

When we say that x is K-sparse, we mean that it is well 

reconstructed or approximated by a linear combination of 

just K basis vectors from , with  K N . That is, 

there are only K of the is  in (1) are nonzero and 

( )N K  are zero. 

2.2 Incoherent Measurements 

Consider a generalized linear measurement process of a 
signal  which is K-sparse. Let   be an x M N  
measurement matrix, M N  where the rows of   
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are incoherent with the columns of . The incoherent 
measurements can be obtained by computing 


M  inner 

products between  and the rows of  as in x 
,j jy x . It can also be expressed as: 

y x  = s= s                (2) 

where  is an   : M N  matrix. It is proved that 
 dose not depend on the signal x and it can be con-

structed as a random matrix such as Gaussian matrix. 
And the CS theory shows that there is an over-measuring 
factor  such that only 



1c :M cK  incoherent meas-
urements are required to reconstruct  with high prob-
ability [9-11]. That is, only cK  incoherent measure-
ments include all of the salient information in the 
K-sparse signal , which provides the theory support on 
the signal processing only given the incoherent meas-
urements without reconstructing the signals. 

x

x

2.3 Reconstruction 

With the salient information included in the incoherent 
measurements, there have been several kinds of recon-
struction algorithms including 1  minimization, greedy 
algorithm, matching pursuit and so on [12-15]. Since this 
paper is concentrated on FH signal identification without 
signal reconstruction, we don’t discuss reconstruction 
algorithms in detail here. 

l

3. Compressive Identification for FH Signal 

With the good sparsity of FH signals on the local Fourier 
basis, we now show that incoherent measurements can be 
used to solve the identification problem without ever 
reconstructing the signal. In this process, it is able to save 
significantly on the number of measurements required. 

3.1 Compressive Identification Problem Setup 

FH signals are sparse in a time-frequency representation 
as short-time Fourier transform, and they are always 
wideband when there is no prior restriction on the fre-
quencies of the local sinusoid [16]. Therefore, the meas-
urements obtained with the traditional Nyquist-rate sam-
pling could be excessive and hard to meet with the pre-
sent ability of hardware instrument. 

Now, consider a FH signal which consists of a se-
quence of windowed sinusoids with frequencies distrib-
uted between f1 and f2 Hz. The bandwidth of this signal is 
B=f2-f1 Hz, which asks for sampling above the Nyquist 
rate of 2(f2-f1) Hz to avoid aliasing. However, the expres-
sion of the signal at any single hop is extremely simple: it 
consists of only one sinusoid of which bandwidth is 
extremely less than B [16]. Hence, CS could make identi- 
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Figure 1. Hop intervals and observation intervals in the condition 
of 1-sparse 

 

fication of FH signals possible with a sampling rate that 
is extremely less than the Nyquist rate. 

Let the observation interval equal to the hop interval. 
If the start of the FH signal can be captured exactly, the 
signal can be observed synchronously as depicted in Fig-
ure 1 and it has 1-sparse representation on the local Fou-
rier basis within each of hop interval. Otherwise, as de-
picted in Figure 2, the signal within each of hop interval 
will have 2-sparse representation since only two of the 
hopping frequencies appear in every single observation 
interval. 

We observe y x   instead of  and our goal is to 

identify the FH signal and estimate its hopping frequen-
cies with  and its connection with . 

x

y 

3.2 1-Sparse Compressive Identification 

The amplitudes of Fourier coefficients of some FH signal 
within an observation interval have been shown in Figure 
3 which dedicates that all the coefficients are almost zero 
except for only one single large coefficient. 

 

 
Figure 2. Hop intervals and observation intervals in the condition 
of 2-sparse 
 

 

 

 

 

 

 

 

 

 

 

A
m

pl
it

ud
e 

Figure 3. The amplitudes of Fourier coefficients of some FH signal 
within an observation interval in the condition of 1-sparse 
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Figure 4. Measurement process in the condition of 1-sparse 

 
The process of 1-sparse compressive measurement is 

depicted in Figure 4. We aim to find the position of non-
zero ps  indicating the hopping frequency of a particular 

interval. 
Since  is obtained by multiplying the nonzero y ps  

by its corresponding column vector  p , the hopping 

frequency can be estimated given  and . A direct 

method to estimate the position of nonzero 

y 

ps  is to 

search for the position of  p  which can be decided by 

calculating the angles between y and each column vector 
of  in the vector space as only the angle between y 
and 


 p  is zero in the ideal condition. Since   is also 

a random Gaussian matrix if   is chosen to be a ran-
dom Gaussian matrix, the angle between y and another 
column vector of  is also zero with extremely low 
probability. Taking account of the effect of noise, we 
design the estimation algorithm of hopping frequency as 
follows: 



1) Obtain the incoherent measurements  with y  . 

2) Calculate the cosine of angles between  and each 

column vector 

y

i  in the vector space 

2 2

y
cos( ,y)

y







H
i

i
i

              (3) 

where H  denotes conjugate transpose. 
3) Select the column vector that maximizes cos( ,y)i , 

and define the position of this vector as estimation of 
hopping frequency 

ˆ arg max cos( , y) i
i

f              (4) 

After several intervals of observation and estimation of 
hopping frequencies, the time-frequency curve of the 
signal can be obtained and the FH signal has been identi-
fied in the condition of 1-sparse. 

3.3 2 Sparse Compressive Identification 

Different from the condition of 1-sparse, Figure 5 shows 
that there are two large coefficients within an observation 
interval as each observation interval covers parts of two 
hop intervals in the condition of 2-sparse depicted in Fig-
ure 2. 

 
 

 

 

 

 

 

 

 

 

 
Figure 5. The amplitudes of Fourier coefficients of some FH signal 
within an observation interval in the condition of 2-sparse 

 
The process of 2-sparse compressive measurement is 

shown is Figure 3 which dedicates that  is a linear 

combination of two column vectors 

y

1 p  and 2 p  cor-

responding to the two nonzero coefficients 1ps  and 2ps  

indicating the two hopping frequencies within a particu-
lar observation interval. And y is also a linear combina-
tion of another two column vectors of   with ex-
tremely low probability, since  is a random Gaussian 
matrix. 



Therefore, the two hopping frequencies can be esti-
mated by deciding the subspace comprised of 1 p  and 

2 p  in  . The estimation algorithm is as follows: 

1) Obtain the incoherent measurements  with y  . 

2) Calculate the orthogonal projection of  onto 

the subspace  comprised of any two column vectors 

y yP

ijL

i  and  j , 

y
ijy LP P                   (5) 

where 
ijLP  is orthogonal projector expressed by: 

1( ) 
ij

H H
LP V V V V               (6) 

where ,    i jV . 

3) Select the two column vectors that maximize  

onto the corresponding subspace, and define the posi-
tions of these two vectors as estimation of the two hop-
ping frequencies 

yP

1 2 y
,

ˆ ˆ[ , ] arg max( )
i j

f f P              (7) 

Taking account of the repetition of hopping frequen-
cies within two consecutive observation intervals in the 
condition of 2-sparse, we can use the estimation results 
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Figure 6. Measurement process in the condition of 2-sparse 

 
of the former interval in the latter one. Only in the first 
interval, the algorithm is a kind of two-dimensional 
search as two column vectors have to be selected mean-
while. And in the successive intervals, it can be executed 
as a one-dimensional search (twice) as one column vec-
tor can be confirmed in according to the position infor-
mation of two selected vectors of the former interval. 
This iterative processing can effectively reduce the 
computation, but obviously the error propagation can 
also be introduced. To solve this problem, an updating 
window is designed to separate the whole observation 
time into several segments of intervals. And in the first 
interval of every updating window, the two-dimensional 
search is executed all over again. 

As the condition of 1-sparse, the time-frequency curve 
of the FH signal can also be obtained after several ob-
servation intervals, and the signal can be identified. 

4. Simulation Results 

To demonstrate the feasibility and effectiveness of the 
proposed algorithm, a wideband FH signal submerged in 
additive Gaussian white noise (AWGN) is considered to 
make the simulation experiments. This FH signal has ten 
hopping frequencies which are distributed uniformly 
between 20MHz and 200MHz, and the hop interval is 
1ms, i.e. 1000 hops per second. The other main simula-
tion parameters are as follows: 2048-point local Fourier 
basis is chosen to be , random Gaussian matrix is 
chosen to be , and the number of observation inter-
vals is set to 2000. Each experiment is made in the con-
dition of both 1-sparse and 2-sparse. 




First, the estimation performance of hopping fre-
quency is evaluated by normalized mean square error 
(NMSE) through several intervals of observation, where 
NMSE is expressed by 

'

'

2

1

ˆ1



 
 

 

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f f
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N f

             (8) 

where ˆ
if  is the estimation of hopping frequency that 

expressed by  in the  th observation interval and 

 represents the number of observation intervals 

which is set to 2000 here. 

if i

'T
N

Figure 7 and Figure 8 show the performance curves of 
1-sparse and 2-sparse respectively. 

 

Figure 7. MSE of estimation with SNR in the condition of 1-sparse, 
where N=2048 and M represents the number of measurements used 
in this experiment experiments 
 

 

Figure 8. MSE of estimation with SNR in the condition of 2-sparse, 
where N=2048 and M also represents the number of measurements 
used in this experiment experiments. And the length of updating 
window is set to 40 
 

Some conclusions can be demonstrated from Figure 7 
and Figure 8. First, the hopping frequencies can be effec-
tively estimated with a tiny number of measurements 
when SNR is higher than 8dB. Second, the performance 
of estimation degrades with the decrease of M , espe-
cially in low SNR. And finally, the performance of 1- 
sparse is better than that of 2-sparse. 

Next, the estimated time-frequency curves of the FH 
signal of 1-sparse and 2-sparse are depicted in Figure 9 
and Figure 10 respectively when  and SNR 
is 10dB. 

/16M N

From the Figure 9 and Figure 10, it is shown that the 
estimated time-frequency curve is quite close to the real 
one and the FH signal can be effectively identified, espe-
cially in the condition of 1-sparse. 
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5. Conclusions [6] HAUPT J, NOWAK R. Compressive sampling for signal detec-
tion. Conf. Rec. 2007 IEEE Int. Conf. Acoustics Speech and 
Signal Processing, 2007, 3: 1509-1512. Based on CS, this paper provides a novel method for the 

identification of wideband FH signal with a tiny number 
of incoherent measurements, which is an inspiration of 
real-time wideband sparse signal processing. This 
method can also be of great help for the detection and 
recognition of wideband signal in the non-cooperative 
communication. 

[7] DUARTE M F, DAVENPORT M A, WAKIN M B. Multiscale 
random projection for compressive classification. Conf. Rec. 
2007 IEEE Int. Conf. Image Processing, 2007, 6: 161-164. 

[8] DUARTE M F, DAVENPORT M A, WAKIN M B, BRANIUK 
R G. Sparse signal detection from incoherent projection. Conf. 
Rec. 2006 IEEE Int. Conf. Acoustics Speech and Signal Proc-
essing, 2006, 3: 305-308. There are many opportunities for future research. Iden-

tification without the information of hop interval, the 
picket fence effect of Fourier transformation on the per-
formance of identification, and the theoretical bounds of 
M  with a given SNR would be discussed in the future 
work. 

[9] BRANIUK R. Compressed sensing. IEEE Signal Processing 
Magazine, Jul. 2007, 24(4): 118-121. 

[10] DONOHO D. Compressed sensing. IEEE Trans. Inform. Theory, 
Apr. 2006, 52(4): 1289-1306.  

[11] CANDES E, ROMBERG J, TAO T. Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete fre-
quency information. IEEE Trans. Inform. Theory, Feb. 2006, 
52(2): 489-509.  

REFERENCES 

[1] AYDIN L, POLYDOROS A. Hop-timing estimation for FH 
signals using a coarsely channelized receiver. IEEE Trans. 
Communication, Apr. 1996, 44(4): 516-526.  

[12] DONOHO D, TANNER J. Sparse nonnegative solutions of un-
derdetermined linear equations by linear programming. Proc. 
National Academy Science, 2005, 102(27): 9446-9451. [2] ZHANG X, DU X, ZHU L. Time frequency analysis of frequency 

hopping signals based on Gabor spectrum method. Journal of 
Data Acquisition & Processing, Jun. 2007, 22(2): 123-135. 

[13] TTOPP J A. Greed is good: Algorithmic results for sparse ap-
proximation. IEEE Trans. Inform. Theory, Oct. 2004, 50(10): 
2231-2242.  [3] HIPPENSTIEL R, KHALIL N, FARGUES M. The use of wave-

lets to identify hopped signals. In 1997 Fortieth Asilomar Conf. 
Signals, System & Computer, 1997, 1: 946-949. 

[14] HAUPT J, NOWAK R. Signal reconstruction from noisy random 
projection. IEEE Trans. Inform. Theory, Sep. 2006, 52(9): 
4036-4048.  [4] FAN H, GUO Y, XU Y. A novel algorithm of blind detection of 

frequency hopping signal based on second-order cyclostationar-
ity. Proc. 2008 Image and Signal Processing Congr., 2008, 5: 
399-402. 

[15] CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition 
by basis pursuit. SIAM J. Sci. Comput., 1998, 20: 33-61.  

[16] LASKA J, KIROLOS S, MASSOUD Y, BARANIUK R. 
Random sampling for analog-to-informaion conversion of 
wideband signals. IEEE Dallas/CAS Workshop on Design, 
Application, Integration and Software, Oct. 2006, 119-122. 

[5] HAUPT J, NOWAK R, YEH G. Compressive sampling for 
signal classification. In 2006 Asilomar Conf. on Signals, System 
& Computer, Oct. 2006, 1430-1434. 

 

http://ieeexplore.ieee.org.ezproxy2.library.usyd.edu.au/xpl/RecentCon.jsp?punumber=4216989
http://ieeexplore.ieee.org.ezproxy2.library.usyd.edu.au/xpl/RecentCon.jsp?punumber=4216989
http://ieeexplore.ieee.org.ezproxy2.library.usyd.edu.au/xpl/RecentCon.jsp?punumber=4216989
http://www-stat.stanford.edu/%7Edonoho/Reports/2005/NonNegative-R5.pdf
http://www-stat.stanford.edu/%7Edonoho/Reports/2005/NonNegative-R5.pdf

