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Abstract 
Kalman filtering (KF) is a popular form of data assimilation, especially in 
real-time applications. It combines observations with an equation that de-
scribes the dynamic evolution of a system to produce an estimate of its 
present-time state. Although KF does not use future information in produc-
ing an estimate of the state vector, later reanalysis of the archival data set can 
produce an improved estimate, in which all data, past, present and future, 
contribute. We examine the case in which the reanalysis is performed using 
generalized least squares (GLS), and establish the relationship between the 
real-time Kalman estimate and the GLS reanalysis. We show that the KF solu-
tion at a given time is equal to the GLS solution that one would obtain if data 
excluded future times. Furthermore, we show that the recursive procedure in 
KF is exactly equivalent to the solution of the GLS problem via Thomas’ algo-
rithm for solving the block-tridiagonal matrix that arises in the reanalysis 
problem. This connection suggests that GLS reanalysis is better considered 
the final step of a single process, rather than a “different method” arbitrarily 
being applied, post factor. The connection also allows the concept of resolu-
tion, so important in other areas of inverse theory, to be applied to KF for-
mulations. In an exemplary thermal diffusion problem, model resolution is 
found to be somewhat localized in both time and space, but with an extremely 
rough averaging kernel. 
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1. Introduction 

In this paper, we compare two data assimilation methods that are routinely ap-
plied to monitor time-dependent of linear systems, one based on Generalized 
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Least Squares (GLS) [1] and the other on Kalman Filtering (KF) [2] [3]. We are 
motivated by our anecdotal observation that, while both are widely used tools 
that do broadly similar things, GSL and KF tend to be used by different com-
munities who often think of their method as the “best”. Our goal is to enumerate 
and study the similarities and differences between the GLS and KF. Especially, 
we wish to determine whether or not the same prior information is used in each. 
Establishing a link between KF and GLS provides a clear pathway for applying 
GLS concepts, and especially resolution analysis [4] [5], to KF, and also a path-
way for extending GLS analysis to the real-time scenarios for which KF is al-
ready well-suited. 

A synopsis of variables used in this paper is provided in Table 1. At any time, 

it , 1 i K≤ ≤ , a linear system is described by a state vector (model parameter 
vector), ( )i M∈m . This state vector evolves away from the initial condition 

( ) ( )1 1
A=m m                             (1) 

according to the dynamical equation: 
( ) ( ) ( )1 1i i i− −= +m Dm s                        (2) 

Here, D  is the dynamics matrix and M∈s  is the source vector. Neither  
 
Table 1. List of variables. 

Variable Explanation Variable Explanation 

a  Gram right-hand-side vector G  union of data kernels 

ˆ ia  Thomas right-hand-side vector at time, i ( )iG  data kernel at time, i 

i�a  Kalman right-hand-side vector at time, i g−G  generalized inverse 

A  Gram matrix h  prior right-hand-side vector 

iA  𝑖𝑖th diagonal element of Gram matrix H  union of prior information 

ˆ
iA  Thomas matrix at time, i f  GLS right-hand-side vector 

i
�A  Kalman matrix at time, i F  GLS matrix 

B  Off-main-diagonal of Gram matrix K number of time steps 

1AC  prior covariance of initial condition m  union of states 

dC  covariance of data at time, i ( )im  state at time, i 

hC  union of prior covariances ( )1
Am  initial condition 

mC  posterior covariance of state Gm  GLS estimate of state 

oC  union of data covariances Km  Kalman estimate of state 

sC  prior covariance of source M length of state vector 

d  union of data N number of data at time, i 
( )id  data at time, i N  data resolution matrix 

D  dynamics matrix R  model resolution matrix 

2∆  second difference matrix ( )is  source at time, i 
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the initial conditions nor the source is known exactly, but rather have uncer-
tainty described by their respective covariance matrices, 1AC  and sC . 

This formulation well approximates the behavior of systems described by li-
near partial differential equations that are first order in time. For example, let 

( ) ( ),i
n n im m x t=  be temperature at time, it i t= ∆ , and position, nx n x= ∆ , where 
t∆  and x∆  are small increments, and suppose that ( ),m x t  satisfies the thermal 

diffusion equation, 2 2m t c m x q∂ ∂ = ∂ ∂ +  (with zero boundary conditions). 
This partial differential equation can be approximated by: 

( ) ( )

( )
( ) ( ) ( ) ( ) ( )

1
1 1 1 1

22 or
i i

i i i i ic
t x

−
− − − −−

= + = +
∆ ∆

m m m q m Dm s∆  

( )
( ) ( ) ( )1 1 1

22with andi i ic t t
x

− − −
 ∆ = + = ∆
 ∆ 

D I m s q∆            (3) 

which has the form of dynamical Equation (2). Here, the choices: 

( )

( )

( )

1
2

1
2

1
1

1 0
1 2 1

1 2 1
and

1 2 1
01

i

i

i
M

q

q

−

−

−
−

    −      −  ≡ =       −       

�
�

q∆           (4) 

encode both the differential equation and the boundary conditions. The matrix, 
D , is sparse in this example, as well as in many other cases in which it approx-
imates a differential operator. 

The data equation expresses the relationship between the state vector and the 
observables: 

( ) ( ) ( )i i i=G m d                           (5) 

Here, ( )i N∈d  is the data vector, determined to covariance, dC , and ( )iG  
is the data kernel. In the simplest case, the observations may be of selected ele-
ments of the state vector, itself, in which case, each row of G  is zero, except for 
a single element, say in column, k, which is unity. Here, ( ),k i n  is a function 
that associates ( )i

nd  with ( )i
km . Other more complicated relationships are possi-

ble. For instance, in tomography, the data is a line integral through ( ), ,m x y t  
(with y another spatial dimension). The data kernel, G , is sparse in these two 
cases. In other cases, it may not be sparse. 

The data assimilation problem is to estimate the set of state vectors,  
( ){ }:1i i K< ≤m , using the dynamical equation, the data equation and the initial 

condition. One possible approach is based on Generalized Least Squares (GLS); 
another upon Kalman Filtering (KF). In this paper, we demonstrate that these 
two apparently very different methods are, in fact, exactly equivalent. In order to 
simplify notation, we concatenate the state vectors for times into an overall vector, 

( ) ( ), ,i K =  �m m m , and data vectors into an overall vector, ( ) ( )2 , , N =  �d d d . 
By assumption, no observations are made at time, 1i = . 
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2. Generalized Least Squares Applied to the Data  
Assimilation Problem 

Generalized Least Squares (GLS) [1] [6] [7] [8] is a technique used to estimate 
m  when two types of information are available: prior information and data. By 
prior information, we mean expectations about the behavior of m  that are 
based on past experience or general physical considerations. The dynamical eq-
uation and initial condition discussed in the previous section are examples of 
prior information. By data we mean direct observations, as typified by the data 
equation discussed in the previous section. 

Prior information can be represented by the linear equation, =Hm h  (with 
L∈h  and where the equation is accurate to covariance, hC ) and observa-

tions can be represented by the linear equation, =Gm d  (with covariance oC ). 
The Bayesian principle leads to the optimal solution, which we denote the Ge-
neralize Least Squares (GLS) solution, Gm  [1] [6] [7] [8]. It minimizes a com-
bination of the weighted 2L  error in prior information and the weighted 2L  
error in the data (where the weighting depends upon the covariances). 

Several equivalent forms of the GLS solution, Gm , and its posterior variance, 

mC , are common in the literature. We enumerate a few of the more common-
ly-used forms here: 

Form 1 [8] groups the prior information and data equations into a single equ-
ation, =Fm h : 

1 2 1 21T T
1 2 1 2with andh h

G
o o

− −
−

− −

   
 = ≡ ≡    

   

C H C h
m F F F f F f

C G C d
 

1T
m

−
 =  C F F                          (6) 

Note that the factors of 1 2
h
−C  amd 1 2

o
−C  are weights proportional to “certain-

ty”. 
Form 2 [1] introduces generalized inverses, g−G  and g−H : 

g g
G

− −= +m G d H h  

1 T 1 1 T 1 T 1 T 1with and andg g
o h o h

− − − − − − − −≡ ≡ ≡ +G A G C H A H C A G C G H C H  

1
m

−=C A                           (7) 

Here, Gm  is the estimated solution and mC  is its posterior covariance. 
Form 3 [7] organizes the solution in terms of the prior state vector, Am ; that 

is, the state vector implied by the prior information, acting alone: 

( )withg g
G G A G

− −= + ≡ −m G d P m P I G G  

1 1
1T 1

1T 1 T 1 1
and with andA A h

h h

− −
−−

−− − −

 ∃  ≡ =     

H h H
m C H C H

H C H H C h H
 

m G A=C P C                            (8) 

The matrix, GP , plays the role of a projection matrix. See Appendix A.1 for a 

https://doi.org/10.4236/am.2022.136036


W. Menke 
 

 

DOI: 10.4236/am.2022.136036 570 Applied Mathematics 
 

deviation of the covariance equation. 
Form 4 [1] introduces the deviation, ∆m , of the solution from the prior state 

vector, and the corresponding deviation, ∆d , of the data from that predicted by 
the prior state vector: 

and andg
G A A

−∆ = ∆ ∆ ≡ − ∆ ≡ −m G d m m m d d Gm         (9) 

Finally, Form 5 [6] [9] uses as alternate form of the generalized inverse: 
T 1 Twith andg g

A o A
∗− − − ∗  ′ ′∆ = ∆ ≡ ≡ + m G d G C G A A C GC G   (10) 

The equality of the two forms was proven by [6] using a matrix identity that we 
denote TV82-A (Appendix A.2). Because A  is M M×  and ∗A  is N N× , 
the first form is most useful when M N< ; the second when M N> . However, 
a decision to use one or the other must also take in consideration the sparsity of 
the various matrix products. 

Form 4 is derived from Form 3 by subtracting AAm  from both sides of the 
Gram equation,  

( )G A A− = −A m m a Am  

( ) ( ) ( )T 1 T 1 T 1 T 1
o h G A o A h A
− − − − + − = − + − G C G H C H m m G C d Gm H C h Hm  (11) 

and then by requiring that the second term on the right-hand side vanish, which 
leads to: 

1T 1 T 1 T 1with ando A A h h

−− − − ∆ = ∆ ∆ = − =  A m G C d d d Gm m H C H H C h  (12) 

That is, Am  is due to the prior information acting along. The deviatoric ma-
nipulation is completely general; alternately the first term could have been made 
to vanish, in which leads to: 

1T 1 T 1 T 1with andh G G o o

−− − − ∆ = ∆ ∆ = − =  A m H C h h h Hm m G C G G C d  (13) 

Here, Gm  is due to the data acting alone. Note that deviatoric manipulations of 
this type never change the form of the matrix, A . We will apply this principle 
later in the paper. 

In the subsequent analysis, we will focus on the Gram equations: 
T 1

o
−= ≡Am G C d a                       (14) 

The initial condition and the dynamical equation can be into a single prior 
information equation of the form, =Hm h : 

( )

( )

( )

( )

( )

( )

( )

( )

1 1

2 1

3 2

1

with covariance

A

h

K K −

             −       =−               −        

� � �

m mI
D I m s

CD I m s

D I m s

     (15) 

Here, ( )1diag , , , ,h A s s≡ � sC C C C C . Several quantities derived from H , and 
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which we will use later, are: 

T

T

T
T 1 2

3 2
T

and −

 −
  

−   
  −  = = 
  
  −     

  

�

�

I D
I

I D
D I

I D
H H D D I

D D D I
I D

I

 

1 T 1 T 1
1

1 1 T 1 T 1

T 1
1 1 T 1

T 1

T 1 1

0A s s

s s s s

h
s s s

s

s s

− − −

− − − −

−
− − −

−

− −

  + −  
  − + −  

=   − +  
 −
 

−  

�

C D C D D C

C D C D C D D C
H C H C D C D C D

D C
D C C

 

( ) ( )

( ) ( )

( ) ( )

( )

1 11 T 1
1

1 21 T 1

T 1

11 T 1

1

A A s

s s

h
N N

s s
N

s

− −

− −

−

−− −

−

 −
 
 −
 =  
 − 
  

�

C m D C s

C s D C s
H C h

C s D C s

C s

                  (16) 

The existence of 1−H  implies that Am  can be uniquely specified. The data 
equation expresses the relationship between the state vector and the observables, 
and presuming that no data are available for time, 1i = , has the form: 

( )

( )

( )

( )

( )

( )

( )

( )

1 2
2

2 3

N
M N

   
     
     

=     
     
     

   

�
� �

m d
G

m d

G
m

0

d

             (17) 

This equation is taken to have an accuracy described by the summary cova-
riance matrix, ( )diag , , , ,o d d d d≡ �C C C C C . We note that: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 T 2 T1
T 1

T T1

2 T 21

T 1 3 T 31

T 1

0

0

and

d
d

K K
d

d

d d

K N
d

−
−

−

−

− −

−

 
 
 

=  
 
 
 

 
 
 
 

=  
 
 
 
 

�

�

G C G
G C G

G C G

G C d

G C d G C d

G C d

        (18) 

The matrix, A , in the Gram equation is symmetric and block-triagonal: 

https://doi.org/10.4236/am.2022.136036


W. Menke 
 

 

DOI: 10.4236/am.2022.136036 572 Applied Mathematics 
 

( )

( )

( )

( )

1T
11

2T
22

3
3

T

K KN

                =                  

�� �

m aA B
amB A B
am

B
aB A m

             (19) 

with elements: 

( )
( ) ( ) ( )

( ) ( ) ( )

T 1 1
1

TT 1 1 1

T1 1

1

1

s A

i i
i s s d

K K
s d

i

i K

i K

− −

− − −

− −

 + = 
 = + + < < 

 + =

D C D C

A D C D C G C G

C G C G

 

1
s
−= −B C D                            (20) 

The vector, a , on the right-hand side of the Gram equation, is: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1T 1 1
1

1 TT 1 1 1

1 T1 1

1

1

s A A

i i i i
i s s d

i i i
s d

i

i K

i K

− −

−− − −

−− −

 − + = 
 = − + + < < 

 + =


D C s C m

a D C s C s G C d

C s G C d

      (21) 

Here, we define ( )Ks  to be zero. 

3. Recursive Solution Using the Thomas Method 

Insight into the behavior of the GLS solution can be gained by solving the Gram 
equation iteratively [10]. We the Thomas method [11] [12] (see Appendix A.3), 
though other methods are viable alternatives. It consists of a forward-in-time 
pass through the system that recursively calculates two quantities, ˆ

iA  and ˆ ia : 

( )

( )

1
11

11 T
1

1
ˆ

ˆ 1
i

i i

i

i

−

−
−−

−

 =≡ 
 − > 

A
A

A BA B
 

( )
( )

1

1
1 1

1
ˆ ˆ ˆ 1i

i i i

i

i−
− −

=≡  − > 

a
a

a BA a
                  (22) 

After the forward recursion, the system is block-upper-bidiagonal with row i 
having elements ˆ

iA  and TB  (except for the last row, which lacks the TB ) 
and the modified right-hand side is ˆ ia . The solution, ( )i

Gm , is achieved through 
a backward recursion: 

( ) ( )
( ) ( )

1

11 T

ˆ ˆ
ˆ ˆ

K Ki
G i

i i

i K

i K

−

+−

 ==   − <  

A a
m

A a B m
               (23) 

It is evident that information is propagated both forward and backward in 
time during the solution process. Furthermore, computation time grows no 
faster than the number of steps, K, in the recursion. 

The Thomas method has a disadvantage in the common case where the cova-
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riances matrices, 1,A sC C  and dC  are diagonal and when D  and ( )iG  are 
sparse, because although F  is then also sparse, the matrices, 1ˆ

i
−A , are in gen-

eral not sparse, so the effort needed to compute them scales with 3M . Other 
direct methods share this limitation, too. Consequently, the overall calculation 
scales with 3KM . An iterative method [10], such conjugate gradient method, 
applied to the Gram equation, T T=F Fm F h , is usually a better choice. This 
method requires that the quantity, ( )T=u F F v , be calculated for an arbitrary 
vector, v , and this quantity can be very efficiently calculated as ( )T=u F Fv  
[13]. In cases in which the dynamical equation approximates a partial differen-
tial equation, the number of non-zero elements in the matrix, F , scale with 
KM . The conjugate gradient algorithm requires no more than KM  iterations 
(and often much fewer), each requiring KM  multiplications. Thus, the overall 
solution time scales with 2 2K M . Consequently, the conjugate gradient method 
has a speed advantage when M K> . 

4. Present-Time Solution 

Suppose that the analysis focuses on the “present-time”, i, in the sense that only 
the solution, ( )i

Pm , determined using data up to and including time, i, is of in-
terest. One can assemble a sequence of present-time solutions during the for-
ward recursion, using the fact that the ith solution can always be considered to 
be the final one. No backwards recursion is needed to compute the solution for 
the final time. However, the forms of the “final” ˆ

iA  and ˆ ia  differ from that of 
the previous A s in the recursion, so a separate computation is needed: 

( ) 1ˆ ˆi
P i i

−′ ′=m A a  

( ) ( ) ( )TT 1 1 1 T 1ˆ ˆ ˆ ˆandi i i
i i s si d i i s

− − − −′ ′= − = + = +A A D C D C G C G a a D C s     (24) 

Consequently, in order to create a sequence of present-time solution, the two 
linear systems must be solved at each step in the forward recursion. The present- 
time solution is the same as the reference solution, ( )i

Dm , defined in the previous 
section. 

Kalman Filtering 
Kalman Filtering (KF) is a solution method with an algorithm that, like the 

Thomas present-time solution, is forward-in-time, only [2] [3]. It consists of 
four steps, the final three which are iterated. 

Step 1 assigns the 1i =  solution, ( )1
Km , and its covariance, ( )1

mC : 
( ) ( ) ( )1 1 1

1andK A m A= =m m C C                    (25) 

Step 2 propagates the solution and its covariance forward in time using the 
dynamical equation, and considers it to be prior information. 

( ) ( ) ( )( ) ( ) ( )1 1 1 Tandi i i i i
A K A m s

− − −= + = +m Dm s C DC D C          (26) 

Step 3 uses GLS to combine the prior information, ( )i
Am , with covariance 

( )i
AC , and data, ( )id , with covariance dC , into a solution, ( )i

Km , with covariance, 

mC . Any of the equivalent forms of the GLS solutions described in Section 2 can 
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be used in this step. 
Step 4, increments i and returns to Step 2, creating a recursion. 
Most often, the GLS solution and its variance are written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )withi i i i i i ig
K A i A

−= + ∆ ∆ = −m m G d d d G m  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1T T 1 Twith andi i i i i i i ig
i A d A A m s

− −−  = + = + G C G C G C G C DC D C  

( ) ( ) ( ) ( ) ( ) ( ) ( )and andi i i i i i ig g
m i A G A G i

− −   = − = ≡ −   C I G G C P C P I G G     (27) 

However, any of the equivalent forms described above can substitute, such as: 
( ) 1i
K i i

−= � �m A a  

( ) ( ) ( ) ( ) ( ) ( )
111 TT 1 1andi i i i i i

A m s i d A m

−−− − −  = + = + =   
�C DC D C A G C G C C  

( ) ( ) ( ) ( ) ( )1 1T 1 11i i i i i
i d A K A

− −− −−    = + +   �a G C d C Dm C s            (28) 

5. Kalman Filtering Is Not “Filtering” in the Strict Sense 

A standard Infinite Impulse Response (IIR) filter has the form ∗ = ∗v m u z , 
where z  is the “input” timeseries, m  is the “output” timeseries, u  and v  are 
filters (with 1 1v = ) and ∗  signifies convolution [14]. Key to this formulation is 
that the filter coefficients are constants; that is, they are not a function of time. 

If the generalized inverse in KF was time-independent, so that g g
i
− −=G G , 

then KF could be put into form of an IIR filter: 

[ ] ( )

( )

( )

( )

( )

( )

1

21

1

i

ii
g g

g i i

i

−

−−
− −

−

−

 
 
    
            ∗ = − ∗       −                  
  

�

�

�

�

d
I sm

G G G
G GD I m d

s

     (29) 

because the convolution reproduces the KF solution: 
( ) ( ) ( ) ( ) ( )( )( )1 1 1i i i i ig− − −−= + − +m m G d G Dm s           (30) 

So, from this point of view, the KF has a v  of length 2 (each element of which 
is a matrix), and a u  of length 1 (each element of which is a row vector of two 
matrices). However, this formulation does not really correspond to a standard 
IIR filter, because the filter coefficients, which depend upon the generalized in-
verse, g

i
−G , depend upon time, i. Hence, the word “filter”, though generally in-

dicative of the KF process, oversimplifies the actual operation being performed. 
KF is not filtering in the strict sense. 

6. The Present-Time Thomas and Kalman Filtering Solutions  
Are Equal 

We will now demonstrate that the present-time Thomas solution, ( )i
Pm , and the 
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Kalman filtering solution, ( )i
Km , are equal. We will make use of an identity, ab-

breviated TV82-B, that is due to [6], which shows that for invertible symmetric 
matrices 1C  and 2C  and arbitrary matrix, M : 

1 1T T T 1 1
2 2 2 1 2 1 2

− −− −   − + = +   C C M MC M C MC M C M C         (31) 

Thus, for instance, when ( )1
1

i
A

− =C C , 1
2 s
− =C C  and T=M D : 

( ) ( ) ( )
11 1 11 1T 1 1 T 1 T 1i i i

A m s s s s m s

−− − −− −− − − −      = + = − +       
C DC D C C C D D C D C D C  (32) 

The PT and KF recursions both start with ( ) ( )1 1
K PT A= =m m m  and  

( ) ( )1 1
KA PTA A= =C C C . The ( )2i =  case in irregular, and must be examine sepa-

rately. The KF solution is: 
( )2 1

2 2K
−= � �m A a  

( ) ( ) ( ) ( )12 T 2 2 21 T
2 1with withd A A A s

−
−  = + = + 

�A G C G C C DC D C  

( ) ( ) ( ) ( ) ( ) ( )1 12 T 2 2 1 2 11
2and d A K A

− −
−    = + +   �a G C d C Dm C s           (33) 

This can be compared with the present-time Thomas solution: 
( )2 1

2 2
ˆ ˆP

−′ ′=m A a  

( ) ( )

( ) ( )

12 2 T1 1 1 T 1 1 T 1
2 1

12 2 T1 T
1

ˆwith d s s s A s

d A s

−− − − − − −

−−

 ′ = + − + 

 = + + 

A G C G C C D D C D C D C

G C G DC D C
 

( ) ( ) ( ) ( )2 T 2 1 11 1 1 1 T 1 1 1 1 1
2 1 1 1

ˆ ˆˆ d s s s s s A A
− − − − − − − − −′ = + − +a G C d C s C DA D C s C DA C DC m  (34) 

Note that we used TV82-B to simplify the expression for 2Â . By inspection, 

2 2
ˆ ′ = �A A . Thus, the two solutions are equal if 2 2ˆ ′ = �a a . The terms involving 
( )2d  match. The terms involving ( )1s  would match if it could be shown that: 

1 1?1 1 T 1 1 T 1 T
1 1s s s A s A s

− −− − − − −   − + = +   C C D D C D C D C DC D C         (35) 

But this equation is true by TV82-B. The terms Am  also match, because of 
the matrix identity 

1 1T 1 T 1 1 1
1 1 1A s s s A A

− −− − − −   + = +   DC D C D C D D C D C DC           (36) 

derived in Appendix A.4. Consequently, the solutions, ( ) ( )2 2
K P=m m , and their 

posterior covariances, ( ) ( )2 21 1
2 2

ˆ
Km Pm

− −′= = = �C A C A  are equal. Applying ( ) 1i
Km i

−= �C A  
to the KF recursion, and TV82-B and T 1 Tˆ ˆ

i i s
−′= +A A D C D  to present-time 

Thomas recursion, leads to: 

( ) ( ) 11 T 11 1 T
1

i i
i d i s

−+ +− −
+  = + + 
� �A G C G DA D C  

( ) ( )

( ) ( )

11 1 T1 1 1 T 1 T 1
1

11 1 T1 1 T

ˆ ˆ

ˆ

i i
i d s s s i s

i i
d i s

−+ +− − − − −
+

−+ +− −

 ′ ′= + − + 

 ′= + + 

A G C G C C D D C D A D C

G C G DA D C
     (37) 

Thus, 1 1
ˆ

i i+ +′=�A A  as long as 1 1ˆ
i i
− −′=�A A . Because the latter is true for 2i = , 
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so the formula can be successively applied to show 1 1
ˆ

i i+ +′=�A A  for all 2i > . 
Similarly, the procedure that demonstrated the equality of 2â  and 2�a  can be 
extended to  

( ) ( ) ( ) ( )1 11 T 11 1 T 1 T
1

i i i i
i d i s i s K

− −+ +− − −
+    = + + + +   

� ��a G C d DA D C s DA D C Dm  

and 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 T 11 1 1 1 T 1
1

1 T 11 1 1 1 T 1 1 1

11 T 11 1 T 1 1

ˆˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

i i i i
i s d s i i s

i i i
d s s i s s i i

i i i i
d s i s i i P

+ +− − − − −
+

+ +− − − − − − −

−+ +− − − −

 ′= + + − 
  ′= + − + 

 ′ ′= + + + 

a C s G C d C DA a D C s

G C d C C DA D C s C DA a

G C d C DA D s C DA A m

     (38) 

Here we have used TV82-B and ( ) 1ˆ ˆi
P i i

− ′=m A a . The terms ending in ( )1i+d  
match. The terms ending in ( )is  also match, since it has been established pre-
viously that 1 1ˆ

i i
− −′=�A A . In order for 1i+�a  to equal 1ˆ i+a , we must have  

( ) ( )i i
P K=m m  and: 

1 ?1 T 1 1 T 1ˆ ˆ
i s s i s i

−− − − −   ′ ′+ = +   
�DA D C D C D A D C D A             (39) 

This equation has the same form as identity (36), where the equality has been 
demonstrated. Starting with 2i = , we have ( ) ( )2 2

P K=m m  and 2 2
ˆ ′ = �A A , which 

implies 3 3
ˆ ′ = �A A  and 3 3ˆ = �a a , which implies ( ) ( )3 3

P K=m m . This process can be 
iterated indefinitely, establishing that the present-time Thomas and Kalman so-
lutions, and their posterior variance, are equal. 

7. Comparison between the Present-Time Solution and GLS 

The present-time solutions at time, j, depends on information available for times, 
( )i j≤  but not upon information that subsequently becomes available (that is, 
for times ( )i j> . This limitation is necessary in a real-time scenario. However, 
the lack of future data leads to a solution that is poorer estimate of the true solu-
tion, than a GLS solution in which the state vectors at all time are globally ad-
justed to best-fit all the prior information and data. 

An outlier that occurs at, or immediately before, the present moment can 
cause large error in the present-time solution. The full GLS solution is less af-
fected because measurements in the near future may compensate (Figure 1). 

Having established links between KF and GLS, we are now able to apply sev-
eral useful inverse theory concepts and especially resolution [4] [5] [7]. In a GLS 
problem, model resolution refers to the ability of the data assimilation process to 
reconstruct deviations of the true model from the one predicted by the prior in-
formation, alone [1]. Data resolution refers to its ability to reconstruct devia-
tions of the data from the one predicted by the prior information [9]. Model res-
olution is quantified by a ( ) ( )KM KM×  matrix, g−=R G G  and data resolu-
tion by a ( ) ( )KN KN×  matrix, g−=N GG , that satisfy. 

( ) ( ) ( ) ( )andtrue true− = − − = −A A A Am m R m m d Gm N m Gm    (40) 
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Figure 1. Hypothetical data assimilation scenario, with 4K = , 1M N= = , D 1= , 
s 0.25= . The initial condition (red box) satisfies ( )0m 0A = . The dynamical equation re-

quires that the slope (dotted red lines) be about 1/4. The data, ( )id , are noisy versions of 
state ( )im , which is expected to linearly increase with time with slope, s. When the 
“present-time” is 3i = , the present-time solution (grey), ( )3

Pm , is pulled down by the 

noisy datum, ( )id , leading to a poor fit to the dynamics at that time. The GLS solution, 
( )3
Gm , is less affected by the outlier, because the datum at time, 4i = , better defines the 

linear trend, leading to a solution at 3i =  that better matched the dynamics. 
 

Resolution is perfect when = =R N I . When ≠R I , an element of the re-
constructed state vector is a weighted average of all elements of the true state 
vector. When ≠N I , an element of the reconstructed data vector is a weighted 
average of all elements of the true data vector. The resolution matrices quantify 
resolution in both time and space. As we will show in the example, below, the 
model resolution (or data resolution) can be temporally poor, even when it is 
spatially good. 

Another important quantity is the full ( ) ( )KM KM×  posterior covariance 
matrix, 

1T
m

−
 =  C F F . In addition to correlations between elements of the state 

vector at a given time, it contains the correlations between elements of the state 
vectors at different times. These coefficients are needed for computing confi-
dence intervals of quantities that depend of the state vectors at two or more 
times. Although R , N  and mC  are large matrices, methods are available for 
efficiently computing selected elements of them using the conjugate gradient 
method [1]. 

Finally, there may be instances in which the covariance, ( )s pC , may be 
known only up to some scalar parameter, p∈ . For example, the choice  

( ) ( )22 21exp
2s i jij

p p x xγ − = − −      
C  expresses decorrelation over a scale length,  

p. An initially poor guess of the parameter, p, can be “tuned” using partial deriv-
atives based on the Bayesian principle [15] and the gradient descent method 
[16]. 

8. Example 

We consider a data assimilation problem based on the heat diffusion Equation 
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(3), with 1t x∆ = ∆ =  and 0 0.4c = . The state vector, ( )im , represents temper-
ature at position, x , and is of length 31M = . The source is Gaussian function 
in space and impulsive function in time, plus additive noise: 

( ) ( ) ( )22
1

1exp
2

i j
j x j i ss s x x nδ− = − − +  

                (41) 

with scale length, 5xs = , and peak position, 1
2

x M x= ∆ . Here, ( )j
sn  is a Nor-  

mally-distributed random variable with zero mean and variance, 2 0.05sσ = . 
The initial condition is: 

( ) ( )0
0m j

A Ai
m n  = +                         (42) 

where 0 0.1m =  and ( )j
An  is a Normally-distributed random variable with zero 

mean and variance, 2 0.07dσ = . The dynamical Equation (2) is iterated for 
61K =  time steps, to provide the “true” state vector. As expected, the solution 

has a Gaussian shape with a width that increases, and an amplitude that de-
creased, with time (Figure 2(A)). The data are a total of 10N =  temperature 
measurement at each time, 2i ≥ , made at randomly-selected positions (without 
duplications) and perturbed with Normally-distributed random noise with zero 
mean and variance, 2 0.10dσ = . 

GLS solutions were computed by both the full Thomas algorithm (Figure 2(B)) 
and by solving the T T  = F F m F f  system by the conjugate gradient method (not 
 

 
Figure 2. Comparison of solutions. (A) True solution. (B) Difference between the Gene-
ralized least squares solution and the true solution. (C) Difference between the present- 
time Thomas solution and the true solution. (C) Difference between the Kalman solution 
and the true solution. Note that color scale for differences is expanded with respect to the 
one for the true model. 
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shown). They were found to be identical to machine precision. Present-time so-
lutions were computed for both the present-time Thomas (Figure 2(C)) and KF 
algorithms (Figure 2(D)). They were also found to be identical to machine pre-
cision. 

In general, both the GLS and present-time solutions fit the data well. However, 
the present-time solution matches the true model more poorly than does the 
GLS solution (Figure 3). In this numerical experiment, the present-time solution 
is about 10% poorer than the GLS solution, quantified with the root mean 
squared deviation from the true solution. However, the percentage, while always 
positive, varies considerably when the underlying parameters are changed. 

Both the Thomas and Kalman versions of the present-time algorithm are well 
suited for providing ongoing diagnostic information, such as posterior cova-
riance and root mean squared data fitting error (Figure 4), which can provide 
quality control in real time applications. 

 

 
Figure 3. Histogram of ratios of the root mean squared error between the present-time 
estimate, ( )i

Pm , 1, ,i K= � , and the true state and the root mean squared error between 

GLS estimate, ( )i
Gm , 1, ,i K= � , and the true state, for 1000 realizations of the exemplary 

data assimilation problem. 
 

 
Figure 4. Kalman Filtering solution of the exemplary data assimilation problem. (A) the 
data, ( )id , 1, ,i N= � . (B) The estimated state ( )i

Km , 1, ,i K= � . (C) The root mean 
square data prediction as a function of time, i. (D) The posterior variance as a function of 
time, i.  
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The model resolution matrix, R , (Figure 5(A)) for this exemplary problem 
has a poorly-populated central diagonal, meaning that some elements of the 
state vector, ( )i

jm , are well-resolved from their spatial neighbors, ( )
1

i
jm ±  while 

others are very poorly resolved. The matrix large elements along other diagonals, 
corresponding to, offset from the main diagonal by M rows, indicating that some 
elements are not well resolved from their temporal neighbors, ( )1i

jm ± . The tem-
poral width of the resolving kernel is about ±4, and the shape is very irregular, 
indicating very uneven averaging is taking place (Figure 6). The data resolution 
matrix, N , (Figure 5(A)) has a well-populated central diagonal, meaning that 
mosts elements of the predicted data vector, ( )pre i

jd , are well-resolved from their 
spatial neighbors, ( )

1
pre i
jd ± . Like R , it also has elements along other diagonals, 

corresponding to, offset from the main diagonal by M rows, indicating that some 
elements are not well resolved from their temporal neighbors, ( )1pre i

jd ± .  
 

 
Figure 5. Central portion of the resolution matrices for the exemplary data assimilation problem. (A) The 
model resolution matrix, R . (B) The data resolution matrix, N . The portion shown corresponds time 
slices 20 23i≤ ≤ . 

 

 
Figure 6. Rows of the model resolution matrix, R  (colors), rearranged into an ( ),x t  grid, for three target points (circles) (A) 

15, 12x t= = ; (B) 15, 25x t= = ; (C) 15, 38x t= = . The high intensities are localized near the target points (good), but have a 
rough pattern (bad). 
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9. Conclusion 

In this paper, we examine a data processing scenario in which real-time data as-
similation is performed using Kalman Filtering, and then reanalysis is performed 
using generalized least squares (GLS). In this problem, spatial characteristics of 
the system are described by a state vector (mode parameter vector), and its tem-
poral characteristics by the evolution of the state-vector with time. We explore 
the relationship between the real-time Kalman Filter estimate and the GLS rea-
nalysis estimate of the state vector. We show that the KF solution at a given time 
is equal to the GLS solution that one would obtain if it excluded data for future 
times. Furthermore, we show that the recursive procedure in KF is exactly equiva-
lent to the solution of the GLS problem via Thomas’ algorithm for solving the 
block-tridiagonal matrix that arises in the reanalysis problem. This connection 
indicates that GLS reanalysis is better considered the final step of a single process, 
rather than a “different method” arbitrarily being applied, post factor. Now that 
this connection between KF and GLS has seen identified, the familiar GLS con-
cepts of model and data resolution can be applied to KF. We provide an exem-
plary problem, based on thermal diffusion. In addition to showcasing our result, 
the example demonstrates that the state vector and vector of predicted data can 
be poorly-resolved in time, even when they are well resolved in space. 
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Appendix 

A.1) Proof that g
m A G A

− = − ≡ C I G G C P C . This derivation is well known 
[6], but is presented here for completeness and to point out potential pitfalls 
should it be applied incorrectly. Because d  and Am  are independent of one 
another, ( ) ( )Ig g g

G A A A
− − −= − + = + −m G d Gm m G d G G m , the normal rules 

of error propagation apply. The posterior covariance, mC , is: 

( ) ( )T T T

T T T T T

T T T T

T 1 1 T 1 T 1

T 1 T 1 T 1

T 1

g g g g
m d A

g g g g g g
A d A A A

g g g g
A A d A A

A A A A A A A

A A A A A A A

A A A

− − − −

− − − − − −

− − − −

− − − −

− − −

−

= + − −

= + + − −

 = + + − − 
= + − −

= + − −

= −

C G C G I G G C I G G

C G C G G GC G G C G G G GC

C G GC G C G C G G G GC

C C G A AA GC C G A GC C G A GC

C C G A GC C G A GC C G A GC

C C G A GC g g
A A A G A

− − = − = − ≡ C G GC I G G C P C

 (A.1) 

Here, we have used the fact that T 1g
A

− −=G C G A , with T
A d = + A GC G C . 

Although GP , has the form of a projection operator, it is a function of AC , and 
has deceptive properties. Consider the case in which A ε=C S , where S  is an 
invertible symmetric matrix. In the limit of the parameter, ε , becoming indefi-
nitely large, mC  does not also become indefinitely large, but rather tends to 

1T 1
d

−−  G C G , which is the posterior variance that arises from the data, only. The 
zero limit tends to zero; that is, when Am  is known very accurately, so is Gm . 

A.2) Derivation of the TV82-A and TV82-B identities, following [6]. Consider 
invertible symmetric matrices, 1C  and 2C , and arbitrary matrix, M . The ex-
pression T T 1 T

1 2
−+M M C MC M  can alternately be factored: 

T 1 T 1 T 1 T
1 1 2 2 1 2
− − −   + = +   M C C MC M C M C M C M           (A.2) 

Multiplying by the inverses yields identity TV82-A: 
1 1T T 1 T 1 T 1

2 1 2 2 1 1

− −− − −   + = +   C M C MC M C M C M M C         (A.3) 

Now consider the expression 
1T T

2 2 1 2 2

−
 − + C C M C MC M MC , which by 

the above identity equals 
1T 1 T 1

2 2 1 1 2

−− − − + C C M C M M C MC . Factoring out the 
term in brackets  

11 T 1 1 T 1 T 1
2 1 2 1 2 1 2

−− − − − −    + + −    C M C M C M C M C M C MC       (A.4) 

cancelling terms yields identity TV82-B: 
1 1T T 1 T 1

2 2 1 2 2 2 1

− −− −   − + = +   C C M C MC M MC C M C M       (A.5) 

A.3) The Thomas algorithm [10] for a symmetric block-diagonal matrix is 
well-known; we reproduce it here for completeness. The 𝑖𝑖th row of the matrix 
has elements B , iA , TB  and the right-hand size is ia . Consider the step in 
the upper-triangularization process when rows ( )1i −  and above have been 
triangularized, but rows ( )1i −  and below have not: 

( ) ( )1 T
1 1

ˆ ˆi i
i i

−
− −+ =A m B m a  
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( ) ( ) ( )1 1Ti i i
i i

− ++ + =Bm A m B m a                  (A.6) 

The second row is modified by multiply the top row by 1
1

ˆ
i
−
−−BA  and adding 

the result to the second, which eliminates the first term, yielding: 
( ) ( )11 T T 1

1 1 1
ˆ ˆ ˆi i

i i i i i
+− −

− − −
 − + = − A BA B m B m a BA a           (A.7) 

Note that the new row has two terms, and that the coefficient of the second is 
always TB , which is the same pattern as the first row. Thus, the bottom row 
becomes a new top row, and the recursion is 

11 1 1 1 T
1 1 1

ˆ ˆ ˆfollowed by i i i

−− − − −
−

 = = − A A A A BA B  

1
1 1 1 1

ˆˆ ˆ ˆfollowed by i i i i
−
− −= = −a a a a BA a               (A.8) 

After the recursion, the matrix upper-bidiagonal with diagonals, ˆ
iA  and 

TB  and the right-hand side is ˆ ia . It is back-solved as: 
( ) ( ) ( )11 1 Tˆ ˆˆ ˆfollowed byK i i

K K i i
+− −  = = − m A a m A a B m       (A.9) 

A.4) Verification of the identity in (36): 
1 1?T 1 T 1 1 1

1 1 1A s s s A A

− −− − − −   + = +   DC D C D C D D C D C DC  

1 1?T 1 T 1 1
1 1 1A s A s s A

− −− − −   + = +   DC D C DC C D D C D C  

?T 1 1 T 1
1 1 1A s A A s s

− − −   + = +   DC D C D C DC D C C D  

1 1
1 1

T T
A s A s

− −   + = +   DC D C D D DC D C D D            (A.10) 

 
 
 
 

 

https://doi.org/10.4236/am.2022.136036

	Links between Kalman Filtering and Data Assimilation with Generalized Least Squares
	Abstract
	Keywords
	1. Introduction
	2. Generalized Least Squares Applied to the Data Assimilation Problem
	3. Recursive Solution Using the Thomas Method
	4. Present-Time Solution
	5. Kalman Filtering Is Not “Filtering” in the Strict Sense
	6. The Present-Time Thomas and Kalman Filtering Solutions Are Equal
	7. Comparison between the Present-Time Solution and GLS
	8. Example
	9. Conclusion
	Acknowledgements
	Conflicts of Interest
	References
	Appendix

