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Abstract: Plant polysaccharides (PPS) composed of more than 10 monosaccharides show high safety
and various pharmacological activities, including immunoregulatory, antitumor, antioxidative, anti-
aging, and other effects. In recent years, emerging evidence has indicated that many PPS are beneficial
for metabolic diseases, such as cardiovascular disease (CVD), diabetes, obesity, and neurological dis-
eases, which are usually caused by the metabolic disorder of fat, sugar, and protein. In this review, we
introduce the common characteristics and functional activity of many representative PPS, emphasize
the common risks and molecular mechanism of metabolic diseases, and discuss the pharmacological
activity and mechanism of action of representative PPS obtained from plants including Aloe vera,
Angelica sinensis, pumpkin, Lycium barbarum, Ginseng, Schisandra chinensis, Dioscorea pposite, Poria cocos,
and tea in metabolic diseases. Finally, this review will provide directions and a reference for future
research and for the development of PPS into potential drugs for the treatment of metabolic diseases.

Keywords: plant polysaccharides; metabolic disease; characteristics; pharmacological activities;
mechanism of action

1. Introduction

With the successful treatment of many infectious diseases worldwide, noncommu-
nicable diseases (NCDs) have become a major risk factor for human health and life. Of
all these NCDs, metabolic syndrome (MetS) affecting metabolic health poses the largest
global threat [1]. Metabolic diseases are caused by many risk factors, including obesity,
hypertension, insulin resistance (IR), genetics, and the environment. Among them, obesity
has become the most common and important in view of statistics that indicate that nearly
half of the diabetes burden and one-quarter of the heart disease burden are reportedly
caused by being overweight or obese [2]. Emerging evidence indicates that most common
diseases including diabetes, CVD, nonalcoholic fatty liver disease (NAFLD), and central
nervous system (CNS)-related disease are metabolic diseases [3].

Currently, with the improvement in quality of life, an increasing number of people
tend to choose natural medicines, especially plant-based supplements, for the prevention
and treatment of diseases [4,5]. Polysaccharides are a kind of component that can be widely
found in different plant species, and the structures comprise a variety of monosaccharides
linked by glycoside bonds. Numerous studies indicate that plant polysaccharides (PPS)
show multiple functional activities, mainly including immunity regulation and antitumor,
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anti-inflammatory, antivirus, antiradiation, and hypoglycemic effects. Most importantly,
in vivo experiments have demonstrated that most PPS are relatively nontoxic and have few
side effects [6]. Recently, many PPS have been widely studied in the potential treatment of
metabolic diseases. For example, Aloe polysaccharides (APs) improve diabetes by activating
the PERK and IRE1 pathways [7]. Angelica sinensis polysaccharides(ASPs) exert a neuro-
protective effect in Alzheimer’s disease (AD) by regulating the Aβ25-35 neurotransmitter
balance, free radiation metabolism, inflammation, and neuronal apoptosis [8]. In addition,
Poria cocos polysaccharides (PCPs) improve atherosclerosis (AS) by regulating blood lipid
levels, decreasing malondialdehyde (MDA) levels, and increasing superoxide dismutase
(SOD) activity [9]. Although many kinds of PPS have shown positive effects in lowering
blood sugar and blood pressure and protecting the liver and heart [10], there are still prob-
lems, such as poor targeting, poor stability, rapid blood clearance rate, and unconcentrated
scope of action, which seriously affect bioavailability and clinical application [11,12]. In this
review, we introduce the common characteristics and functional activity of PPS. In addition,
the common risks and molecular mechanism of metabolic diseases are emphasized, and
the pharmacological activity and mechanism of action of several representative PPS in
metabolic diseases are summarized and discussed. Finally, this review should provide
directions for future research of PPS in metabolic diseases.

2. Plant Polysaccharides
2.1. Type

Phytochemical studies reveal that polysaccharides are the most abundant components
in plants [13]. To date, many types of PPS, including starch, cellulose, polysaccharide,
and pectin, have been reported. Of these, starch and cellulose are the two main groups
in plants. The polymers have been found to form cell walls, which are also known as cell
wall polysaccharides such as cellulose. In addition, other polymers are the main source of
energy and water in many plant organs and are called storage polysaccharides, and they
include starch [14]. According to the different parts of plants, PPS can also be divided into
polysaccharides of plant stem, leaf, flower, fruit, and root [15].

2.2. Composition

Recent studies have found that PPS are an important class of biological polymers
composed of more than 10 monosaccharides and are linked by glycosidic bonds, and
the molecular weight is up to tens of thousands or even millions [16]. As shown in
Table 1, although there are some differences in the composition of polysaccharides in
different plants, the main monosaccharides are glucose, fructose, galactose, arabinose,
xylose, rhamnose, fucose, mannose, and uronic acid. For example, acemannan in Aloe vera
is mainly composed of acetylated Man, Glc, and Gal [17]. ASPs in Angelica sinensis are
mainly composed of glucuronic acid, glucose, arabinose, and galactose [17,18]. The novel
natural low-molecular-mass polysaccharide (SLWPP-3) in pumpkin (Cucurbita moschata
Duch.) mainly comprises rhamnose, glucose, arabinose, galactose, and uronic acid [19].

2.3. Structure

The structure of PPS comprises monosaccharides linked by glycosidic bonds. The
glycosidic bonds of PPS are mainly α-(1→ 6)-D, α-(1→ 4)-D, and β-(1→ 4)-D [6]. Most
importantly, the biological activities of polysaccharides are closely related to their primary
and higher structures [20]. However, due to large molecular weight (up to 10 million),
complicated structure, and the absence of model compounds, few studies have reported the
structure–activity relationships of PPS [16]. Structurally, polysaccharides can be divided
into primary, secondary, tertiary, and quaternary structures, which is more complicated
than the structure of proteins and DNA [21]. The higher structure of polysaccharides is
a complex high-order structure formed by noncovalent bond interactions of side chains
based on the primary structure [22]. In addition, many functional groups of PPS, such as
phosphoric acid groups, sulfuric acid groups, and methylated groups, connect to sugar
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groups and exert pharmacological effects [23]. The chemical structures of several important
PPS, that is Aloe vera [24], Angelica sinensis [25], Schisandra chinensis [26], Poria cocos [27],
and Panax ginseng [28], Pumpkin (Cucurbita moschata) [29], Tea (Camellia sinensis) [30],
Dioscorea opposita [31], and Lycium barbarum [32], are shown in Figure 1.
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Figure 1. Chemical structures of representative PPS. (A) Aloe vera, (B) Angelica sinensis,
(C) Schisandra chinensi, (D) Poria cocos, (E) Panax ginseng, (F) Pumpkin (Cucurbita moschata), (G) Tea
(Camellia sinensis), (H) Dioscorea opposita, (I) Lycium barbarum.

2.4. Functional Activity

It was found that the vast majority of PPS are relatively nontoxic and do not cause sig-
nificant side effects [6]. Studies have demonstrated that PPS have various functional effects,
such as immunomodulatory, antioxidative, antitumor, and antidiabetic activity [33]. The
functional activities of several representative PPS are summarized in Table 1. For example,
acemannan, an important bioactive polysaccharide in Aloe vera [24], was reported to have
the potential of prebiotics [34]. The high-molecular-weight components of acemannan could
be degraded by intestinal microbiota to form oligosaccharides that inhibit intestinal glucose
absorption, thereby lowering blood glucose [24]. Acemannan was also found to reduce
hepatic fat accumulation [17] and promote bone growth [17]. Angelica sinensis polysaccha-
ride (ASPs) has immunological [35], hypoglycemic [36], and liver-protective effects [37].
Panax ginseng polysaccharides (GPs) have hypoglycemic, blood pressure-lowering, and
antidepression effects [38]. Therefore, PPS are the important bioactive components that are
attracting increasing attention from researchers.
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Table 1. Composition, molecular weight, extraction method, and functional activity of representative
polysaccharides from different plant parts.

PPS Plant
Parts Monosaccharides MW

(kDa)
Extract

Methods Functional Activities Reference

APs Stems
and leaf

Glucose, mannose,
galactose,

arabinose, xylose
200–523 HWE, ETE

Regulating immunity, lowering blood
glucose, inhibiting tumor progression,

reducing inflammation, improving
oral disease, regulating CVDs,

promoting bone growth

[17,39–44]

ASPs Rhizome
Glucose, mannose,

galactose, rhamnose,
arabinose, xylose

5.1–2300 HWE

Regulating immunity, inhibiting tumor
progression, reducing radiation,

improving hematopoiesis, lowering
blood sugar and blood lipids,
protecting the liver, inhibiting

oxidative damage and protecting
nerves, reducing joint inflammation

[35–37,45–49]

Pumpkin
(Cucurbita moschata)
polysaccharides

(PPs)

Fruit
Galactose, glucose,
arabinose, xylose,
glucuronic acid

- ALE,
UAE, HWE

Inhibiting cancer progression,
reducing oxidation, lowering blood
sugar, reducing bacteria, reducing
toxicity, reducing blood pressure,
reducing blood lipids, lowering

cholesterol levels, assisting the healing
process in wounds

[19,50–55]

Lycium barbarum
polysaccharides

(LCPs)
Rhizome Rhamnose, fucose,

arabinose, galactose 10–2300 UAE, EAM,
MAM, SFM

Enhancing the intestinal microbiota,
boosting beneficial bacteria levels,

modulating innate immune response,
reducing oxidation, delaying aging,

increasing metabolism lowing
intraocular pressure, regulating

immunity, inhibiting tumor
progression, improving neurological

diseases, lowering blood sugar

[56–60]

GPs Rhizome
Arabinose, galactose,

rhamnose, galacturonic
acid, glucuronic acid

3.2–1900 ETE

Relieving depression, reducing blood
glucose, regulating immunity,
inhibiting cancer progression,

reducing oxidation, reducing radiation

[38,61,62]

Schisandra chinensis
polysaccharides

(SCPs)
Fruit

Rhamnose, fucose,
arabinose, xylose,

mannose,
glucose, galactose

- ETE, HWE

Lowering blood sugar, relieving
fatigue, relieving a cough,

reducing inflammation,
improving neurological diseases,

reducing hyperprolactinemia,
promoting regeneration, reversing

liver injury, inhibiting cancer
progression, protecting the intestines

[10,63–69]

Dioscorea opposita
polysaccharides

(DOPs)
Rhizome

Glucose,
mannose,

xylose,
galactose,
arabinose,

fucose

- HWE, ETE

Reducing blood sugar,
inhibiting cancer progression,

reducing oxidation, promoting
endometrial epithelial proliferation,

regulating immunity, protecting
the heart

[31,70–72]

PCPs Rhizome

Glucose,
fucose,

arabinose,
xylose,

mannose,
galactose

41–500

HWE,
MAE,

EE,
UE

Reducing liver injury, inhibiting cancer
progression, reducing inflammatory

factors and blood lipid levels, relieving
depression, regulating immunity

[27,73–78]

Tea
(Camellia sinensis)
polysaccharides

(TPs)

Rhizome

Glucose, rhamnose,
arabinose, mannose,

ribose, xylose, galactose,
fucose, galacturonic acid

1000–5000
HWE,

MAE, EE,
UAE

Inhibiting cancer, reducing blood
sugar, reducing oxidation, reducing

inflammatory factors and blood lipid
levels, relieving fatigue

[79,80]

MW, molecular weight; AHE, acid hydrolysis extraction; ALE, alkaline; UAE, ultrasound-assisted enzymatic;
HWE, hot water extraction; EAM, enzyme-assisted extraction method; MAM, microwave-assisted extraction
method; SFM, supercritical fluid extraction; ETE, ethanol extraction; MAE, microwave-assisted extraction;
EE, enzymatic extraction; UE, ultrasound extraction; EE, enzymatic extraction.
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3. Metabolic Diseases

Metabolic diseases are characterized by disorder of the generation and storage of
energy. In general, the substances, including sugar, protein, fat, vitamins, and minerals,
in the human body cannot be metabolized effectively, resulting in the occurrence and
development of metabolic diseases, such as obesity, diabetes, CVD, nonalcoholic steatohep-
atitis (NASH), nervous system disease (NSDs), and cancer. These metabolic diseases are
thought to be affected by a complex interplay between genetics, epigenetics, susceptibility,
environmental factors, and nutrition [81].

3.1. Common Risk Factors

MetS is a progressive, interdependent pathophysiological state consisting of a number
of causal risk factors that become increasingly resistant to illness. Inflammation, visceral
obesity, ectopic (especially liver and muscle), IR, and sugar consumption play key roles
in disease pathogenesis [82]. To better reflect the underlying pathophysiology of MetS,
inflammatory and prethrombotic markers, including insulin levels, plasminogen activator
inhibitors, C-reactive protein (CRP), interleukin-6 (IL-6), uric acid (UA) levels, and microal-
buminuria (MUA) are considered. In addition, phenotypic features, such as chronic kidney
disease (CKD) and NAFLD, polycystic ovary syndrome (PCOS), and obstructive sleep
apnea (OSA) are highlighted [83]. As reported by Kassi et al., other abnormalities such as
chronic proinflammatory, prethrombotic states, and sleep apnea have also been added to
the entity of the syndrome, making the definition of MetS more and more complete [83].
At the same time, they also revealed that there is some debate as to whether this entity is
a substitute for comprehensive risk factors that expose individuals to specific risks [81].
Emerging evidence indicates that obesity, abdominal adiposity, or indicators of IR, impaired
glucose metabolism, hypertension, and atherogenic dyslipidemia are common risk factors
for various metabolic diseases [84]. In general, MetS is defined as a combination of three
or more risk factors, including abdominal obesity, high triglycerides (TG), low- and high-
density lipoprotein cholesterol (LDL-C and HDL-C), and high blood pressure, according to
the consensus statement of the National Heart, Lung and Blood Institute and the American
Heart Association [85]. Visceral obesity has been shown to be a major trigger of MetS, thus
underscoring the importance of a high-calorie diet and lack of exercise as major causative
factors [84]. Among all proposed mechanisms, alterations in lipid and glucose metabolism,
IR, chronic inflammation, hypertension, etc., appear to be responsible for the initiation of
MetS. Obesity is associated with MetS primarily through inflammatory processes [86]. Adi-
pose tissue produces and releases a variety of pro- and anti-inflammatory factors, including
the adipokines leptin, adiponectin, and resistin, as well as cytokines and chemokines, such
as tumor necrosis factor-α (TNF-α), leptin, IL-6, and monocyte chemoattractant protein-1
(MCP-1) [87]. Among them, IL-6 strongly stimulated hepatocytes to produce and secrete
CPR, indicating the existence of a proinflammatory state [88]. Furthermore, the accumu-
lation of free fatty acids (FFAs) in obesity activates a cascade of proinflammatory serine
kinases, such as IkB kinase and c-Jun-terminal kinase (JNK), which, in turn, promotes
the release of IL-6 from adipose tissue, triggering the synthesis and secretion of CPR by
hepatocytes [89]. This leads to metabolic disorders, such as IR, lipotoxicity, and changes in
glucose metabolism and AS. IR increases the production of renin-angiotensin II, resulting
in the production of reactive oxygen species (ROS). In turn, oxidative stress can lead to
endothelial nitric oxide synthase (eNOS) imbalance and vascular endothelial dysfunction.
Together with ROS involved in inducing mitochondrial dysfunction and macromolecular
damage, oxidative stress is involved in the pathogenesis and progression of CVD, such
as AS, hypertension heart failure, and peripheral arterial diseases [90]. Moreover, the
IR-mediated increase in circulating FFAs is thought to play a key role in the pathogenesis
of MetS. The increased FFAs promote the protein kinase activation in the liver, thereby
promoting gluconeogenesis and lipogenesis. Eventually, compensation fails and insulin
secretion decreases, thereby increasing the risk of CVD [91] (Figure 2).
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Figure 2. The association between abdominal obesity and MetS. Excessive intake and reduced
physical activity can lead to abdominal obesity. On the one hand, abdominal obesity leads to
increased TNF-α, IL-6, and ROS and decreased adiponectin and nitric oxide through inflammatory
pathways. On the other hand, an increase in FFA leads to gluconeogenesis, which increases fat
and TG production and reduces glucose intake and insulin production. This leads to a series of
metabolic diseases.

3.2. Cardiovascular Disease

CVD is the general term for cardiovascular and cerebrovascular diseases, including
systemic vascular disease or systemic vascular disease in the heart and brain. It mainly
includes AS, aneurysm disease, coronary heart disease, cerebral infarction, and hyperten-
sion [92]. Numerous studies have shown that the occurrence of CVD is closely related
to metabolic disorder [93], which manifests as hyperinsulinemia (HINS), hypertension,
elevated LDL, and IR [94]. For example, IR leads to vascular stiffness, dysfunction of
endothelial vessels, and vascular smooth muscle, which finally develop into various CVDs,
such as AS, hypertension, coronary heart disease, and stroke [95]. In addition, LDL in
plasma cholesterol increases the deposition of lipids on the arterial wall, resulting in
coronary heart disease and AS [96] (Figure 3).
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Figure 3. Common risk factors and various metabolic diseases. Risk factors for neurological disorders
include obesity, high blood pressure, HDL-C, and high TG and IR. Risk factors for CVD include
hypertension IR, increased waist circumference, low HDL, HDL-C, and high TG. Risk factors for
NASH include obesity, diabetes, and MetS. Risk factors for diabetes include IR and abdominal obesity.
Risk factors for cancer include central obesity and hypercholesterolemia. At the same time, drugs
and environmental toxins can also affect human health from the respiratory tract and cause a series
of metabolic diseases.

3.3. Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is a group of MetS that is characterized by absolute
or relative insufficiency of insulin secretion, and decreased sensitivity of target organs to
insulin, followed by metabolic disorders of fat, protein, water, and electrolytes [97]. In
recent years, a large number of studies have shown that obesity, genetics, islet dysfunction,
and intestinal flora are involved in the process of energy metabolism, which is closely
related to the occurrence and development of T2DM [97]. IR is an important metabolic
risk factor in T2DM. During the initial stage of IR, β cells in the pancreas secrete insulin to
control blood sugar, leading to HINS in these individuals. However, when individuals are
unable to maintain the levels of normal blood sugar through this compensatory mechanism,
they develop T2DM [98]. In addition, obesity alone, especially abdominal adiposity, is
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a major determinant of the development of T2DM [99]. Furthermore, Larsen et al. first
reported that there were significant differences in gut microbiota between T2DM patients
and normal population [98]. Intestinal flora are also an important factor in the occurrence
and development of T2DM [97]. In an established animal model of T2DM, liver fat was
found to be supranormal [100]. Suzuki et al. reported a transient progression of diabetes
from weight gain to increased liver enzyme levels and onward to hypertriglyceridemia
(HTG) and then glucose intolerance [101] (Figure 3).

3.4. Nervous System Disease

Metabolic disorders can also cause NSDs, of which stroke [101] and depression [102]
are the two most common. Stroke is characterized by blocked blood vessels. Clots form
in the brain and cut off blood flow, blocking arteries and causing blood vessels to rupture,
leading to bleeding. During a stroke, an artery in the brain ruptures, causing brain cells
to suddenly die from lack of oxygen [103]. In one study, metabolism equivalents were
associated with a higher risk of recurrent stroke in patients with ischemic stroke [104].
Abdominal obesity, high blood pressure, low HDL-C, and high TG and IR are recognized
as risk factors for stroke [104]. Among them, obesity is an important metabolic factor
affecting stroke, which leads to a prethrombotic state of inflammation that accelerates
the progression of AS [105]. Depression is a metabolic brain disease and a global health
challenge [106]. It has been reported that obesity is associated with depression, and the
risk of depression is greater when obesity is associated with poor metabolic conditions,
including hypertension, dyslipidemia, and high CPR or IR [107]. In addition, a poor diet is
also a risk factor for depression [108]. Therefore, these risk factors can trigger a range of
responses, such as lethargy, fatigue, excessive sleepiness, binge eating, weight gain, diurnal
mood changes, and impaired cognitive performance [109] (Figure 3).

3.5. Nonalcoholic Steatohepatitis

NASH is a condition of chronic liver injury and inflammation caused by excess lipid
accumulation in the liver [110], and is characterized by hepatocellular damage, inflamma-
tion, and fibrosis [111,112]. The pathology of NASH includes steatosis, lobular mixed cell
inflammation, hepatocyte degeneration or cell death, and fibrosis [113]. Emerging evidence
indicates that NASH is closely associated with obesity, diabetes, and MetS [114]. Among
these comorbidities, T2DM appears to be the most important risk factor for NASH and
the most important clinical predictor of adverse clinical outcomes [115]. Epidemiological
studies have shown that approximately 83% of NASH patients present with hyperlipi-
demia, 82% of NASH patients are obese, and 48% of NASH patients are diagnosed with
T2DM [116,117]. Over time, NASH can progress to cirrhosis, end-stage liver disease, or the
need for liver transplantation, and is associated with liver specificity and increased overall
mortality. Therefore, early diagnosis and targeted treatment are needed to improve NASH
patient outcomes [118] (Figure 3).

3.6. Other Metabolic Diseases

In addition, metabolic diseases also include cancer [119], gout [45], and osteoporo-
sis [120]. MetS is reported to be closely associated with cancer because it increases cancer
risk and cancer-related mortality [119]. Cancer patients with MetS are reported to have
higher mortality rates than patients without MetS [121]. In addition, Mets is associated
with an increased risk of several common cancers, including pancreatic, colorectal, liver,
endometrial, and postmenopausal breast cancer, in adults [122]. Central obesity and
hypercholesterolemia are the main factors leading to the association between MetS and
cancer [123,124]. The pathophysiological mechanisms that contribute to MetS cancer devel-
opment include chronic hyperglycemia, exposure to endocrine disruptors, hyperuricemia
and IR, abnormal sex hormone metabolism and adipokines, air pollution, and endocrine
changes associated with nightshift work [119]. Gout is a chronic disease of deposition
of monosodium urate crystals, which form in the presence of increased urate concentra-
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tions [86]. Hyperuricemia is the central risk factor for the development of gout [125]. In
addition, a large number of studies have shown that gout is associated with an increased
risk of death, mainly due to CVD [107]. Osteoporosis is a bone disease characterized by
impaired bone strength that leads to an increased risk of fracture [126], and the risk factors
contributing to osteoporosis include smoking, nutrition, neuromuscular function, bone
mass, bone size, structure, microstructure and intrinsic properties [127]. In addition, the
incidence of osteoporosis increases with age and is associated with higher rates of disability
and mortality [127] (Figure 3).

4. The Modulation of Plant Polysaccharides in Metabolic Disease
4.1. Aloe vera Polysaccharides

Aloe vera, belonging to the Liliaceae family, is a short-stemmed plant that stores
water in its plants. Phytochemical studies have shown that Aloe vera contains polysac-
charides, sugars, vitamins, minerals, amino acids, enzymes, sugars, and anthraquinones.
APs, being the most abundant compounds, are required for skin care, health care, an-
tioxidative qualities, and wound healing [128]. In addition, APs are reported to have
therapeutic potential in metabolic diseases (Table 2). For example, APs protected against
cerebral ischemia–reperfusion injury in the middle cerebral artery occlusion (MCAO) of
male Wister rats via downregulating the expression of caspase-3, thereby inhibiting neu-
ronal apoptosis. However, this study has not clarified its mechanism of action associated
with anti-apoptosis, and more studies are needed to investigate whether APs alleviate
cerebral ischemia–reperfusion injury via other pathways such as antioxidation and anti-
inflammation [129]. In addition, APs significantly inhibited the apoptosis of palmitate-
induced HIT-T15 cells via alleviating endoplasmic reticulum (ER) stress. Mechanistic
studies revealed that APs inhibited the activation of PERK and IRE1 pathways and the pro-
duction of ROS induced by palmitate. Through comparison, AP mixture with a molecular
weight greater than 50 kDa showed the best anti-apoptosis and antioxidation activities.
In db/db mice, the oral administration of APs significantly decreased the fasting blood
glucose (FBG) levels [7]. Therefore, APs have therapeutic potential for MCAO and T2DM
via antioxidation and anti-apoptosis (Table 2).

4.2. Angelica Sinensis Polysaccharides

Angelica sinensis is an important medicinal herb in China. Its medicinal value has
been commonly known for a long time, among which the effects of promoting blood
circulation and relieving pain, dredging meridians, and regulating meridians are remark-
able [130]. Polysaccharides are a kind of bioactive component in Angelica sinensis that
exhibits beneficial effects in some metabolic diseases, such as AD and diabetes (Table 2). In
an Aβ25-35-induced rat model of AD, ASPs improved spatial learning and memory im-
pairment, regulated the balance of neurotransmitters, inhibited the expression of proinflam-
matory cytokines, including TNF-α, IL-1β, and TNF-α, inhibited the activity of SOD and
catalase (CAT), decreased MDA activity, and inhibited the expression of caspase-3 and the
ratio of Bax/Bcl-2. Mechanistic studies revealed that APs activated the BDNF/TrkB/CREB
signaling pathway to exert a neuroprotective effect [8]. In addition, in the prediabetic
and streptozotocin (STZ)-induced diabetic BALB/c mice, the oral administration of ASPs
reduced the FBG, alleviated abnormal fasting serum insulin concentrations, decreased the
homeostasis model assessment–IR index and body weight, improved the dyslipidemia con-
ditions, reduced serum total cholesterol (TC) or triglyceride (TG) concentrations, increased
hepatic glycogen (HG) and muscle glycogen (MG) concentrations, reduced IR-related serum
inflammatory factors IL-6 and TNF-α, and restored the impaired pancreatic/hepatic tissues
or adipose tissues. All these data indicate that ASPs exert hypoglycemic and hypolipi-
demic effects via ameliorating IR [36]. Therefore, ASPs are promising therapeutic drugs
for AD and diabetes via antioxidation, anti-inflammation, anti-apoptosis, and improving
IR (Table 2).
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4.3. Pumpkin Polysaccharides

Pumpkin, belonging to the family Cucurbitaceae, is an edible plant and an important
TCM. Phytochemical studies revealed that polysaccharides, amino acids, fatty acids, protein,
carotene, and vitamins are the important components of pumpkin [131]. Emerging evidence
indicates that polysaccharides are the most abundant carbohydrate in pumpkin and have
a variety of biological activities, including antibacterial, antidiabetic, anti-inflammatory,
antioxidant, and anticancer [131]. Recently, pumpkin polysaccharides (PPs) have been
reported to improve metabolic disorder in many diseases (Table 2). For example, PPs
remodeled intestinal microbiota by reducing Erysipelotrichaceae and increasing the abun-
dance of Achmania, thereby reducing FBG, IR and blood lipid TC, TG, and LDL levels, and
improving blood glucose and lipid metabolism in T2DM rats [132,133]. This study indicates
that PPs have therapeutic potential for T2DM through modulating intestinal microbiota.
In rats fed with high-fat diet, PPs reduced the levels of TG, TC, and plasma LDL-C, and
increased the levels of fecal fat, cholesterol, and plasma HDL-C. Mechanistic studies found
that PPs increased the binding capacity of fat and cholesterol to improve obesity [134].
Therefore, PPs may become an effective drug to treat T2DM and obesity through regulating
intestinal microbiota, lipid, and other metabolic pathways (Table 2).

4.4. Lycium Barbarum Polysaccharides

Lycium barbarum (wolfberry), belonging to the family of Solanaceae, is a shrub native
to China. Phytochemical studies have shown that Lycium barbarum contains polysaccha-
rides, carotenoids, and polyphenols such as caffeic acid, chlorogenic acid, and p-coumaric
acid [135]. Among then, Lycium barbarum polysaccharides (LBPs) are the major components
and have a variety of medicinal values, including antioxidative, anticancer, antifatigue,
and antiaging effects [136]. Recently, LBPs have been reported to exhibit beneficial effects
in many metabolic diseases (Table 2). In high-fat diet and STZ-induced diabetic rats, the
oral administration of LBPs reduced the concentration of albuminuria, blood urea nitrogen,
IL-2, IL-6, TNF-α, IFN-α, serum levels of monocyte chemoattractant protein-1 (MCP-1),
and cell adhesion molecule-1 (CAM-1), and increased the activity of SOD and glutathione
peroxidase (GSH Px) in serum. Mechanistic studies show that LBPs inhibited inflammation
and oxidative stress by inhibiting the NF-κB pathway [137]. In addition, the oral admin-
istration of LBPs reduced serum TG, TC, and LDL-C levels, and increased HDL-C levels
and the production of short-chain fatty acids (SCFA) in obese mice. These data indicate
that LBPs promote lipid metabolism by improving IR and fatty acid oxidation, activating
the adenosine monophosphate-activated protein kinase CoA carboxylase pathway [138].
Therefore, LBPs have become potential drugs for treating diabetes and obesity mainly
through improving IR, and antioxidation and anti-inflammatory effects (Table 2).

4.5. Ginseng Polysaccharides

Ginseng has a long history as a medicinal herb for the treatment of human diseases in
many Eastern countries, including China, Korea, and Japan. Phytochemical studies have
shown that Ginseng contains terpenoids, flavonoids, lignans, sterols, and other compounds.
To date, polysaccharides have been identified and extensively studied for their pharmaco-
logical activities, including immunoregulation, antitumor, antibacterial, anti-inflammatory,
and antioxidative effects [139]. In addition, Ginseng polysaccharides (GPs) exhibit a regula-
tory effect on metabolic disorders in many diseases (Table 2). For example, in open-field
test-induced anxiety C57BL/6, the oral administration of GPs increased the walking dis-
tance and staying time in the central area of the mice and decreased their average speed.
Mechanistic studies revealed that GPs reduced the expression of tyrosine hydroxylase
(TH) in the midbrain and dopamine D1 receptor (DRD1) [140]. In high glucose diet and
STZ-induced rats, the oral administration of GPs reduced the FBG of rats, restored the
disturbed intestinal flora, and enhanced the β-production capacity of d-glucosidase, which
enhances the hypoglycemic effect of ginsenoside Rdb1. The mechanistic study showed
that GPs changed the biotransformation pathway of ginsenoside Rb1 and improved the
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biotransformation rate of ginsenoside Rb1 to CK [141]. Therefore, GPs may have thera-
peutic potential for anxiety and diabetes by regulating the center and improving intestinal
flora (Table 2).

4.6. Schisandra Chinensis Polysaccharides

Schisandra chinensis, also known as magnolia berry or five-flavor fruit, is a famous
Chinese herbal medicine, with its traditional efficacies of calming nerves, delaying dou-
ble aging, preventing CVD, and inhibiting fatigue. Phytochemical studies have shown
that dibenzocyclooctadiene lignans and triterpenoids are the important components in
Schisandra chinensis. In addition, polysaccharides have been identified as important bioac-
tive components in Schisandra chinensis, which exhibit many biological activities, such as
antitumor, immune enhancement, and liver protection [64]. In addition, Schisandra chinensis
polysaccharides (SCPs) improve metabolic diseases via regulating metabolism pathways
(Table 2). In chronic fatigue syndrome (CFS) rats induced by restraint stress, forced exercise,
and crowded noisy environment, the oral administration of SCPs significantly increased the
daily food intake, weight, spatial memory, escape ability, and staying time in water of mice.
Mechanistic studies revealed that SCPs promoted the recovery of the tricarboxylic acid
cycle metabolism pathway and the alanine, aspartic acid, and glutamate metabolism path-
ways [142]. In STZ-induced T2DM rats, SCPs reduced FBG, increased fasting insulin level,
improved glucose tolerance, and inhibited the expression of proinflammatory cytokines,
including TNF-α and IL-1β. Mechanistic studies revealed that SCPs downregulated the
NF-κ B and P-JNK signaling pathways and upregulated the IRS-1/PI3K/AKT signaling
pathway [143]. In HFD-induced male NAFLD rats, SCPs reduced the serum level of AST,
ALT, TG, TC, and LDL-C, and increased the level of HDL-C, indicating that SCPs alleviate
the occurrence of NAFLD by regulating the expression of UDP-glucose pyrophosphorylase
(UGP2), UDP-glucose 6-dehydrogenase (UGDH), acetyl coenzyme carboxylase (ACC), and
fatty acid synthase (FAS) in the liver of NAFLD rats [144]. Therefore, SCPs can effectively
improve CFS, diabetes, and NAFLD by regulating metabolism pathways and inhibiting
inflammatory response (Table 2).

4.7. Dioscorea Opposita Polysaccharides

Dioscorea opposita, also known as Chinese Yam, is an edible and medicinal tuber crop in
China, indicating low toxicity and high safety for humans. It is widely used to treat diabetes,
diarrhea, asthma, and other diseases. Modern phytochemistry studies have shown that
Dioscorea opposite contains polysaccharides, amino acids, fatty acids, and steroids. Among
then, Dioscorea opposite polysaccharides (DOPs) are one of the main bioactive substances that
exhibit many important biological activities, such as hypoglycemic, immunomodulatory,
antioxidative, and antitumor activities [145]. In addition, DOPs exhibit an improvement
effect in metabolic diseases (Table 2). For example, in alloxan-induced diabetes mellitus
rats, DOPs reduced blood glucose, increased insulin secretion, and improved the function
of pancreatic β-cells. Its mechanism is closely associated with a reduction in lipid peroxide
and the effective elimination of free radicals, leading to the amelioration of tissue damage
and the promotion of tissue repair and regeneration [146]. In dexamethasone-induced
IR glucose/lipid metabolism diabetic mice, DOPs reduced blood glucose via promoting
the repair of β-insulin cells [147]. Therefore, DOPs as a healthy functional food have
therapeutic potential for diabetes (Table 2).

4.8. Poria Cocos Polysaccharides

Poria cocos, belonging to the fungus family of Polyporaceae, is an edible fungus. In
addition, Poria cocos has been used as a TCM for more than 2000 years. Phytochemical
studies have shown that polysaccharides, triterpenes, sterols, amino acids, fatty acids, etc.,
are the major components in Poria cocos. Among them, PCPs have a wide range of bio-
logical activities, including antidiabetic, antitumor, immunoregulation, anti-inflammatory,
antioxidation, and antiaging effects [27]. In high-fat diet-induced NAFLD mice, the oral
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administration of PCPs decreased serum and hepatic lipid levels, increased lipid utilization,
and decreased lipid synthesis and absorption. Its mechanism is closely associated with
regulation of fatty acid metabolism, bile acid metabolism, and tricarboxylic acid cycle [148].
In addition, the oral administration of PCPs reduced serum TNF-α, IL-6, NO, LDLC, TG,
and TC levels in high-fat diet-induced Apoe−/− mice, Meanwhile, PCPs exerts antiox-
idative effect via decreasing the malondialdehyde (MDA) concentration and increased
the activity of SOD. Mechanistic studies revealed that PCPs inhibited the TLR4/NF-κB
pathway to reduce inflammatory factors and blood lipid levels [9]. Therefore, PCPs im-
prove metabolic diseases such as NAFLD and AS by improving metabolism pathways and
inhibiting inflammatory response and oxidative stress (Table 2).

4.9. Tea (Camellia sinensis) Polysaccharides

Tea is a nonalcoholic drink containing polyphenols such as catechin, epicatechin, epi-
catechin gallate, gallocatechin, and epigallocatechin. In addition, tea polysaccharides (TPs)
are also recognized as the main bioactive components. Increasing studies have shown that
TPs have various biological activities, including antioxidative, antitumor, hypoglycemic,
and hypolipidemic effects [79]. In STZ-induced T2DM rats, the oral administration of
acidic TPs significantly improved plasma and liver lipid metabolism and changed the
composition of intestinal flora, as evidenced by decreased Bifidobacterium, Blautia, Dorea,
Oscillospira, Desulfovibrio, and Lactobacillus species. Mechanistic studies revealed that TPs
regulated the primary and secondary bile acid biosynthesis and downregulated the NOD-
like receptor signaling pathway, lipopolysaccharide biosynthesis, and the insulin signaling
pathway [149]. In the formalin test and several behavioral animal models, the oral adminis-
tration of TPs dose-dependently decreased the number of crossings in the activity chamber
and in the open field test, and reduced the number of buried marbles. These results suggest
that TPs exert antinociceptive, sedative, and anxiolytic-like effects. However, whether
the mechanism of action of TPs is associated with the interference of CNS is unknown,
and needs more future studies to elucidate [150]. Therefore, TPs may become effective
drugs to treat T2DM and CNS-related pain and anxiety through regulating the metabolism
pathways and gut microbiota (Table 2).

Table 2. The pharmacological activities and action mechanisms of PPS in the models of various
metabolic diseases.

PPS Dosage Model Effect Mechanism Diseases

APs

60 mg/kg MCAO male Wister
rats (in vivo)

Regulating immunity, resisting tumor,
protecting liver, and
nourishing stomach

Inhibiting aoptosis Cerebral
ischemia [129]

5, 10 and
20 mg/ml

100 mg/g

Palmitate-induced
HIT-T15 cells

(in vitro)
db/db mice (in vivo)

Regulating ER stress, inhibiting
neuronal apoptosis, reducing

blood sugar

Inhibiting PERK and IRE1
pathways, inhibiting

ROS generation
T2DM [7]

ASPs

50 mg/kg
Hippocampus was
injected with Aß25 -

35 rats (in vivo)

Inhibiting inflammation
and apoptosis

Activating the
BDNF/TrkB/CREB pathway AD [8]

400 and
600 mg/kg

STZ-induced diabetic
BALB/c mice

(in vivo)

Inhibiting TNF-α, IL-1β, and TNF-α
expression, inhibiting SOD and CAT

activity, decreasing MDA content,
inhibiting caspase-3 and

Bax/Bcl-2 expression

Activating the
BDNF/TrkB/CREB
signaling pathway

T2DM [35]

PPs

100, 250 and
500 mg/kg

STZ-induced rats
(in vivo)

Reducing FBG, IR and blood lipid TC,
TG and LDL levels, improving

blood glucose
T2DM [133]

95% (w/w)
HF diet plus
5% (w/w) PP

Male Sprague
Dawley rats (in vivo)

Reducing TG, TC, and plasma LDL-C,
increasing the levels of fecal fat,
cholesterol, and plasma HDL-C

Increasing the binding
capacity of fat and cholesterol Obesity [134]
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Table 2. Cont.

PPS Dosage Model Effect Mechanism Diseases

LBPs

100, 250,
and

500 mg/kg

STZ induced
diabetic rat

(in vivo)

Reducing the concentration of
albuminuria, blood urea nitrogen,
IL-2, IL-6, TNF-α, IFN-α, serum

levels of MCP-1 and ICAM-1,
increasing SOD and GSH

Px activity

Inhibiting the
NF-κB pathway T2DM [137]

0.2%
LBPs water HFD mice (in vivo)

Reducing TG, TC and LDL-C
levels, increasing HDL-C

and SCFA

Improving IR and fatty
acid oxidation, activating

the adenosine
monophosphate activated

protein kinase CoA
carboxylase pathway

Obesity [138]

GPs

50 and
200 mg/kg

C57BL/6 anxiety
mice (in vivo)

Increasing the walking distance
and staying time in the central
area of the mice, decreasing the

average speed of mice

Reducing the expression
of tyrosine hydroxylase

(TH) in the midbrain and
dopamine D1

receptor (DRD1)

Anxiety [140]

0.2, 0.5 and
1 g/kg

High-sugar diet
and STZ -induced

rats (in vivo)

Reducing FBG, restoring
disturbed intestinal flora,

enhancing β- d-glucosidase,
enhancing the hypoglycemic

effect of ginsenoside Rdb1

Changing the
biotransformation

pathway of ginsenoside
Rb1, improving the

biotransformation rate of
ginsenoside Rb1 to CK

T2DM [141]

SCPs

200 mg/kg CFS rats (in vivo)
Increasing food intake and

body weight,
improving the memory deficit

Promoting the recovery of
tricarboxylic acid cycle

metabolism pathway and
alanine, aspartic acid and

glutamate
metabolism pathway

CFS [142]

25, 50 or
100 mg/kg

STZ -induced rats
(in vivo)

Reducing FBG, increasing fasting
insulin level, improving glucose

tolerance, and inhibiting the
expression of

proinflammatory cytokines

Downregulating NF- κ B
and P-JNK signaling

pathways, upregulating
the IRS-1/PI3K/AKT

signaling pathway

T2DM [143]

100 mg kg

High-fat
diet-induced male

Wistar rats
(in vivo)

Reducing AST, ALT, TG, TC, and
LDL-C, increasing HDL-C

Regulating UGP2, UGDH,
ACC and FAS expression NASH [144]

OPs

alloxan diabetic
rats (in vivo)

Reducing blood glucose,
increasing insulin secretion, and

improving the function of
pancreatic β-cells

Reducing lipid peroxide
and eliminating

free radicals
Diabetes [146]

50, 100 and
150 mg/kg

Dexamethasone-
induced IR

glucose/lipid
metabolism

diabetic
mice)(in vivo)

Reducing blood sugar T2DM [147]

PCPs

100, 200,
and

400 mg/kg

ApoE−/−mice
(in vivo)

Reduced serum TNF-α, IL-6, NO,
LDL-C, TG and TC levels,

decreasing MDA, and
increasing SOD

Inhibiting the
TLR4/NF-κB pathway AS [9]

3 g/day

High-fat
diet-induced
NAFLD mice

(in vivo)

Increasing the lipid utilization,
decreasing the lipid synthesis

and absorption

Regulating fatty acid
metabolism, bile acid

metabolism, and
tricarboxylic acid cycle

NAFLD [148]
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Table 2. Cont.

PPS Dosage Model Effect Mechanism Diseases

TPs

200, 400
and

800 mg/kg

STZ-induced
T2DM rats
(in vivo)

Reducing intestinal flora

Regulating primary and
secondary bile acid

biosynthesis,
downregulating the

OD-like receptor
signaling pathway

T2DM [149]

3, 10, and
30 mg/kg

Formalin test and
several behavioral

animal models
(in vivo)

Resisting anxiety, pain, anxiety Anxiety [150]

5. Conclusions and Perspective

Metabolic diseases, including obesity, diabetes, CVD, NASH, NSDs, and cancer, are
characterized by the disorder of the generation and storage of energy. They can be affected
by the common risks from genetics, epigenetics, susceptibility, environmental factors, and
nutrition. PPS are an important class of biopolymers with a wide range of sources and
varieties. They contain more than 10 monosaccharides linked by glycosidic bonds. Most
PPS from edible plants have high safety and exhibit beneficial effects in many metabolic
diseases such as cerebral ischemia, T2DM, AD, CFS, NASH, AS, and NAFLD. Their mecha-
nisms of action are associated with the regulation of apoptotic, inflammatory, oxidative
stress, gut microbiota, and many metabolic pathways (Figure 4). As a natural product, PPS
allow them to be used as substitutes for fat or sugar. Therefore, the clinical value and broad
application prospects of PPS can allow them to be developed into a series of functional
foods in the future. However, there are still many problems to be solved. First, although
the development of GC-MS, X-ray fiber diffraction, mass spectrometry, nuclear magnetic
resonance, electron diffraction, and other analytical techniques makes it possible to obtain
some structural information of PPS, there are still many difficulties and challenges in the
elucidation of the complicated structure of polysaccharides. In addition, the unelucidated
or unambiguous structure makes a structure-activity study difficult. In recent years, the
research mainly focused on the effects and mechanisms of PPS on obesity and T2DM. In
future, more attention should be paid to exploring the therapeutic potential and mecha-
nism of action of other metabolic diseases, such as osteoporosis, hyperuricemia, and other
diseases. Finally, this review should provide directions and references for the future study
of PPS in metabolic diseases.
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