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Abstract: SARS-CoV-2 is a positive single-strand RNA-based macromolecule that has caused the
death of more than 6.3 million people since June 2022. Moreover, by disturbing global supply chains
through lockdowns, the virus has indirectly caused devastating damage to the global economy. It is
vital to design and develop drugs for this virus and its various variants. In this paper, we developed
an in silico study-based hybrid framework to repurpose existing therapeutic agents in finding drug-
like bioactive molecules that would cure COVID-19. In the first step, a total of 133 drug-likeness
bioactive molecules are retrieved from the ChEMBL database against SARS coronavirus 3CL Protease.
Based on the standard IC50, the dataset is divided into three classes: active, inactive, and intermediate.
Our comparative analysis demonstrated that the proposed Extra Tree Regressor (ETR)-based QSAR
model has improved prediction results related to the bioactivity of chemical compounds as compared
to Gradient Boosting-, XGBoost-, Support Vector-, Decision Tree-, and Random Forest-based regressor
models. ADMET analysis is carried out to identify thirteen bioactive molecules with the ChEMBL
IDs 187460, 190743, 222234, 222628, 222735, 222769, 222840, 222893, 225515, 358279, 363535, 365134,
and 426898. These molecules are highly suitable drug candidates for SARS-CoV-2 3CL Protease. In
the next step, the efficacy of the bioactive molecules is computed in terms of binding affinity using
molecular docking, and then six bioactive molecules are shortlisted, with the ChEMBL IDs 187460,
222769, 225515, 358279, 363535, and 365134. These molecules can be suitable drug candidates for
SARS-CoV-2. It is anticipated that the pharmacologist and/or drug manufacturer would further
investigate these six molecules to find suitable drug candidates for SARS-CoV-2. They can adopt
these promising compounds for their downstream drug development stages.

Keywords: SARS-CoV-2; 3C-like protease; drug repurposing; regression model; bioactive molecules;
molecular docking

1. Introduction

Novel coronavirus (nCoV-19) is a rapidly spreading pandemic. The International Com-
mittee on Taxonomy of Viruses (ICTV) officially named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) on February 11, 2020 [1]. At first, coronavirus-2 appeared
in December 2019 in Asia and then spread out worldwide. A total of 228 countries and
more than 500 million people got infected. SARS-CoV-2 is like MERS-CoV and SARS-CoV.
Both these viruses have caused severe acute respiratory syndrome. There are seven strains
of Alpha and Beta coronaviruses in human coronaviruses. HCoV-229E and HCoV-NL63
belong to the type of alpha-coronaviruses. On the other hand, HCoV-HKU1, HCoV-OC43,
SARS-CoV, MERS-CoV, and SARS-CoV-2 belong to beta-coronaviruses [2]. COVID-19 virus
is a single-strand ribonucleic acid (ssRNA) virus that consists of multiple structural and
non-structural proteins. The structural proteins have four different types: spike (S), mem-
brane (M), envelope (E), and nucleocapsid (N) proteins. However, non-structural proteins
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contain sixteen different types, named NSP1, NSP2, NSP3 . . . , and NSP16. These proteins
are mainly more responsible for spreading out SARS-CoV-2 than other types of proteins.
Consequently, these proteins are considered potential targets to prevent SARS-CoV-2, espe-
cially the 3C-like protease (3CLpro or Mpro), which is crucial for replication [3]. Figure 1a
shows a visual model of SARS-CoV-2 with all the constituent proteins, and Figure 1b
depicts its large genome size of 29.9 kb, starting from 5′ to 3′. This virus has the inherent
capability of auto-reproduction into sixteen different types of non-structural proteins.
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Upon entrance into the host cell, the viral genome is translated to produce two overly-
ing polyproteins named pp1a and pp1b [4]. During the proteolytic activity, these polypro-
teins are excised from the 3CL protease (3CLpro, also known as the Main protease (Mpro)).
These proteins work with a papain-like protease to slice the polyproteins to produce a total
of sixteen functional nonstructural proteins (NSPs). It was reported that the eleven slicing
sites of polyprotein 1ab were shared and operated by only the 3CLpro of SARS, and no
other human protease was involved in the slicing process [4]. To initiate viral replication,
the viral replication transcription complex (RTC) is assembled by the sliced NSPs.

The computational drug discovery process has become a crucial strategy to develop
the drug against COVID-19. It can be an effective tool to save money and reduce the time
for drug discovery/repurposing [5]. Recently, machine learning (ML) approaches have
been employed for data modeling and drug discovery applications. Various online medical
databases that contain sufficient information related to bioactive molecules are available.
This has made it possible to employ the ML approaches-based QSAR model to quickly
develop vaccines for the COVID-19 pandemic [6]. Due to stringent storage requirements,
this vaccine is rather difficult to transport and warehouse. Moreover, successful virus vacci-
nations for humans and animals are seriously hampered by vaccine-associated increased
illness [7]. This has shown that people are not as receptive to getting vaccinated as they
are to taking drugs [8]. On the other hand, underdeveloped countries suffered the most
from the pandemic, with the official death tolls of India and Brazil, at the time of writing
this manuscript, being 525,000 and 672,000, respectively. Since the start of this pandemic,
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in India and Indonesia, millions of people have been pushed back into poverty [8]. Such
nations would benefit from cheap, easy-to-store, and rapidly deployable effective drugs
against SARS-CoV-2.

In this study, we repurposed existing therapeutic agents by examining drug-like
bioactive molecules for COVID-19. For this purpose, we have developed a hybrid approach
that combines the useful information extracted via various bioinformatics tools such as
SWISSADME, AUTODOCK VINA, and PYMOL. In the proposed approach, a total of 133
bioactive compounds are retrieved from a large chemical space at the ChEMBL database
against the SARS-CoV 3CL protease target. The EDA analysis is carried out using a
molecular descriptor via Lipinski’s rule. In EDA analysis, the Mann–Whitney U test
determined the significant difference between fifteen bioactive molecules belonging to the
active class and the bioactive molecules of the inactive class. The PubChem fingerprints
are computed using RDKit for the balanced dataset. In the next step, QSAR modeling is
carried out using six diverse types of regression algorithms: Extra Tree, Gradient Boosting,
XGBoost, Support Vector, Decision Tree, and Random Forest. These algorithms are being
employed in the cheminformatics literature for drug discovery. These models predict the
molecules with the best biological activities. Our comparative analysis demonstrated that
the Extra Tree Regressor (ETR)-based QSAR model has improved prediction results related
to the bioactivity of chemical compounds as compared to other ML-based QSAR models.
In this study, from ADMET analysis, we have identified thirteen novel bioactive molecules
for SARS-CoV-2. The efficacy of these bioactive molecules is computed in terms of binding
affinity using molecular docking, and then the six most favorable potential drug candidates
are short-listed, with the ChEMBL IDs 187460, 222769, 225515, 358279, 363535, and 365134.

The rest of the paper is arranged as follows: a literature review of recent methods used
to identify lead compounds is given below. The results and discussions are presented in
Section 2. In Section 3, the material and proposed hybrid framework is explained. Section 4
highlights the conclusion of this study.

Literature Review

In recent years, various ML algorithms have been proposed in the development of
vaccines and drug development processes. In particular, several efforts are carried out to
perform the virtual screening of bioactive molecules that could inhibit SARS-CoV-2. In
a study [9], a unique drug similarity model was developed using the characteristics of
existing drugs such as remdesivir, dexamethasone, and baricitinib to inhibit COVID-19.
The interactive compounds were retrieved using the known chemical–chemical interaction
to repurpose existing drugs against SARS-CoV-2. A two-tier clustering approach was
developed, in which tier-1 used the t-Distributed Stochastic Neighbor Embedding (t-SNE)
and tier-2 analyzed the two-cluster analysis. Then, molecular docking was performed to
check the validation of the top drug candidates. In a research work [10], a network-based
model was developed to explore the drug candidates against COVID-19. The genome
similarity was used among SARS-CoV-2 and other viruses such as SARS and MERS. A
molecular network was designed and found 30 suitable drugs including chloroquine,
thalidomide, and rographolide. In another work [11], the authors performed virtual
screening to repurpose the drugs against COVID-19. They identified the two existing drugs
as Lurasidone and Talampicillin. They also identified two drug-likeness molecules from the
Zinc database. In the work, they performed molecular dynamic simulation, and ADMET
analysis was also carried out.

In another research work [12], a deep learning approach was employed using SVM,
logistic regression, and random forest to calculate the molecular descriptor. From QSAR
modeling, they calculated the binding affinities of proteins with the drug target. In [13],
quantitative high-throughput screening (qHTS) was performed to investigate the potential
inhibitors against SARS-CoV-2 3CL Protease. In another work [14], the uses and limitations
of bioinformatics tools was explained to prevent and reduce the spread of SARS-CoV-2.
In [15], the authors proposed that niacin would be a potential therapy for COVID-19.
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They explored the properties of CRC patients and investigated the prognosis, biological
functions, survival rate, and binding capacity. Further, in [16], some FDA-approved drug
candidates were proposed for the therapy of COVID-19. The Jaccard similarity analysis
was carried out on the lung cancer drugs dataset taken from Drug Bank and PubChem
using graph neural network models.

A method of virtual screening was developed and found multiple drug candidates [17].
In that work, two antiviral candidates of bafetinib and 7-hydroxystaurosporine gave better
results. In another work [18], the authors proposed shape similarity-based pre-docking and
interaction similarity-based post-docking methods to screen the drugs against COVID-19.
In [19], the authors analyzed the literature-based discovery methods to reposition the
drugs for COVID-19. They also compared literature-based methods such as BITOLA,
Arrowsmith, and SemBT. In another study [20], a graphical neural network based on the
learning of the embedding of chemical compounds to predict molecular properties for
COVID therapy was suggested. In another research work [21], the authors investigated
various ML models and deep learning methods to find the chemical compounds against
COVID-19 through the Ligand-Based Drug Designing approach. However, in another
study [22], the authors employed the Naïve Bayes ML algorithm and Drug Bank to screen
the anti-COVID compound. In an interesting study [23], the authors investigated the
effectiveness of antiviral medications against COVID-19 using a plaque reduction assay.

2. Results and Discussion

In this section, we will discuss the exploratory data analysis, evaluation of the pro-
posed model, comparative analysis, ADMET analysis, and molecular docking, respectively.

2.1. Exploratory Data Analysis

The exploratory data analysis (EDA) is performed using Lipinski’s rule-of-five de-
scriptor. The chemical space of the descriptor shows the structure–activity relationship.
The bioactive compounds, based on the IC50 value, were categorized as active, inactive,
and intermediate classes. Its detail is given in Section 3.1.3.

Statistical analysis is used to find the significant difference between both the active and
inactive classes. For this purpose, the Mann–Whitney U test is employed. This nonpara-
metric test determines whether the dependent variable differs between two independent
groups. It evaluates if the dependent variable’s distribution is the same for the two groups
and, consequently, comes from the same population. Table 1 illustrates the Mann–Whitney
U test results regarding significant differences in both bioactivity classes.

Table 1. Mann–Whitney U test Results.

Descriptor Statistics p Alpha Interpretation

LogP 440 0.4892 0.05 Same distribution
(fail to reject H0)

MW 232 0.0023 0.05 Different distribution
(reject H0)

NumHAcceptors 214.5 0.0009 0.05 Different distribution
(reject H0)

NumHDonors 157 0.00002 0.05 Different distribution
(reject H0)

pIC50 0 1.37 × 10−9 0.05 Different distribution
(reject H0)

This table indicates that both classes are different. The interpretation of four descriptors—
MW, NumHacceptors, NumHDonors, and pIC50—highlights that both classes are significantly
different, except for the logP descriptor. This descriptor shows no significant difference between
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the two classes. The LogP values for the active class are the lowest, while the other class’
differences are minuscule. Hence, for logP, the test gave no significant difference.

Figure 2a–e represent the box plots of the Mann–Whitney U test results, in which
LogP, MW, NumHAcceptors, NumHDonors, and pIC50 are shown in Figure 2a, Figure 2b,
Figure 2c, Figure 2d, and Figure 2e, respectively. LogP is a commonly utilized metric for
figuring out a compound’s lipophilicity, as well as its permeability and penetration of
membranes. However, the molecular weight (MW) of a substance is very important to
estimate the right size of a compound. Its numerical values are crucial for transit through
a lipid membrane. On the other hand, NumHAcceptors and NumHDonors are used
to measure the hydrogen bonding capacity and refer to the quantity of hydrogen bond
acceptors and donors, respectively.
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According to the analysis of the box plots, the margins of the boxes indicated that there
was a negligible difference between both bioactivity classes for LogP. However, the MW,
NumHAcceptors, NumHDonors, and pIC50 box plots revealed a clear difference between
both classes.

First, based on their IC50 values, we categorized whether the bioactive molecule
belongs to the active, inactive, or intermediate class. Then, we applied the statistical
test of the Mann–Whitney U test to determine the significant difference between the
active and inactive classes. At the outcome of this analysis, we found that 15 bioactive
molecules belonging to the active class and 58 molecules belonging to the inactive class
are significantly different. The fifteen bioactive molecules of the active class, with their
ChEMBL IDs, chemical formulae, PubChem IDs, Isomeric SMILES, and 3D structures, are
tabulated in Table 2.
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Table 2. Description of Fifteen Bioactive Molecules.

CHEMBL
ID Molecular Formula PubChem ID Isomeric

SMILES
3D

Structure

CHEMBL 187460 C19H20O3 160254
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2.2. Evaluation o thef Proposed Model 
The proposed QSAR model is developed using the ETR algorithm for 76 bioactive 

molecules in the balanced dataset. For this purpose, X and Y data matrices are prepared, 
in which 881 PubChem fingerprints are placed in the X matrix, and their corresponding 
pIC50 values are placed in the Y matrix. To train the model, the input dataset is split into 
a 70/30 training-to-testing ratio. Here, 70 represents the dataset used to train the model, 
and 30 represents the dataset used to test the model. Now, the QSAR Model is evaluated 
using two well-known performance measures: coefficient of determination (R2) and root 
mean square error (RMSE). The value of R2 highlights the statistical metric of fit that 
measures how much variation of a dependent variable (pIC50) is explained by the inde-
pendent features/variables. Its value ranges from 0 to 1. The higher the value of R2, the 
better the model would be. However, RMSE represents the relative error between the ex-
perimental and model-predicted values of pIC50. Figure 3 demonstrates the experimental 
and ETR model-predicted pIC50 for the training and testing data. 
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2.2. Evaluation o thef Proposed Model 
The proposed QSAR model is developed using the ETR algorithm for 76 bioactive 

molecules in the balanced dataset. For this purpose, X and Y data matrices are prepared, 
in which 881 PubChem fingerprints are placed in the X matrix, and their corresponding 
pIC50 values are placed in the Y matrix. To train the model, the input dataset is split into 
a 70/30 training-to-testing ratio. Here, 70 represents the dataset used to train the model, 
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mean square error (RMSE). The value of R2 highlights the statistical metric of fit that 
measures how much variation of a dependent variable (pIC50) is explained by the inde-
pendent features/variables. Its value ranges from 0 to 1. The higher the value of R2, the 
better the model would be. However, RMSE represents the relative error between the ex-
perimental and model-predicted values of pIC50. Figure 3 demonstrates the experimental 
and ETR model-predicted pIC50 for the training and testing data. 
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in which 881 PubChem fingerprints are placed in the X matrix, and their corresponding 
pIC50 values are placed in the Y matrix. To train the model, the input dataset is split into 
a 70/30 training-to-testing ratio. Here, 70 represents the dataset used to train the model, 
and 30 represents the dataset used to test the model. Now, the QSAR Model is evaluated 
using two well-known performance measures: coefficient of determination (R2) and root 
mean square error (RMSE). The value of R2 highlights the statistical metric of fit that 
measures how much variation of a dependent variable (pIC50) is explained by the inde-
pendent features/variables. Its value ranges from 0 to 1. The higher the value of R2, the 
better the model would be. However, RMSE represents the relative error between the ex-
perimental and model-predicted values of pIC50. Figure 3 demonstrates the experimental 
and ETR model-predicted pIC50 for the training and testing data. 
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Table 2. Cont.

CHEMBL
ID Molecular Formula PubChem ID Isomeric

SMILES
3D

Structure

CHEMBL 358279 C20H14N2O3 515964
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2.2. Evaluation o thef Proposed Model 
The proposed QSAR model is developed using the ETR algorithm for 76 bioactive 

molecules in the balanced dataset. For this purpose, X and Y data matrices are prepared, 
in which 881 PubChem fingerprints are placed in the X matrix, and their corresponding 
pIC50 values are placed in the Y matrix. To train the model, the input dataset is split into 
a 70/30 training-to-testing ratio. Here, 70 represents the dataset used to train the model, 
and 30 represents the dataset used to test the model. Now, the QSAR Model is evaluated 
using two well-known performance measures: coefficient of determination (R2) and root 
mean square error (RMSE). The value of R2 highlights the statistical metric of fit that 
measures how much variation of a dependent variable (pIC50) is explained by the inde-
pendent features/variables. Its value ranges from 0 to 1. The higher the value of R2, the 
better the model would be. However, RMSE represents the relative error between the ex-
perimental and model-predicted values of pIC50. Figure 3 demonstrates the experimental 
and ETR model-predicted pIC50 for the training and testing data. 
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perimental and model-predicted values of pIC50. Figure 3 demonstrates the experimental 
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2.2. Evaluation of the Proposed Model

The proposed QSAR model is developed using the ETR algorithm for 76 bioactive
molecules in the balanced dataset. For this purpose, X and Y data matrices are prepared, in
which 881 PubChem fingerprints are placed in the X matrix, and their corresponding pIC50
values are placed in the Y matrix. To train the model, the input dataset is split into a 70/30
training-to-testing ratio. Here, 70 represents the dataset used to train the model, and 30
represents the dataset used to test the model. Now, the QSAR Model is evaluated using
two well-known performance measures: coefficient of determination (R2) and root mean
square error (RMSE). The value of R2 highlights the statistical metric of fit that measures
how much variation of a dependent variable (pIC50) is explained by the independent
features/variables. Its value ranges from 0 to 1. The higher the value of R2, the better the
model would be. However, RMSE represents the relative error between the experimental
and model-predicted values of pIC50. Figure 3 demonstrates the experimental and ETR
model-predicted pIC50 for the training and testing data.

Most commonly, in QSAR modeling, the performance is measured in terms of the
difference between the values of R2 and Q2. This difference should be less than 0.3 [24].
Moreover, a value of Q2 greater than 0.5 shows the good regression performance of the
model, and a value above 0.9 shows an excellent performance. Our model has obtained
an R2 value of 0.63 for the training data and a Q2 value of 0.73 for the testing data. There
is a minor difference (0.10) between R2 and Q2. This indicates that the proposed QSAR
prediction model is the most suitable, having a sufficient estimation power of pIC50.
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2.3. Comparative Analysis

The performance of the proposed QSAR model is compared with five other state-of-
the-art models. These prediction models are trained, and their performances are evaluated
using two performance measures of R2 and RMSE for testing the dataset. The graphical
performance comparison among various regression models in terms of experimental and
predicted pIC50 values is shown in Figure 4a–f. The highest value of R2 = 0.73, for the
testing data, highlights a strong relationship between the experimental and predicted pIC50
values. Figure 4b shows the relationship between the experimental pIC50 and predicted
pIC50 values of GradientBoosting Regressor (GBR), and the corresponding value of R2

is 0.62. However, Figure 4c shows an R2 value of 0.59 for XGBoost Regressor (XGBR).
Figure 4d–f show a relatively lower fit of 0.59, 0.58, and 0.52 for Support Vector Regressor
(SVR), Decision Tree Repressor (DTR), and Random Forest Repressor (RFR), respectively.

Table 3 highlights the performance comparison of various regression models in terms
of R2, Mean Squared Error (MSE), and RMSE values. A smaller RMSE value indicates that
the model predicts the data accurately. This table indicates that the lowest RMSE value
is 0.074 in our ETR model. The GBR model has a higher RMSE value of 0.078 than our
proposed model. Similarly, there are higher RMSE values of 0.089, 0.078, 0.092, and 0.089
for XGBR, SVR, DTR, and RFR, respectively.

Table 3. Performance Comparison of Various Regression Models.

Regression Model R-Squared MSE RMSE

Extra Tree Regressor 0.73 0.005 0.074

Gradient Boosting Regressor 0.62 0.006 0.078

XGBoost Regressor 0.59 0.008 0.089

Support Vector Regressor 0.59 0.006 0.078

Decision Tree Regressor 0.58 0.008 0.092

Random Forest Regressor 0.52 0.008 0.089
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2.4. ADMET Analysis

The ADMET analysis of the bioactive molecules belonging to the active class is carried
out in terms of six main categories: physicochemical properties, lipophilicity, water solubil-
ity, pharmacokinetics, drug-likeness, and medicinal chemistry. There are ten measures in
physicochemical properties, five measures in lipophilicity, three measures in water solubil-
ity, nine measures in pharmacokinetics, six measures in drug-likeness, and four measures
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in medicinal chemistry. In the study for the ADMET analysis, we have computed a total of
37 properties related to absorption, distribution, metabolism, excretion, and toxicity.

The physicochemical properties are expressed in terms of MW, Topological Polar
Surface Area (TPSA), Number of Hydrogen Bonds Acceptors (NHA), and Number of
Hydrogen Bonds Donors (NHD). NHA and NHD, relevant to the polarity, are the main
measures of the drug-like molecules. The drug needs to be relatively non-polar to pass
through most membranes. A drug needs to be polar to be water-soluble. Overly nonpolar
drugs may not be water-soluble, or they may attach to dietary ingredients or blood proteins
too firmly. These values related to physicochemical properties are shown in column 2 of
Table 4. Further, the values of lipophilicity are calculated in terms of consensus log Po/w.
Its value is computed by taking an average of the values of ilogp, xlogp3, wlogp, mlogp,
and logp (silicos-IT). These values are given in column 3 of Table 4. The water solubility is
categorized into five classes: poorly soluble, soluble, moderately soluble, highly soluble,
and very soluble. These values are given in column 4 of Table 4.

The Pharmacokinetics properties are expressed in terms of the three most significant
measures: gastrointestinal (GI) absorption, Blood–Brain Barrier (BBB) permeant, and skin
permeation (log Kp). A high value of GI absorption means that the drug is absorbable,
and a low values means that it is not absorbable. However, the binary value (yes) of
the BBB measure indicates that bioactive molecules can penetrate through BBB, and the
binary value (no) shows that they cannot penetrate through BBB. On the other hand, the
value of skin permeability (Kp) serves as a proxy for the number of molecules absorbed in
the skin; a more negative value indicates lesser skin absorption. These values related to
pharmacokinetics properties are computed and given in column 5 of Table 4.

The binary values of drug-likeness properties are expressed as “yes/no”. A “yes”
value is computed if 3 of 5 rules are satisfied according to the drug-likeness criteria, such
as Lipinski, Ghose, Veber, Egan, and Muegge rules; otherwise, it is assigned “no”. These
values are given in column 6 of Table 4. The property of medicinal chemistry is measured
in terms of synthetic accessibility. Its numerical score for drug-like molecules is in the range
of 1–10. A numerical value of one indicates that it is very easy to synthesize, and a value
of ten indicates that it is very difficult to synthesize for chemist guidance. This numerical
value is given in column 7 of Table 4.

The most important characteristics, which have been taken into account in most of the
metrics used to create limits in the drug-like chemical space, are lipophilicity, molecular
size, and polarity [25]. There is substantial proof that drugs with a higher lipophilicity and
molecular weight, such as those with a high molecular corpulence, are more likely to be
dropped during clinical trials. These are linked to complications with oral absorption. For
a drug-like compound, the numerical values of MW should be less than 480 g/mol. This
table shows that ChEMBL ID 212454 has a relatively higher value of MW 585.19 g/mol
than the stated criteria. All physicochemical properties of this compound, such as TPSA,
NHA, and NHD, are satisfied, except for the numerical value of MW. The MW measure
is the most important physicochemical property. Further, this compound also has low GI
absorption, is poorly soluble, and violates three of the five drug-likeness criteria. Therefore,
this compound cannot be a potential drug candidate.

On the other hand, ChEMBL ID 212218 has a value of TPSA of 136.16 Å2. That is
greater than the standard criterion TPSA value of 130 Å2. It cannot penetrate through
the blood–brain barrier, and it has poor penetration through the cell membrane. Further,
this compound has also low GI absorption. Therefore, this compound does not satisfy
pharmacokinetic properties as well. We infer that this compound cannot be a potential
drug candidate.

The other thirteen compounds that fulfill the ADMET criteria can be potential drug
candidates. For further validation, these thirteen compounds were investigated for the
molecular docking process.
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Table 4. ADMET Analysis.

ChEMBL ID Physicochemical Properties Lipophilicity Water Solubility Pharmacokinetics Drug-Likeness Medicinal Chemistry

187460 MW 324.58 g/mol TPSA 43.37 Å2

NHA = 3 NHD = 0
Consensus log Po/w 3.06 Moderately soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −5.57cm/s
Yes Synthetic accessibility = 5.25

190743 MW 442.42 g/mol TPSA 69.47 Å2

NHA = 2 NHD = 0
Consensus log Po/w 2.43 Moderately soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −6.91cm/s
Yes Synthetic accessibility = 5.36

212218 MW 459.18 g/mol TPSA 136.16 Å2

NHA = 9 NHD = 0
Consensus log Po/w 3.58 Moderately soluble

GI absorption = Low BBB
Permeant = No Skin Permeation

(log Kp) = −5.64cm/s
Yes Synthetic accessibility = 3.13

212454 MW 585.19 g/mol TPSA 86.04 Å2

NHA = 6 NHD = 0
Consensus log Po/w 3.73 Poorly soluble

GI absorption = Low BBB
Permeant = No Skin Permeation

(log Kp) = −6.33cm/s
No Synthetic accessibility = 8.41

222234Y MW 276.13 g/mol TPSA 51.21 Å2

NHA = 4 NHD = 0
Consensus log Po/w −0.82 Highly soluble

GI absorption = High BBB
Permeant = No Skin Permeation

(log Kp) = −10.08 cm/s
Yes Synthetic accessibility = 5.02

222628 MW 246.71 g/mol TPSA 59.44 Å2

NHA = 4 NHD = 0
Consensus log Po/w −1.05 Highly soluble

GI absorption = High BBB
Permeant = No Skin Permeation

(log Kp) = −9.62 cm/s
Yes Synthetic accessibility = 4.63

222735Y MW 280.81 g/mol TPSA 35.53 Å2

NHA = 4 NHD = 0
Consensus log Po/w 0.73 Very soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −8.19cm/s
Yes Synthetic accessibility = 5.74

222769 MW 350.28 g/mol TPSA 43.37 Å2

NHA = 4 NHD = 0
Consensus log Po/w 0.58 Very soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −9.57cm/s
Yes Synthetic accessibility = 6.00

222840 MW 231.68 g/mol TPSA 51.21 Å2

NHA = 4 NHD = 0
Consensus log Po/w −0.90 Highly soluble

GI absorption = High BBB
Permeant = No Skin Permeation

(log Kp) = −9.85cm/s
Yes Synthetic accessibility = 4.74

222893Y MW 305.86 g/mol TPSA 58.39 Å2

NHA = 3 NHD = 0
Consensus log Po/w 1.04 Very soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −7.90cm/s
Yes Synthetic accessibility = 5.75

225515Y MW 287.81 g/mol TPSA 26.30 Å2

NHA = 4 NHD = 0
Consensus log Po/w 0.06 Very soluble

GI absorption = High BBB
Permeant = No Skin Permeation

(log Kp) = −9.53cm/s
Yes Synthetic accessibility = 5.50

358279 MW 360.57 g/mol TPSA 80.47 Å2

NHA = 3 NHD = 1
Consensus log Po/w 2.06 Soluble

GI absorption = High BBB
Permeant = No Skin Permeation

(log Kp) = −6.45cm/s
Yes Synthetic accessibility = 4.55
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Table 4. Cont.

ChEMBL ID Physicochemical Properties Lipophilicity Water Solubility Pharmacokinetics Drug-Likeness Medicinal Chemistry

363535Y MW 301.48 g/mol TPSA 51.21 Å2

NHA = 3 NHD = 0
Consensus log Po/w 2.29 Soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −5.95cm/s
Yes Synthetic accessibility = 5.35

365134 MW 393.40 g/mol TPSA 69.47 Å2

NHA = 2 NHD = 0
Consensus log Po/w 2.05 Soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −7.30cm/s
Yes Synthetic accessibility = 6.47

426898Y MW 289.80 g/mol TPSA 43.37 Å2

NHA = 4 NHD = 0
Consensus log Po/w 0.57 Very soluble

GI absorption = High BBB
Permeant = Yes Skin Permeation

(log Kp) = −8.23cm/s
Yes Synthetic accessibility = 5.60
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2.5. Molecular Docking

The filtered molecules are obtained from ADMET analyses that belong to the active
class. In the final stage of the current study, molecular docking is performed, and the
binding affinity of the selected inhibitors is checked with the target protein 7JSU. The value
of binding affinity is represented in the unit of Kcal/mol. In the ligand-based docking
approach, we want to investigate the efficacy of the selected inhibitors. Figure 5 visually
depicts the best pose of six bioactive molecules towards the target protein that corresponds
to the lowest binding affinity in the range of −8.4 to −7.0. The best ligands pose towards
the target protein corresponds to the most negative binding energy value.
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Figure 5. Best pose of six bioactive molecules towards the target protein 7JSU.

Table 5 demonstrates the results of the binding affinities of thirteen selected ligands’
computed molecular docking towards the target protein 7JSU. A lower RMSD measure
indicates a higher correctness in the docking geometry of the ligand molecule from its
reference position in the original protein complex. In the study, we found all thirteen
selected ligands that have an RMSD value of zero at their best poses.

In general, a lower value of binding affinity indicates a stronger interaction between
the protein and ligand. From the results in Table 5, we have selected six bioactive molecules,
with the ChEMBL IDs 187460, 222769, 225515, 358279, 363535, and 365134, that possess the
lowest binding affinity in the range of −8.4 to −7.0. So, these can be the potential drug
candidates. The molecular docking result suggested that the ChEMBL ID 358279 is the most
suitable drug candidate among these six candidates, with the lowest binding affinity of
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−8.4. This means that this compound has the strongest interaction with the target protein
7JSU compared to the other bioactive molecules.

Table 5. Docking results of thirteen selected ligands towards the target protein 7JSU.

Protein Name ChEMBL ID Ligand ID Binding Affinity (kcal/mol)

7JSU 187460 160254 −8.0

7JSU 190743 11796320 −6.7

7JSU 222234 16203681 −5.4

7JSU 222628 16203796 −5.4

7JSU 222735 16204324 −6.6

7JSU 222769 16203797 −7.3

7JSU 222840 7230550 −5.3

7JSU 222893 2800273 −6.5

7JSU 225515 16204322 −7.0

7JSU 358279 515964 −8.4

7JSU 363535 114917 −7.6

7JSU 365134 11667869 −7.8

7JSU 426898 16204318 −6.6

3. Materials and Methods

The proposed hybrid framework is divided into four modules, as shown in Figure 6.
This figure shows that module A has different steps involved in the preparation of the
input dataset. However, module B described the development of the QSAR model and the
performance comparisons with different state-of-the-art ML models. Module C explains
how ADMET analysis is carried out for bioactive molecules. Finally, Module D demon-
strates how molecular docking is carried out to validate the results obtained from the
ADMET analysis.
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3.1. Module A: Data Preparation

Module A explains different data preprocessing stages, as follows:

3.1.1. Targeting the Replicating Enzyme

Due to viral enzyme properties, the Main protease, 3C-like protease (3CLpro), is a
potential drug target among coronavirus proteins. This protease, with papain-like protease
(PLpro) in the viral RNA, plays a pivotal role in replication and transcription [26]. It is
also called the Main protease (Mpro). It is a highly conserved and replicated key enzyme.
Due to these crucial characteristics of 3C-like protease, it is an attractive potential target to
investigate the binding inhibitors that can effectively bind the target protein.

3.1.2. Dataset

A dataset of inhibitors (Small Molecules) against SARS coronavirus 3C-like proteinase
(Target ID: CHEMBL 3927) is retrieved from the ChEMBL database [27] that is publicly
available at https://www.ebi.ac.uk/chembl/ accessed on (accessed on 15 January 2022).
The ChEMBL database is manually abstracted from the published literature [27]. It contains

https://www.ebi.ac.uk/chembl/
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bioactive molecules with drug-like features combined with chemical, functional, bioactivity,
and genomic data to contribute to the transformation of genomic information into new
potent drugs. It contains all information for molecules related to the drug-likeness and
few properties of ADMET measures. Currently, this database consists of 18.6 M bioactivity
measurements for more than 2.1 M compounds and 14 K protein targets. Information
from more than 81,000 research publications has been extracted to develop this database.
Our retrieved dataset consists of 133 bioactive molecules out of 8.2 K compounds. These
extracted small inhibitory molecules also contain the values of the standard type of IC50.

3.1.3. Data Preprocessing

The description related to the dataset, as explained in the above section, consists of
133 small inhibitory molecules. These bioactive molecules are measured in standard unit
IC50 values in nM (nanoMol). The molecules with no IC50 values are dropped. Duplicated
data are also deleted. To normalize the IC50 data distribution, we have taken each bioactive
compound to its binding affinity to a target protein and converted it into pIC50 (pIC50 =
−log10 (IC50)). After cleaning and preprocessing, the dataset consists of 86 small bioactive
molecules. Next, bioactive compounds are labeled as either active, inactive, or intermediate
classes based on their IC50 values. Active class compounds are those with IC50 values less
than or equal to 1000 nM. However, inactive class compounds have IC50 values greater than
or equal to 10,000 nM. The compounds with IC50 values between 1001 nM and 9999 nM
are labeled as an intermediate class.

3.2. Module B: QSAR Modeling

In our in silico study, quantitative structure–activity relationship (QSAR) models
are developed to predict the chemical compounds with the best unknown biological
activities. QSAR is a mathematical modeling method for predicting the relationships
between the structural properties of known chemical compounds and their unknown bi-
ological activities. In QSAR modeling, each compound is characterized by its molecular
descriptors, and then the model can be used to predict how the change in the structural
property causes a change in biological activity [28]. Structural properties refer to physic-
ochemical properties that represent the structure. However, biological activities refer to
pharmacokinetic properties.

3.2.1. Exploratory Data Analysis (EDA)

To check the drug-likeness of the bioactive compounds, Lipinski descriptors are
calculated. Lipinski, a scientist of Pfizer, described a set of rules-of-thumb to evaluate the
drug-likeness of a chemical compound. The rule outlines the molecular characteristics of a
drug’s pharmacokinetics—its absorption, distribution, metabolism, and excretion—which
represent how well the drug works in the body (“ADME”) [28]. Lipinski’s rule describes
that, in general, an orally active drug should not violate more than one condition of the
following criteria:

• The Molecular Weight (MW) should be less than 500 Dalton
• The octanol-water partition coefficient (LogP) should be less than 5
• The hydrogen-bond-donors (NumHDonors) should be less than 5
• The hydrogen-bond-acceptors (NumHAcceptors) should be less than 10

By examining Lipinski’s rule-of-five descriptors, the chemical space of 3CL inhibitors
was navigated to obtain insight into the structure–activity connection. This chemical space
analysis may offer vital information about the fundamental characteristics of substances
that control their inhibitory properties. Furthermore, exploratory data analyses via Lipinski
descriptors are performed. Figure 7 shows the frequency plot of the active and inactive
classes. However, Figure 8 depicts a scatter chart comparing MW with LogP. This figure
demonstrates that both bioactivity classes are straddling similar chemical regions.
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3.2.2. Feature Extraction

The PubChem database accessed on (20 January 2022) [29] is used to extract features
from inhibitory molecules. PubChem is one of the largest databases that possess chemical
structures and bioactive molecules. The processed balanced dataset contains 76 small
inhibitory molecules in SMILES format. This format is cleaned from salt and standardizing
tautomer using built-in functions in the PaDEL descriptor [28]. The PaDEL descriptor
calculated the PubChem Substructure Fingerprints using the features of RDKit. Table 6
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illustrates the description of PubChem substructure fingerprints. It consists of 881 columns
in the form of an order list of 0/1 bits. The bit position 0–114 represents the presence of
chemical atoms; the bit position 115–262 represents the presence of the described chemical
ring system; the bit position 263–326 denotes the simple atom pairs; the bit position
327–415 represents the simple atom nearest neighbors; the bit position 416–459 represents
the detailed atom neighborhoods; the bit position 460–712 implies the simple SMARTS
patterns; and the bit position 713–880 signifies the complex SMARTS patterns.

Table 6. PubChem substructure fingerprints description.

Bit Position Description

0–114 Presence of chemical atoms

115–262 Presence of the described chemical ring system

263–326 Presence of simple atom pairs

327–415 Presence of simple atoms nearest neighbors

416–459 Presence of detailed atom neighborhoods

460–712 Presence of simple SMARTS patterns

713–880 Presence of complex SMARTS patterns

3.2.3. Extra Tree Regressor-Based Ensemble Model

The objective of this study is to build regression models that enable the estimation
of the continuous response variable (i.e., pIC50), it being a function of predictors (i.e.,
PubChem fingerprint descriptors). For this purpose, various ML algorithms are developed
for QSAR modeling. Due to the higher prediction performance, we select the Extra Tree
Regressor (ETR)-based ensemble approach. This model employs a meta-estimator to fit
several randomized decision trees and, during training, pick diverse dataset sub-samples.
This algorithm avoids over-fitting and provides improved predictive accuracy.

The input dataset, as explained in Section 3.1.3, consists of a total of 86 bioactive
molecules, in which 15, 58, and 13 bioactive molecules belong to the active, inactive, and
intermediate classes, respectively. In the literature, many useful sampling techniques exist
to balance the input dataset [30,31]. The down-sampling deletes some samples from the
majority class at the cost of losing useful information. On the other hand, up-sampling
balances the dataset by duplicating the samples from the minority class. To balance the
dataset, we have made two adjustments. First, we empirically chose a threshold value of
4.50. Those molecules that have pIC50 values ≥ 4.5 have high potency and are retained in
the dataset. These molecules may belong to the active, inactive, and intermediate classes.
After this adjustment, the 15, 33, and 13 bioactive molecules remain in the active, inactive,
and intermediate classes, respectively. In the work, the bioactive molecules belonging to the
active class are up-sampled to make 30 molecules. These adjustments made the balanced
dataset in both the active and inactive classes. Now, the balanced dataset consists of a total
of 76 bioactive molecules. However, the intermediate-class molecules have an equal chance
to fit in both active and inactive classes. This balanced dataset is used to train and test
the models.

To assess the performance of the regression models, a pair of statistical variables, R2

and root mean square error (RMSE), are used. The R2 value indicates the fitness of the
model. It measures the variance of the dependent variable that is explained by independent
variables. Its values range from 0 to 1, highlighting how our data fit the model. The zero
value shows that the model does not fit the data, and the one value represents that the
model is perfectly fit. RMSE represents the relative error of the predictive model. Finally, a
comparative analysis of regression models is carried out.



Pharmaceuticals 2022, 15, 1333 19 of 21

3.3. Module C: ADMET Analysis

The prediction of Absorption, Distribution, Metabolism, Excretion, and Toxicity
(ADMET) properties plays a significant role in the drug design process. To evaluate
the pharmacokinetics, medicinal chemistry, lipophilicity, water solubility, physicochemical
characteristics, and drug-likeness of bioactive compounds, ADMET analysis is performed
through the SWISSADME platform [32]. The 3D structure of predictive bioactive com-
pounds is retrieved from PubChem for ADMET analysis. The descriptions related to the
CHEMBL ID, Molecular Formula, PubChem ID, Isomeric SMILES, and 3D Structure of
these bioactive molecules are given in Table 2. The structure of these chemical compounds
is converted into SMILES and fed into the SWISSADME webserver for ADMET analysis.
The result of the ADMET analysis decides whether a compound can be a potential drug-like
candidate or not. This would help to filter the bioactive molecules for further analysis.

3.4. Module D: Molecular Docking

The crystal structure of 3C-like protease (3CLpro) (PDB ID: 7JSU) is fetched from
the RCSB Protein Data Bank website on 22 January 2022. This structure is purified by
removing ligands, water molecules, and alternative side chains. The protein is prepared
by adding polar hydrogen atoms and distributing Kollman charges. After making this
macromolecule in a charged form, a GridBox is set up to cover the active side of the 7JSU
protein. The dimensions of x, y, and z are 30, 30, and 30 with spacing 1, and the centers of
x, y, and z are −11.046, 12.826, and 67.789, respectively. Auto-Dock VINA, version 1.2.0;
Software for Molecular Docking; The Scripps Research Institute, La Jolla, USA, 2010 [33]
with default parameters is used to prepare proteins and ligands to perform molecular
docking. The bioactive molecules that are identified after ADMET analysis are used as
ligands in molecular docking. After preparing the ligands, molecular docking is performed
to calculate the binding affinities (kcal/mol) of these ligands with the target protein 7JSU.
The interaction with the lowest binding energy is the best pose. Figure 9 depicts the crystal
structure of the SARS-CoV-2 3CL protease 7JSU, with a resolution of 1.83 Å.
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AutoDock vina was designed and developed to dock the small drug-like molecules to
the proteins with a known structure. The main advantage of this tool is that its performance
is evaluated in terms of the diverse types of protein–ligand complexes related to biological
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and medicinal interest. However, this tool has some limitations as well [34]. For example, it
is not suitable for large chemical compounds/ligands. Sometime, the significant conforma-
tional flexibility is displayed in the protein targets but not demonstrated in AutoDock vina.

4. Conclusions

In this study, we repurposed existing therapeutic agents by examining drug-like
bioactive molecules for COVID-19. We developed a hybrid approach that combines useful
extracted information through various bioinformatics tools. The Main protease, 3C-like
protease (3CLpro), is the most suitable potential drug target among coronavirus proteins due
to its property as a viral enzyme. The current in silico study has explored the small molecule
inhibitors against the infection of COVID-19. The virtual screening was performed on the
ChEMBL database and found 133 bioactive molecules against 3CLpro. QSAR modeling is
developed to predict the chemical compounds with the best biological activities.

Our comparative analysis demonstrated that the proposed Extra Tree Regressor (ETR)-
based QSAR model has improved prediction results related to the bioactivity of chemical
compounds as compared to Gradient Boosting-, XGBoost-, Support Vector-, Decision Tree-,
and Random Forest-based regressor models.

From Lipinski’s rules, we found 86 drug-likeness bioactive molecules against SARS
coronavirus 3CL Protease. From the ADMET analysis on the active class data, we identified
thirteen novel bioactive molecules for SARS-CoV-2. In the next step, the efficacy of bioactive
molecules is computed in terms of binding affinity using molecular docking. This technique
has shortlisted the six most suitable bioactive molecules, with the ChEMBL IDs 187460,
222769, 225515, 358279, 363535, and 365134. These molecules can further be investigated
as drug candidates for SARS-CoV-2 3CL Protease. The pharmacologist community can
adopt these short-listed, relatively small-sized bioactive molecules to develop potential
drug candidates.
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