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ABSTRACT

Loop Quantum Gravity is a theory that attempts to describe the quantum mechanics of the
gravitational field based on the canonical quantization of General Relativity. According to Loop
Quantum Gravity, in a gravitational field, geometric quantities such as area and volume are
quantized in terms of the Planck length. In this paper we present the basic ideas for a future,
mathematically more rigorous, attempt to combine black holes and gravitational waves using the
quantization of geometric quantities introduced by Loop Quantum Gravity.

Keywords: General relativity; loop quantum gravity; Schwarzschild spacetime; gravitational waves;
Planck scale; best regards.

1 INTRODUCTION

A black hole is a region of the universe where
the causal structure of the spacetime is so
deformed by gravity that even light can not scape
from this region. The existence of black holes
in the universe is one of the implications of

Einstein´s field equations for General Relativity
(GR). Today, indirect as well as direct evidence
has accumulated confirming the existence of
black holes. The simplest black hole occurs in the
Schwarzschild spacetime. The Schwarzschild
spacetime is an exact, spherically symmetric,
solution of the Einstein equations describing the
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gravitational field in the exterior region of a
mass M with no electric charge and no angular
momentum. The geometric structure of the
Schwarzschild spacetime is characterized by the
existence of a particular value RS for the radial
coordinate below which it becomes impossible
to scape form the gravitational attraction of the
black hole. The spherical surface defined by RS

is called the event horizon of the black hole.

In 1975 Stephen Hawking [1], using the
methods of quantum field theory in curved
spacetime, showed that black holes are not
really black because, as a consequence of
quantum vacuum fluctuations near the event
horizon, a black hole can emit quantum particles
in the thermal spectrum. As a consequence
of this thermal radiation a black hole has a
temperature and an associated entropy and
can ultimately evaporate. A fundamental open
conceptual problem associated with the Hawking
thermal radiation is the so-called information loss
paradox. Energy is carried away by the Hawking
radiation, so that the black hole eventually
evaporates away entirely, leaving a future with the
causal structure of Minkowski space. Information
that falls past the event horizon, for instance
the black hole mass, appears to be lost. For
a review see refs. [2,3,4,5,6]. In the literature
a black hole with Hawking radiation is termed a
semi-classical black hole, to distinguish it from
the classical black hole described by GR. The
Hawking radiation is a tiny effect for most black
holes. For example, a black hole with 15 times
the mass of our Sun has a temperature of
4, 1 × 10−9K and the time for the black hole to
evaporate all of its mass by means of Hawking
radiation is given by 2, 2 × 1078s which is about
60 orders of magnitude larger than the age of the
Universe [7].

In quantum field theory in curved spacetime, one
treats gravitation classically, as in the framework
of GR. Thus, spacetime structure is described
by a manifold M , on which is defined a classical,
Lorentz signature metric gµν . One thereby avoids
confronting the fundamental difficulty of how to
formulate quantum field theory without a classical
background metrical (and causal) structure of
spacetime. One expects that quantum field
theory in curved spacetime should have only
a limited range of validity [4]. In particular, it
certainly should break down, and be replaced by

a quantum theory of gravitation coupled to matter,
when the spacetime curvature approaches
Planck scales [4]. In this paper we suggest
the possible existence of another mechanism
for the emission of quantum radiation by a black
hole. Here we are interested in a mechanism of
emission of gravitational radiation by a quantum
black hole. The basic concept that supports the
ideas presented in this paper is that of the Planck
scale. Let us briefly review the Planck scale.

In 1899 Max Planck [8] noticed that by combining
three of the fundamental constants of physics, the
Newtonian gravitational constant G, the speed of
light c and Planck´s constant h in a unique way,
he could define a fundamental scale of length,
time and mass. Today this fundamental scale is
called the Planck scale. It is given by

1) the Planck length

LP =

√
hG
c3

= 1, 62× 10−35m (1)

2) the Planck time

TP =

√
hG
c5

= 5, 40× 10−44s (2)

3) the Planck mass

MP =

√
hc
G

= 2, 17× 10−5g (3)

In this paper we will adopt a particular
interpretation of the Planck scale. This particular
interpretation can be justified as follows. First,
observe that the Planck length is the distance that
light travels during the Planck time. Therefore
the existence of the Planck length LP , together
with the constancy of the speed of light c,
automatically defines the Planck time TP =
LP /c. Observe also that the Planck mass MP

can be written in terms of LP as

MP =
c2

G
LP (4)

The above observations can be interpreted as
indications that the Planck length LP is the
minimum length in our universe and that the
Planck time TP and the Planck mass MP can
be obtained from this minimum length using
the fundamental constants c and G. It is this

2



Chagas-Filho; PSIJ, 25(9): 1-11, 2021; Article no.PSIJ.77423

particular interpretation of the Planck scale that
we will adopt in this paper.
The existence of gravitational waves was also
one of the predictions of Einstein field equations
for GR. Gravitational waves were finally detected
in 2015. Contrary to black holes, which
are associated with strong gravitational fields,
gravitational waves are usually associated with
weak gravitational fields. The most direct way to
describe the propagation of gravitational waves
is to expand the curved spacetime metric gµν

around the flat spacetime metric ηµν and retain
only the linear order terms in the expansion.
This procedure leads to the linearized Einstein
equations. The difficulty of this approach is
to separate the physical from the unphysical
degrees of freedom described by the gravitational
wave. In this paper we describe in detail the
procedure for removing the unphysical degrees
of freedom contained in the metric that describes
a gravitational wave. This is a necessary step
to give further support to the quantization of the
energy of a gravitational wave described in [9]. It
will also support the construction of a quantum
gravitational wave described in this paper. Here
we will explain how to relate black holes to
gravitational waves using the quantization of
geometric quantities discovered in the quantum
theory of gravity called Loop Quantum Gravity
(LQG).
LQG [10,11,12] is a theory that attempts
to describe the quantum mechanics of the
gravitational field based on the canonical
quantization of GR. The construction of LQG
only became possible after 1986, when
Ashtekar [13] introduced a new set of canonical
variables for describing GR. Instead of the
traditional metric tensor field gµν of GR as
the configuration variable, Ashtekar introduced
an SU(2) connection Ai

µ as the configuration
variable. This allowed the description of GR as
a constrained Hamiltonian system with first-class
constraints [14] only. The most striking result
of LQG is that, in a gravitational field, geometric
quantities such as area and volume are quantized
in terms of the Planck length LP given in equation
(1).
The paper is organized as follows. In section
two we review the Shwarzschild solution to the
field equations of GR and the basic equations of
black hole Thermodynamics. In section three we

review in detail the description of the propagation
of gravitational waves in the transverse-traceless
gauge. In section four we present our contribution
to these subjects. We explain how we can
construct a quantum gravitational wave and a
quantum equation for the Schwarzschild black
hole entropy. Finally we explain how a quantum
black hole can convert all of its mass into
quantum gravitational radiation. We present our
conclusions in section five.

2 THE SCHWARZSCHILD
BLACK HOLE

Einstein equations can be derived from the
Einstein-Hilbert action

S =
c3

16πG

∫
d4x

√
[−det gµν ]R+ SM (5)

where SM is the matter action. The energy-
momentum tensor of matter, Tµν , is defined
from the variation of the matter action under a
change of the spacetime metric gµν → gµν+δgµν
according to

δSM =
1

2c

∫
d4x

√
[−det gµν ]T

µνδgµν (6)

We must now define the relevant geometric
quantities obtained from the spacetime metric
gµν . The first of these are the Christoffel symbols

Γρ
µν =

1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) (7)

In this equation gρσ is the inverse metric of
gρσ. From the Christoffel symbols we define the
Riemann curvature tensor

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ (8)

Contracting the Riemann tensor we obtain the
Ricci tensor

Rµν = Rα
µαν (9)

Contracting again we obtain the Ricci scalar or
scalar curvature

R = gµνRµν (10)

Varying the Einstein-Hilbert action (5) with
respect to gµν we obtain the field equations of GR

Rµν − 1

2
gµνR =

8πG

c4
Tµν (11)

Tµν describes the flow of energy and momentum
through a given point in spacetime.
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As mentioned in the introduction, the
Schwarzschild spacetime describes the
gravitational field in the outside region of a
mass M with no electric charge and no angular

momentum. In this case the Einstein equations
become the vacuum equations

Rµν = 0 (12)

with the Schwarzschild metric

ds2 = −
(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) (13)

as the only exact solution. Notice that the first term on the right hand side vanishes and the second
becomes divergent when r = RS = 2GM/c2. This value for r is called the Schwarzschild radius and
the spherical surface associated with it is called the event horizon for the Schwarzschild black hole.
The event horizon acts as a one-way membrane: matter and energy can go in but, once inside, can
never go out. For details see [7,15].

The mass M of the central gravitating body is related to the horizon area A by

M =

√
c3A

16πG2
(14)

Advanced methods in field theory that consider quantum vacuum fluctuations that occur in the vicinity
of the event horizon find the result that the Schwarzschild black hole can emit quantum particles in the
thermal spectrum. This thermal emission is called the Hawking radiation. The distribution of energies
emitted by the black hole as Hawking radiation is equivalent to that of a blackbody with a temperature
proportional to the surface gravity of the black hole. Specifically, the black hole temperature is given
by

T =
hc3

8πkBGM
(15)

where kB is the Boltzman constant. The temperature (15) is proportional to h so it is a quantum effect
that vanishes in the h→ 0 classical limit. As a consequence of the temperature (15) the black hole
has an entropy given by

S =
c3kB
4hG

A =
kBA

4L2
P

(16)

We now briefly describe how equation (16) for the black hole entropy emerges in the framework of
quantum gravity. In LQG the area of a surface in a gravitational field is quantized. The area A of the
event horizon of a black hole is given by [10]

A = 8πγ
hG
c3

Σi

√
ji(ji + 1)

= 8πγL2
PΣi

√
ji(ji + 1) (17)

where γ is the Immirzi parameter [16], used to fix the exact scale of the quantum theory, and ji =
j1, ..., jn are the spins of the links intersecting the event horizon surface. The black hole entropy is
given by

S = kB lnN(A) (18)
where N(A) is the number of states that the geometry of a surface with area A can have. The
possible states are obtained by considering all sets of ji that give the area A and, for each set, the
dimension of ⊗islHi where Hi is the representation space of the spin ji.

In LQG it was first assumed [17] that the number of possible states is dominated by the case j = 1/2.
In this case the quantum of area is given by

A 1
2
= 4π

√
3γL2

P (19)
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Hence there are

n =
A

A 1
2

=
A

4π
√
3γL2

P

(20)

intersections and the dimension of H1/2 = 2 1
2
+

1 = 2. So the number of quantum states of the
event horizon area A is

N(A) = 2n = 2A/4π
√

3γL2
P (21)

and the black hole entropy is

S =
ln 2

4π
√
3γ

kBA

L2
P

(22)

which agrees with equation (16) if we choose

γ =
ln 2

π
√
3

(23)

Later, it was realized [18,19] that the number
of possible states could instead be dominated
by the case j = 1 and a similar calculation
was performed for the spin j = 1. Now
the black hole entropy given by equation (16)
is again reproduced provided we choose the
Immirzi parameter γ to be

γ =
ln 3

2π
√
2

(24)

which in turn fixes the minimal quantum of area
to be

A1 = 4(ln 3)L2
P (25)

The same calculation can be performed with
higher spins ji = 3

2
, 2, ... and equation (16) for

the black hole entropy will always be obtained
provided we choose the appropriate value for the
Immirzi parameter γ.

The situation in LQG described above leaves
no doubts about the validity of equation (16) in
describing the entropy of the Schwarzschild black
hole. But the true microstate responsible for the
entropy has not been determined yet. It can
be the quantum of area A 1

2
, or the quantum of

area A1, or any quantum of area we choose,
provided we select the appropriate value of the
Immirzi parameter γ that reproduces the black
hole entropy equation (16). As we will see below,
equation (16) for the black hole entropy may
not be the end of the story. This is because
there is one important information about the
Schwarzschild spacetime which was not used in
LQG to arrive at the entropy (16). This important
information is the spherical symmetry of the event
horizon.

3 GRAVITATIONAL WAVES

General Relativity is invariant under a huge
symmetry group, the group of all possible
coordinate transformations

xµ → x́µ(x) (26)

where x́µ is an arbitrary smooth function of
xµ. Under the transformation (26) the spacetime
metric transforms as

gµν(x) → ǵµν(x́) =
∂xρ

∂x́µ

∂xσ

∂x́ν
gρσ(x) (27)

This symmetry is the gauge symmetry of GR.

As a first step toward the description of
gravitational waves we must expand Einstein
equations around the flat spacetime metric

gµν = ηµν + hµν | hµν | ≪ 1 (28)

and retain only terms to linear order in hµν . The
resulting theory is called the linearized theory
[20].

After choosing a frame where equation (28)
holds, a residual gauge symmetry remains.
Consider the transformation of coordinates

xµ → x́µ = xµ + ξµ(x) (29)

where the derivatives | ∂µξν | are of the same
order of smallness as | hµν |. Using the
transformation law of the metric, equation (27),
we find that the transformation of hµν , to lowest
order, is

hµν(x) → h́µν(x́) = hµν(x)− (∂µξν + ∂νξµ)
(30)

If | ∂µξν | are of the same order of smallness as
| hµν |, the condition | hµν | ≪ 1 is preserved.
Now we are ready to construct the linearized
version of Einstein equations.

To linear order in hµν the Christoffel symbols
are given by

Γρ
µν =

1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν) (31)

5
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Lowering an index for convenience the Riemann
tensor becomes

Rµνρσ =
1

2

(
∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ

)
(32)

The Ricci tensor is given by

Rµν =
1

2

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−�hµν

)
(33)

where we have defined the trace of the
perturbation as h = ηµνhµν = hµ

µ and � =
− 1

c2
∂2
t +∂2

x+∂2
y +∂2

z . And finally the Ricci scalar
is

R = ∂µ∂νh
µν −�h (34)

The linearized equations of motion are written
more compactly defining h̄µν = hµν − 1

2
ηµνh.

It is a straightforward algebra to compute the
linearized Einstein tensor Gµν = Rµν − 1

2
gµνR

and we find that the linearization of the Einstein
equations (11) gives

�h̄µν + ηµν∂
ρ
∂
σ
h̄ρσ − ∂

ρ
∂ν h̄µρ − ∂

ρ
∂µh̄νρ = −

16πG

c4
Tµν

(35)

We can now use the residual gauge freedom (29)
to choose the Lorentz gauge

∂ν h̄µν = 0 (36)

In this gauge the last three terms on the left-hand
side of equation (35) vanish and we get a simple
wave equation

�h̄µν = −16πG

c4
Tµν (37)

Observe that the Lorentz gauge gives four
conditions, that reduce the 10 independent
components of the symmetric 4 × 4 matrix hµν

to six independent components. Equations (36)
and (37) together imply for consistency that

∂νTµν = 0 (38)

which is the conservation of energy-momentum
in the linearized theory.

Equation (37) is the basic result for computing
the generation of gravitational waves within the
linearized theory. To study the propagation of
gravitational waves we are rather interested in
this equation outside the source, where Tµν = 0,

�h̄µν = 0 (39)

Outside the source we can greatly simplify the
form of the metric, observing that equation (36)

does not fix the gauge completely. To see this,
using the symmetry transformation (30), we can
impose the Lorentz gauge (36) and we observe
that, in terms of h̄µν , equation (30) becomes

h̄µν → h̄́µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξ
ρ)
(40)

and therefore

∂ν h̄µν →
(
∂ν h̄µν

)́
= ∂ν h̄µν −�ξµ (41)

Equation (41) means that the Lorentz gauge
condition (36) does not remove all the unphysical
degrees of freedom. As we see from (41), we
can perform a further coordinate transformation
xµ → xµ + ξµ with

�ξµ = 0 (42)

and the Lorentz gauge (36) is not spoiled.

If �ξµ = 0 then also �ξµν = 0, where

ξµν = ∂µξν + ∂νξµ − ηµν∂ρξ
ρ (43)

since the flat d‘Alembertian � commutes with
∂µ. Then equation (40) tells us that, from
the six independent components of h̄µν , which
satisfy �h̄µν = 0, we can subtract the
functions ξµν , which depend on four independent
arbitrary functions ξµ, and which satisfy the same
equation, �ξµν = 0. This means that we can
choose the functions ξµ so as to impose four
conditions on h̄µν . In particular, we can choose
ξ0 such that the trace h̄ = 0. Note that if h̄ = 0,
then h̄µν = hµν . The three functions ξi(x) are
now chosen so that h0i(x) = 0. Since h̄µν = hµν ,
the Lorentz condition (36) with µ = 0 reads

∂0h00 + ∂ih0i = 0 (44)

Having fixed h0i = 0, this simplifies to

∂0h00 = 0 (45)

so h00 becomes automatically constant in time.
A time-independent term h00 corresponds to the
static part of the gravitational interaction, that
is, to the Newtonian potential of the source
which generated the gravitational wave. The
gravitational wave itself is the time-dependent
part and therefore, as far as the gravitational
wave is concerned, ∂0h00 = 0 means that h00 =
0. So, we have set all four components h0µ = 0
and we are left only with the spatial components
hij , for which the Lorentz gauge condition now
reads ∂jhij = 0, and the condition of vanishing

6
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trace becomes hi
i = 0. In conclusion, we have

set
h0µ = 0 hi

i = 0 ∂jhij = 0 (46)

This defines the transverse-traceless gauge, or
TT gauge [20]. By imposing the Lorentz gauge,
we have reduced the 10 degrees of freedom
of the symmetric matrix hµν to six degrees
of freedom, and the residual gauge freedom,
associated to the four functions ξµ that satisfy
equation (43), has further reduced these to just
two physical degrees of freedom. This is the
same number of physical degrees of freedom in
an electromagnetic wave. We will denote the
metric in the TT gauge by hTT

ij .

Equation (39) has the plane wave solutions

hTT
ij = eij(k⃗)e

ikx (47)

with kµ =
(
ω/c, k⃗

)
. The tensor eij(k⃗) is called

the polarization tensor. We follow the usual
convention that the real part is taken at the end
of the computation. For a gravitational wave
propagating along the z axis we have

hTT
ij (t, z) =

 h+ h× 0
h× −h+ 0
0 0 0


ij

cos[ω
(
t− z

c

)
]

(48)
where h+ and h× are called the amplitudes of the
plus and cross polarization of the wave.

4 BLACK HOLES, GRAVITA-
TIONAL WAVES AND
QUANTUM GRAVITY

In this section we present the basic ideas for
a future, mathematically more rigorous, attempt
to combine black holes and gravitational waves
using the quantization of geometric quantities
introduced by LQG.

4.1 Energy Spectrum for
Gravitational Waves

As mentioned in the introduction, LQG is a
theory that attempts to describe the quantum
mechanics of the gravitational field based on
the canonical quantization of GR. From the

point of view of LQG, GR is a constrained
Hamiltonian system with first-class constraints
[14]. These first-class constraints generate the
gauge symmetries of GR in the Hamiltonian
formalism. The most interesting result of LQG
is that geometric quantities, such as area and
volume, are quantized in terms of the Planck
length LP . However, the equations giving the
eigenvalues of the area and volume operators
in LQG depend on the choice of an arbitrary
parameter γ, the Immirzi [16] parameter, which
fixes the precise scale of the quantum theory.

In ref. [9], using the value

γ =
(
4π

√
3
)−1

(49)

it was pointed out that a plane gravitational wave
propagating in the quantum space of LQG can
only have wavelengths that are integer multiples
of the Planck length LP . Since LP is the
distance that light travels during the Planck time
TP , the period of the gravitational wave must
be an integer multiple of the Planck time TP .
Assuming the validity of the above conditions and
using the similarities between electromagnetic
and gravitational waves, which are: a) both types
of wave describe the same number of physical
degrees of freedom, b) both types of wave are
transverse waves and c) both types of wave
propagate at the speed of light, ref. [9] introduced
an energy spectrum for gravitational waves. This
energy spectrum is given by

En = hνn = hωn =
2π

n
c2MP n = 1, 2, 3, ...

(50)
where MP is the Planck mass given in equation
(3) and the integer n determines the energy
and the number of Planck lengths contained in
the wavelength of the gravitational wave. In
equation (50) c2MP = 1, 22 × 1019Gev so
gravitational waves with wavelengths containing
a small number of Planck lengths can have large
energies. As n → ∞ the energy difference
between two consecutive energy levels becomes
infinitesimal. Therefore in the n → ∞ limit the
energy spectrum becomes effectively continuous,
as is the case in Hawking´s thermal radiation.

7
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4.2 Distant Observers

In the classical theory a black hole with vanishing
charge and vanishing angular momentum
evolves rapidly towards the Schwarzschild
solution, by radiating away all excess energy. In
the quantum theory, however, the Heisenberg
uncertainty relations prevent the black hole
from converging exactly to a Schwarzschild
metric, and quantum fluctuations may remain
[10]. From the point of view of this paper, the
logical procedure now would be to describe the
quantum mechanical processes of emission and
absorption of gravitational radiation by quantum
fluctuations of the event horizon. However, at
present, a mathematical description of such
quantum mechanical processes is still under
study. In addition to the technical difficulties,
there are also conceptual difficulties. But, as
we shall see in the next subsection, the basic
ideas behind the physics are very simple. This
simplicity of the basic ideas is the motivation for
this paper. We will use this subsection to consider
two of the conceptual difficulties.

The Schwarzschild spacetime becomes flat at
large distances from the gravitational source
and the coordinates (t, r, θ, φ) provide a global
reference frame only for an observer at infinity.
However, physical quantities measured by
arbitrary observers are not specified directly by
the coordinates but rather must be computed
from the metric. Therefore, to measure a time
interval for a stationary clock at r we set dr =
dθ = dφ = 0 in the line element (13) and we use
ds2 = −c2dτ2 to obtain

dτ =

√(
1− 2GM

c2r

)
dt (51)

In the above equation dτ is the proper time and
dt is the coordinate time. The physical time
interval measured by a local observer is given
by the proper time dτ , not by the coordinate
time dt. Proper time and coordinate time will
be approximately equal only if the effect of the
gravitational field is very weak. In the context of
this paper, this means that the t coordinate that
appears in the Schwarzschild metric (13) can be
identified with the t coordinate that appears in
the gravitational wave (48) only in the reference
frame of a distant observer.

Setting dt = dθ = dφ = 0 in the line element (13)
gives an interval of radial distance

ds =
dr√(

1− 2GM
c2r

) (52)

ds is the proper distance and dr is the coordinate
distance. The physical radial interval measured
by a local observer is the proper distance ds, not
the coordinate distance dr. The proper distance
and coordinate distance will be approximately
equal only for distant observers. In addition to
this, equation (52) is valid only in an arbitrary
fixed direction since, to arrive at it, we required
that dθ = dφ = 0. But the gravitational wave (48)
propagates in an arbitrary z direction. A partial
solution for this problem comes from the fact that
the linearized version of GR is invariant under
global Lorentz transformations [20]. Therefore,
for distant observers, before fixing the Lorentz
gauge condition (36) we can perform a Lorentz
rotation

xµ → Λµ
νx

ν (53)

and make the z direction of the distant observer´s
coordinate system coincident with the particular
direction of the Schwarzschild r coordinate.
Rotations never spoil the condition | hµν | ≪
1. The distant observer will then interpret the
gravitational wave as coming directly from the
black hole.

4.3 The Perspective of Quantum
Gravity

In this subsection we use the reference frame
of a distant observer and impose a quantization
process on the gravitational wave (48) and on
the the event horizon of the Schwarzschild black
hole. We will find that the concepts of a quantum
gravitational wave and a quantum event horizon
can be related to each other using the concept of
a quantum of length.

First we recall the usual relations k = 2π/λ and
λν = c for a plane gravitational wave. Then we
write

ω
(
t− z

c

)
= ωt− ω

c
z (54)

Recalling that the angular frequency of a wave is
defined as ω = 2πν we can write

λν = λ
ω

2π
= c → ω

c
=

2π

λ
= k

8



Chagas-Filho; PSIJ, 25(9): 1-11, 2021; Article no.PSIJ.77423

and therefore equation (54) becomes

ω
(
t− z

c

)
= ωt− kz (55)

From the energy spectrum (50) we quantize the
angular frequency as

ωn =
En

h
(56)

and introduce the quantized wave number as
kn = 2π/λn with λn giving the number of Planck

lengths LP contained in the wavelength of the
gravitational wave [9]. Finally we use de Broglie´s
relation p = h/λ and introduce the quantized
momentum variable

Pn =
h

λn
=

h

2π
× 2π

λn
= hkn (57)

Using the above equations, a quantized
gravitational wave propagating in the z direction,
in the transverse-traceless gauge can be written
as

hn
ij(t, z) =

 h+ h× 0
h× −h+ 0
0 0 0


ij

cos[
1

h
(Ent− Pnz)] n = 1, 2, 3, ... (58)

where n gives the possible energy values, the possible momentum values and the number of Planck
lengths LP contained in the wavelength of the wave. We can use the quantum gravitational wave (58)
as a basis for the interpretation of LP as a quantum of length.

Using the idea that LP defines a quantum of length we now quantize the Schwarzschild black hole
event horizon area using the fact that the event horizon is spherically symmetric. We start by noting
that the area of the horizon is A = 4πR2

S and the circumference of the horizon is L = 2πRS . Therefore
the area of the event horizon is

A =
L2

π
(59)

We now impose the quantum condition that the circumference L of the event horizon must contain an
integer number N of Planck lengths LP , that is L = NLP . Inserting this condition into equation (59)
we obtain the quantized area of the event horizon

A =
1

π
N2L2

P (60)

Inserting equation (60) into equation (16) for the entropy of a classical black hole, we obtain the
entropy for a black hole with a quantized event horizon area

S =
c3kB
4hG

A

=
kB
4L2

P

A

=
kB
4L2

P

1

π
N2L2

P

=
kB
4π

N2 (61)

From equation (61) we see that what gives rise to the Schwarzschild black hole entropy (16) is the
number of quantum of length LP contained in the circumference of the event horizon.

Let us now consider the black hole mass M given by equation (14). Combining equations (14) and
(60) we obtain for the mass of the black hole

9
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M =

√
c3A

16πG2

=

√
c3N2L2

P

16π2G2

=
N

4π
√
c

√
hc
G

=
N

4π
√
c
MP (62)

Equation (62) shows that the mass of the black
hole is quantized in terms of the Planck mass
MP , given in equation (3). This result confirms
the consistency of the ideas we present in
this paper. Combining now equation (62) with
equation (4) we have

M =

√
c3

4πG
NLP (63)

Equation (63) shows that a black hole can
increase its mass to a mass

M =

√
c3

4πG
(N + n)LP (64)

by absorbing a quantum gravitational wave of the
type (58) with a wavelength containing n quanta
of length LP . In the opposite process, a black
hole can decrease its mass to a mass

M =

√
c3

4πG
(N − n)LP (65)

by emitting a quantum gravitational wave of the
type (58) with a wavelength containing n quanta
of length LP . From equation (65) we see that
a black hole can completely convert its mass
into quantum gravitational radiation by emitting N
quanta of length LP . Notice that in this case there
is no information loss paradox. The mass of the
black hole is converted in quantum gravitational
radiation with well-defined polarization, energy
and momentum.

5 CONCLUSIONS
The objective of this paper is to expose the
basic ideas that will give support to a future,
mathematically more rigorous, study of the
emission of quantum gravitational radiation by
black holes. For this purpose, in section two
we reviewed the Schwarzschild vacuum solution

for the Einstein equations of GR. This solution
describes a spherically symmetric spacetime with
a black hole and an event horizon. We displayed
the equation that relates the black hole mass
to the area of the event horizon, the equation
that gives the black hole temperature due to
Hawking´s thermal radiation and the equation for
the black hole entropy. We also briefly described
how the equation for the black hole entropy
emerges in the framework of LQG and why the
degrees of freedom responsible for the entropy
remain undetermined in this framework.

In section three we considered the propagation
of gravitational waves. We reviewed the process
of linearization of the Einstein equations. We
described in detail the steps for the elimination
of the unphysical degrees of freedom of the
spacetime metric to arrive at the equations of
motion in the transverse-traceless gauge. The
solution for a gravitational wave propagating
along the z direction was displayed.

Section four contains our contribution to the
subject. We reviewed the energy spectrum
for a gravitational wave propagating in the
quantized spacetime of LQG which was obtained
in [9]. We reviewed the notion of a distant
observer. Then, using the energy spectrum
obtained in [9] and de Broglie´s relation, we
imposed a quantization process on the classical
gravitational wave described in section three.
Since the quantum gravitational wave can only
have wavelengths which are integer multiples
of the Planck length LP , we interpreted LP

as defining the quantum of length. Using the
spherical symmetry of the Schwarzschild black
hole and the notion of the quantum of length
we quantized the area of the event horizon and
found that the microstate responsible for the black
hole entropy is the quantum of length LP . Using
the quantized event horizon area, we showed
that the mass of the black hole is quantized
in terms of the Planck mass MP , a result
that confirms the ideas presented in this paper.
Finally, using the relation between the Planck
mass MP and the quantum of length LP , we
displayed equations that show that a black hole
can increase or decrease its mass by absorbing
or emitting quantum gravitational radiation. In
particular, the black hole can convert all its

10
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mass into quantum gravitational radiation with
well defined polarization, energy and momentum,
thus avoiding the information loss paradox.
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