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Abstract

Premature birth is one of the most important factors increasing the risk for brain damage in

newborns. Development of an intraventricular hemorrhage in the immature brain is often

triggered by fluctuations of cerebral blood flow (CBF). Therefore, monitoring of CBF

becomes an important task in clinical care of preterm infants. Mathematical modeling of

CBF can be a complementary tool in addition to diagnostic tools in clinical practice and

research. The purpose of the present study is an enhancement of the previously developed

mathematical model for CBF by a detailed description of apparent blood viscosity and ves-

sel resistance, accounting for inhomogeneous hematocrit distribution in multiscale blood

vessel architectures. The enhanced model is applied to our medical database retrospec-

tively collected from the 254 preterm infants with a gestational age of 23–30 weeks. It is

shown that by including clinically measured hematocrit in the mathematical model, apparent

blood viscosity, vessel resistance, and hence the CBF are strongly affected. Thus, a statisti-

cally significant decrease in hematocrit values observed in the group of preterm infants with

intraventricular hemorrhage resulted in a statistically significant increase in calculated CBF

values.

Introduction

Due to current knowledge and advances in neonatal care, 90% of preterm infants survive, but

up to 50% of very low birth weight infants (< 1500 g) develop some sort of permanent neuro-

logical impairment caused by injury to the preterm brain [1]. Intraventricular hemorrhage

(IVH) remains the major complication of the premature birth, especially for very preterm

infants with less than 32 weeks gestation (WG) [2]. At this age, a specific region containing a

highly fragile vessel network, called germinal matrix (GM), is still present in the brain [3] and
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can trigger development of IVH. Impaired cerebral autoregulation (cerebral pressure-passiv-

ity) in combination with variations in mean arterial pressure (MAP) and arterial carbon diox-

ide partial pressure (pCO2) causes strong disturbances in cerebral blood flow (CBF) leading to

IVH [4]. Therefore, implementation of regular monitoring of CBF in clinical routine is an

important task for the care of preterm infants. Although several diagnostic techniques, such as

near-infrared spectroscopy (NIRS) [5], Xenon-133 clearance measurements [6], transcranial

Doppler ultrasonography [7], MRI based arterial spin labeling (MRI ASL) [8], and diffusion

correlation spectroscopy (DCS) [5], have been developed during last few years, they are still

not part of clinical routine monitoring. Therefore, mathematical assessment of the CBF can

become a promising tool for CBF control in preterm infants in order to identify infants at risk.

A recently developed hierarchical cerebrovascular mathematical model [9–11] calculates

CBF in the immature brain from clinically measured MAP and pCO2 using a constant value of

apparent blood viscosity. However, the vessel diameter and presence of blood cells suspended

in blood plasma, especially red blood cells (RBCs), strongly influence the apparent viscosity of

blood [12], and hence the resistance of the vessel network and CBF. The size of RBCs strongly

affects the flow properties of blood in tubes with diameter less than 330 μm [12]. If RBCs are

uniformly distributed throughout the vessel volume, their concentration can be measured as

the systemic hematocrit (HSYS). In the capillaries, RBCs collect near the centerline of the vessel,

which leads to the formation of a cell free plasma layer adjacent to the vessel wall and, as a

result, to a decreased concentration of RBCs known as Fåhraeus effect [13]. This reduced RBCs
concentration can be described by the tube hematocrit (HT), which is the volume fraction of

RBCs that are inside the vessel at a given time instant. The net outcome of reduced RBCs con-

centration is a lower apparent viscosity in small arterioles (less than 200 μm in diameter) and

capillaries, relative to the measured value in large feed arteries [14], which implies the reduc-

tion of flow resistance known as Fåhraeus-Lindqvist effect [15]. With decreasing capillary

diameter, the apparent blood viscosity exhibits a further strong decrease reaching a minimum

at about 6 μm [12]. For capillaries with diameters less than 6 μm the deformation of the eryth-

rocytes takes place [16] and microvessel resistance can be described by an analytic formula

[17] for the hydraulic resistance of capillary.

The purpose of the present work is the enhancement of the mathematical model for CBF
calculation by a realistic description of apparent blood viscosity with accounting for inhomo-

geneous hematocrit distribution and its dependence on vessel diameter. For arteries and veins,

a phenomenological dependence of the apparent viscosity on the vessel diameter [18, 19] is

applied, whereas for capillaries a two-phase fluid model for single-file RBCs flow accounting

for the deformation of RBCs in thin vessels [16, 17, 20] is employed. The performance of the

enhanced model is demonstrated using clinical data recorded during regular monitoring of

254 preterm infants with the gestational age of 23–30 weeks. The effect of hematocrit value on

vessel resistance and CBF as well as on differentiation between preterm infants with and with-

out IVH is shown.

Materials and methods

Clinical data

Clinical data were obtained from the records of 254 preterm infants treated in the Department

of Neonatology at the University Hospital Essen and the Department of Pediatrics of the

School of Medicine, Klinikum rechts der Isar, Technical University of Munich. The study was

approved by the ethical committee of the University Hospital Essen, University Duisburg-

Essen (Ref. 16-7284-BO) and ethical committee of the School of Medicine, Klinikum rechts

der Isar, Technical University of Munich (Ref. 364/15). No informed consent from parents
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was necessary because it was a retrospective study. The clinical records have been collected

over 11 years (between 01.2006 and 12.2016) and were fully anonymized before data transfer

from the neonatal units to the research group. The gestational age of the sample group ranged

from 23 to 30 weeks gestation (WG) and a body weight from 335 g to 1580 g. Preterm infants

without IVH (118) served as control group and those with IVH (136) as affected group. Basic

demographic characteristics of the cohort are presented in Table 1, in which continuous vari-

ables are expressed as mean and standard deviation, while categorical variables are presented

as the number of cases and percentages. IVH was diagnosed by serial cranial ultrasound exami-

nations and IVH severity was classified according to the Papile grading system [21]. MAP,

pCO2 and HSYS were collected as standard routine clinical data during the first 10 days after

birth in the control group, and for up to 7 consecutive days before and 3 days after hemorrhage

in the affected group. All pCO2 values were taken from the capillary or arterial blood gas analy-

sis. Corresponding MAP measurements were taken at the same time as blood gas analysis and

corresponding HSYS values were taken from the last available laboratory record. Since intracra-

nial pressure Pic could not be recorded in preterm infants, a constant Pic = 5 mmHg [22] was

used for numerical calculations for all infants. Statistical analysis of clinical parameters and cal-

culated CBF was done using the two-sided Wilcoxon’s rank-sum test for continuous variables

and Fisher’s exact test for categorical parameters (MATLAB2020a) with a p-value less than

0.05 considered to be statistically significant.

Modeling of CBF in immature brain with germinal matrix

A mathematical model for the calculation of CBF [10, 11] in the immature brain was derived

from a hierarchical cerebrovascular model for the adult brain [9]. In this model, the cerebral

vascular system is divided into 19 levels connected in series according to morphological vessel

characteristics. Additionally, each level consists of mj parallel connected vessels. Thus, the total

CBF is calculated from Kirchhoff’s law as follows:

CBF ¼ MAP � Picð Þ=RES;

RES ¼
X19

j¼1
RESlevel

j ;RESlevel
j ¼ RESj=mj:

Here RES is the total cerebrovascular resistance, RESlevel
j is the resistance of vascular level j,

and RESj is the resistance of single vessel on level j (j = 1. . .19).

On each level, the number of vessels mj as well as their lengths lj and diameters dj are scaled

according to the brain weight of each infant estimated from their birth weight [23].

Table 1. Basic demographic characteristics of the study cohort.

Parameter All

n = 254 (100%)

No IVH
n = 118 (100%)

With IVH
n = 136 (100%)

p-value�

Gestational age [WG] 26.46 ± 2.11 26.68 ±2.17 26.26 ± 2.04 0.13

Birth weight [g] 864.06 ± 279.10 850.68 ± 252.81 875.66 ± 300.50 0.70

Male 122 (48.03%) 48 (40.68%) 74 (54.4%) 0.03

Twins 64 (25.19%) 27 (22.88%) 37 (27.21%) 0.55

Triplets 31 (12.21%) 16 (13.56%) 15 (11.03%) 0.69

In Vitro Fertilization 32 (12.6%) 17 (14.4%) 15 (11.0%) 0.51

Natural birth 22 (8.66%) 7 (5.93%) 15 (11.03%) 0.18

�p-value is given for difference between control (no IVH) and affected (with IVH) groups.

https://doi.org/10.1371/journal.pone.0261819.t001
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Furthermore, a vascular response on changes of MAP and pCO2 is incorporated into the

model through an increase or decrease of vessel diameter (i.e., vasodilation or

vasoconstriction).

The presence of germinal matrix is modeled as an additional parallel circuit in the capillary

level (j = 10). Thus, the total resistance of capillary level RESlevel
10

is calculated from the resistance

of the GM capillaries RESGM
10

and the resistance of the rest, non-GM brain capillaries RESnGM
10

as:

RESlevel
10
¼ RESGM

10

� �� 1
þ RESnGM

10

� �� 1
� �� 1

;

RESGM;nGM
10

¼ RESGM;nGM=mGM;nGM

Here RESGM and RESnGM are the resistances of the individual GM and non-GM capillaries.

The corresponding number of vessels mGM and mnGM are estimated according to the gesta-

tional age and brain weight of each infant.

A resistance of individual vessel RESj is calculated by the application of a micropolar fluid

model [24, 25] accounting for the presence of rigid, randomly oriented particles (RBCs) sus-

pended in a viscous medium. Simplified analytic expressions for the flow velocity profile and

hydraulic resistance are derived using power series expansions, based on the description [26,

27] of steady-state flow of micropolar fluid through a pipe with circular cross-section. In this

method, a constant value μ = 0.003 pa � s of apparent blood viscosity is used. Knowing the

resistance of individual vessel and global CBF, one can calculate blood flow in individual vessel

on level j as follows:

CBFj ¼ CBF � RESlevel
j =RESj:

Accounting for the hematocrit in large vessels

To account for the influence of hematocrit on the resistance of large vessels, the constant

blood viscosity is replaced by the apparent blood viscosity μa, which depends on the vessel

diameter and concentration of RBCs (hematocrit).

For arteries and veins with diameter d> 500 μm apparent blood viscosity is an almost con-

stant value, which depends only on hematocrit [28]. However, with decreasing vessel diameter

the Fåhraeus-Lindqvist effect [15] takes place, resulting in lower viscosity compared to larger

vessels. In order to take this effect into account, the calculation of RESj is done using “in vivo
viscosity law” developed in [18] and widely applied in numerical simulations [19, 29, 30]. In

this phenomenological relationship, variations of apparent viscosity of blood are described as a

function of diameter d μm by the following set of formulas:

ma ¼ mPL 1þ m0:45 � 1ð Þ �
1 � HDð Þ

C
� 1

1 � 0:45ð Þ
C
� 1
�

d
d � 1:1

� �2
" #

�
d

d � 1:1

� �2

;

m0:45 ¼ 6 � exp � 0:085 � dð Þ þ 3:2 � 2:44 � exp � 0:06 � d0:645ð Þ;

C ¼ 0:8þ e� 0:075�d
� �

� � 1þ
1

1þ 10� 11 � d12

� �

þ
1

1þ 10� 11 � d12
:

Here μPL = 0.001 Pa � s is the viscosity of plasma [17, 30] and HD is the discharge hematocrit

which is defined by the ratio between red blood cell volume and total blood volume. Experi-

mental measurements have shown [31] that the discharge hematocrit HD is similar to the
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systemic hematocrit HSYS taken from arterioles or venules with diameter 6.98 μm. Therefore,

in numerical calculations we take discharge hematocrit HD equal to the clinically measured

systemic hematocrit HSYS.

Accounting for the tube hematocrit in capillaries

In capillaries with diameter dj< 10 μm (j = 10) the blood plasma moves in a cell-free layer

near the wall, whereas RBCs travel through the vessel in somewhat of a single file line [13, 17].

The resistance of individual GM or non-GM capillary RESGM,nGM is calculated by the applica-

tion of two-phase fluid model with single-file RBC flow [17, 20] as:

RESGM;nGM ¼ rþ r̂ � rð ÞHT

Here, HT is a tube hematocrit and ρ and r̂ are defined [17] as:

r̂ ¼
8l
p
�

r4
GM;nGM � r4

0

mPL
þ

r4
0

mRBC

� �� 1

;

r ¼
8l
p

r4
GM;nGM

mPL

� �� 1

;

r0 ¼ 0:3mmþ 0:8 � rGM;nGM;

mPL HTð Þ ¼ 0:001 � 16þ 5HTð Þ=15 Pa � s;

mRBC ¼ 0:1 Pa � s:

The reduction of the tube hematocrit HT in vessels with diameter d μm is estimated from

the discharge hematocrit HD as [32]:

HT=HD ¼ HD þ 1 � HDð Þ � 1þ 1:7 � e� 0:35�d � 0:6 � e� 0:01�d
� �

:

As in the previous section, the discharge hematocrit HD equals to the clinically measured

systemic hematocrit HSYS.

Results

The variation of apparent blood viscosity depending on vessel diameter is shown in Fig 1a for

several values of systemic hematocrit HSYS. For vessels with d> 500 μm the apparent blood vis-

cosity is almost independent on vessel diameter (Fig 1a) and for HSYS = 45% it is close to the

constant value μ = 0.003 Pa � s, which is usually taken for numerical calculations. However, the

rise or reduction of systemic hematocrit causes a corresponding increase or decrease of the

apparent viscosity (see Table 2). For vessels with d< 30 μm a strong nonlinear increase of

apparent viscosity can be caused both by the increase of hematocrit and decrease of diameter.

Thus, for vessels with d = 10 μm and HSYS = 60% the apparent viscosity can be more than three

times higher than the constant value μ = 0.003 Pa � s (see Table 2).

The values of the apparent viscosity with accounting of HSYS and individual vessel diameter

dj (Fig 1a) are used for the calculation of the individual vessel resistance RESj on each level j of

the hierarchical cerebrovascular model (Fig 2a). The resistance of individual vessels rises with

an increase in hematocrit and a decrease in diameter. The resistances of GM and non-GM
capillaries are computed with the two-phase fluid model using tube hematocrit HT. The latter
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is calculated with accounting for Fåhraeus effect resulting in the reduction of the HT value

with respect to the HSYS value, which is shown in Fig 1b. The resistance of a single GM capillary

is lower than that of a non-GM capillary (Table 2) because of the difference in diameters (GM
capillaries have larger diameter than non-GM ones).

The total resistance of the whole vascular level RESlevel
j in the hierarchical cerebrovascular

model depends on the resistance of a single vessel RESj and the number of the vessels on every

level j. The resistances RESlevel
j calculated for 25 WG are shown in Fig 2b. The largest resistance

is obtained for the precapillary layer (j = 9) with the smallest arterioles. On the capillary level,

Fig 1. Calculated apparent blood viscosity and tube hematocrit. (a) Calculated apparent blood viscosity versus diameter of vessel for different values

of systemic hematocrit. (b) Tube hematocrit versus systemic hematocrit (dashed line HT = HSYS is shown for comparison).

https://doi.org/10.1371/journal.pone.0261819.g001

Table 2. Dependence of computed model parameters on hematocrit.

Hematocrit [%] HSYS 15 45 60

HT 10.8 36.9 52.1

Apparent blood viscosity [10−3 Pa � s] μ d = 10μm 2.24 5.87 9.83

d = 500μm 1.49 3.1 4.76

Resistance of individual vessel [1016 Pa � s/m3]

WG = 25

RES9 0.789 1.95 3.03

RESGM 1.03 1.51 1.82

RESnGM 3.34 5.16 6.33

Resistance of vascular level [108 Pa � s/m3]

WG = 25

RESlevel
9

22.2 54.2 85.1

RESlevel
10

14.8 22.7 27.8

RESGM
10

164 239 288

RESnGM
10

16.2 25.1 30.8

Total resistance [108 Pa � s/m3] RES WG = 25 74.6 142 209

WG = 30 34.7 65.9 96.9

Cerebral blood flow [ml/min/100 g] CBF WG = 25 16.5 8.64 5.87

WG = 30 19.9 10.5 7.11

https://doi.org/10.1371/journal.pone.0261819.t002
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there is considerable difference in two parallel connected regions (GM and non-GM) regard-

ing the number of vessels and, consequently, different resistances. Namely, the GM has a lower

number of vessels and a higher resistance than the rest (non-GM) brain region. In our example

of a preterm infant with 25 WG (Table 2), the increase in hematocrit from HSYS = 15% (HT =

10.8%) to HSYS = 45% (HT = 36.9%) results in the increase of the RESGM
10

from 163.9 � 108 to

238.6 � 108Pa � s/m3 and of the RESnGM
10

from 16.2 � 108 to 25.1 � 108Pa � s/m3, which is in good

agreement with values presented by [17]. For higher values of HSYS the total resistance of the

vascular levels continues to rise (Fig 2b).

The effect of hematocrit on the total cerebrovascular resistance RES and CBF is shown for

gestational ages ranging from 23 to 36 WG in Fig 3 and for WG = 25 and WG = 30 in Table 2.

Both the reduction of hematocrit and increase of gestational age cause a decrease of the total

vascular resistance, resulting in an increase of CBF. For all gestational ages, the reduction of

HSYS from 60% to 45% results in 1.5-fold increase of CBF; further reduction of HSYS from 45%

to 15% results in 1.9-fold increase of CBF.

The model developed was applied to clinical records of 254 preterm infants with gestational

age ranged from 23 to 30 WG. Statistical analysis revealed that the demographic factors did

not affect the hematocrit (Table 3). Moreover, the mean hematocrit in the control group

(Table 3, no IVH) was close to the value of 45% usually taken for numerical calculations (Fig

4a). Therefore, no significant changes (Table 4) in the calculated CBF for the control group

were obtained due to including measured hematocrit in the mathematical model (Fig 4b).

However, the mean value of the hematocrit in the affected group was significantly lower than

that in the control group (Table 3). As a result, CBF calculated using the measured hematocrit

was higher in the affected group (Fig 4b) and this increase was significant for IVH grades

III+IV (Table 4). This effect was even more noticeable for capillary vessels (Table 5): the

increase of CBF in individual capillary was statistically significant not only for severe IVH
(grades III-IV), but already for moderate IVH (grad II).

Fig 2. Calculated resistance of the individual vessel (a) and of the whole vascular level (b) for different values of systemic hematocrit.

https://doi.org/10.1371/journal.pone.0261819.g002
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Fig 3. Calculated total cerebral resistance (a) and CBF (b) versus gestational age for different values of systemic hematocrit. The red lines show the

values calculated using the constant blood viscosity μ = 0.003 Pa � s.

https://doi.org/10.1371/journal.pone.0261819.g003

Table 3. Dependence of the hematocrit on basic demographic characteristics and IVH diagnosis.

Parameter no yes p-value

Male 42.80 ± 7.49 42.70 ± 8.22 0.72

Multiple birth 42.68 ± 7.59 42.93 ± 8.39 0.72

In Vitro Fertilization 42.85 ± 7.90 41.78 ± 7.14 0.95

Natural birth 42.75 ± 7.98 42.82 ± 6.82 0.65

IVH 45.14 ± 7.92 41.41 ± 7.48 0.01

https://doi.org/10.1371/journal.pone.0261819.t003

Fig 4. Mean values with standard deviations averaged over gestational age. (a) Measured systemic hematocrit. (b) CBF calculated for HSYS = 45%

(dashed lines) and for HSYS from clinical records (solid lines).

https://doi.org/10.1371/journal.pone.0261819.g004
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Discussion

Blood hematocrit is an important factor influencing apparent blood viscosity, vessel resistance

and blood flow [33, 34]. In the present work, the previously developed hierarchical cerebrovas-

cular model for CBF calculation [10, 11] was enhanced by including effects of inhomogeneous

hematocrit and vessel diameter on the apparent blood viscosity, vessel resistance and hence

CBF. The dependence of the apparent viscosity on blood hematocrit and vessel diameter was

modeled according to the “in vivo viscosity law” derived from experimental data [18]. Calcu-

lated values of apparent viscosity were used for the computation of the individual vessel resis-

tance on each level of the hierarchical cerebrovascular mode. Additionally, two-phase fluid

model [17] was used for the calculation of the resistance of GM and non-GM capillaries.

In mathematical modeling performed in the present study, the reduction of hematocrit

caused a decrease in the apparent blood viscosity and vascular resistance, resulting in an

increase of CBF. Our numerical results are in good agreement with values from literature. The

apparent blood viscosity calculated for different hematocrit values and vessel diameters were

close to the experimental data presented by [12] and the observations by [35] showing twofold

increase of the apparent viscosity with an increase of hematocrit from 40% to 60%. In our cal-

culations for vessels with diameter 10 μm, a hematocrit increase from 45% to 60% resulted in

1.67-fold increase of the apparent viscosity (see Table 2).

The apparent viscosity of the individual vessel was used for the calculation of total cerebro-

vascular resistance that depends on the resistance of the individual vessel and number of ves-

sels on each vascular level. In our model, the largest resistance was obtained for the pre-

capillary layer with the smallest arterioles, which is consistent with the previous observations

[4, 36, 37]. On capillary level, the concentration of RBCs near the center of the capillary [13]

results in the reduction of hematocrit to a value known as tube hematocrit. We used tube

hematocrit values estimated from the systemic hematocrit [32] for the calculation of vascular

resistances for two brain regions, namely, the GM and the rest, non-GM, part of the brain [17].

The GM and non-GM resistances calculated in our study for 25 WG (Table 2) showed the

same dependence on hematocrit as in [17].

Mathematical modeling revealed an inverse relationship between CBF and hematocrit,

which is consistent with experimental studies [37, 38]. A regression analysis based on the

Table 4. Global CBF [ml/min/100 g] for different values of HSYS.

IVH HSYS = 45% HSYS from records p-value

No (n = 118) 9.48 ± 4.57 9.53 ± 4.95 0.79

All Grades (n = 136) 11.39 ± 9.24 12.92 ± 11.31 0.004

Grade I (n = 38) 12.28 ± 6.28 13.24 ± 7.7 0.53

Grade II (n = 42) 10.87 ± 10.98 12.23 ± 12.62 0.09

Grade III+IV (n = 48+8) 11.45 ± 8.85 13.22 ± 11.37 0.016

https://doi.org/10.1371/journal.pone.0261819.t004

Table 5. CBF in individual capillary [10−6 ml/min/100 g] for different values of HSYS.

IVH HSYS = 45% HSYS from records p-value

No (n = 118) 1.48 ± 0.63 1.49 ± 0.69 0.77

All Grades (n = 136) 1.49 ± 0.80 1.68 ± 1.00 <0.001

Grade I (n = 38) 1.62 ± 0.75 1.78 ± 1.02 0.36

Grade II (n = 42) 1.48 ± 0.85 1.64 ± 0.98 0.007

Grade III+IV (n = 48+8) 1.46 ± 0.78 1.66 ± 1.01 0.002

https://doi.org/10.1371/journal.pone.0261819.t005
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xenon-133 measurements of CBF in 15 preterm infants with mean gestational age 31 WG [38]

has demonstrated a significant inverse correlation between CBF and hematocrit with the slope

-2.3 for the hematocrit variation from 24% to 48%. These results are similar to the 1.9-fold

CBF increase caused by the hematocrit decrease from 45% to 15% demonstrated for WG = 30

in the present study.

The enhanced mathematical model was applied to clinical data collected retrospectively

from medical records of 254 preterm infants with gestational age 23–30 weeks. Including the

clinically measured hematocrit in the model led to an increase of calculated CBF in preterm

infants with IVH diagnosis. The increase was statistically significant for severe IVH (grade

III+IV). These results are in agreement with observations that a relatively low hematocrit dur-

ing the first 24 hours of life correlates with a high incidence of IVH [39, 40] and is associated

with a prolonged bleeding time [41]. Another important result was the increase of CBF in cap-

illary vessels, which was statistically significant for preterms with moderate (grad II) and severe

(grad III+IV) IVH. Increased CBF values in capillary vessels may explain experimental obser-

vations that hemorrhage in immature brain often originates from capillary bed or in capillary-

vein junction [42]. The exact location of vessel rupture is still under discussion [43] and cannot

be determined by the mathematical model used in this study. Thus, the mathematical model

developed has demonstrated a correct relationship between decreased hematocrit and

enhanced risk of IVH in preterm infants.

The following limitations need to be addressed. Whereas some experimental observations

demonstrate that RBCs aggregation into clusters [35] contribute to the viscosity reduction,

these effects were not simulated in the present study. In addition, the influence of the plasma

viscosity was not investigated, although some data suggest that plasma viscosity may be more

important in the regulation of CBF than whole blood viscosity [33]. The effects of RBCs aggre-

gation and increased plasma viscosity on CBF are considered for further development of the

mathematical model for CBF calculation.

Conclusions

The mathematical model for CBF calculation has been developed further, by accounting for

the effect of inhomogeneous hematocrit on the apparent blood viscosity and vessel resistance.

The model is in good agreement with published experimental results. It has been shown that

including the clinically measured hematocrit in the mathematical model strongly effects the

apparent blood viscosity, vessel resistance and hence CBF. Furthermore, in the group of pre-

term infants with IVH diagnosis, the inclusion of measured hematocrit values resulted in a sta-

tistically significant increase of calculated CBF values compared to calculations with a constant

hematocrit value. Thus, accounting for the effect of hematocrit on CBF may improve clinical

monitoring of preterm infants and prediction of IVH development.
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