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Abstract: Almost every year, earthquakes threaten many lives, so not only do developing coun-
tries suffer negative effects from earthquakes on their economies but also developed ones that lose
significant economic resources, suffer massive fatalities, and have to suspend businesses and occu-
pancy. Existing buildings in earthquake-prone areas need structural safety assessments or seismic
vulnerability assessments. It is crucial to assess earthquake damage before an earthquake to prevent
further losses, and to assess building damage after an earthquake to aid emergency responders.
Many models do not take into account the surveyor’s subjectivity, which causes observational
vagueness and uncertainty. Additionally, a lack of experience or knowledge, engineering errors,
and inconspicuous parameters could affect the assessment. Thus, a consensus-based Likert–LMBP
(the Levenberg–Marquardt backpropagation algorithm) model was developed to rapidly assess
the seismic performance of buildings based on post-earthquake visual images in the devastating
Kahramanmaraş earthquake, which occurred on 6 February 2023 and had magnitudes of 7.7 and
7.6 and severely affected 11 districts in Türkiye. Vulnerability variables for buildings are assessed
using linguistic variables on a five-point Likert scale based on expert consensus values derived from
post-earthquake visual images. The building vulnerability parameters required for the proposed
model are determined as the top hill–slope effect, weak story effect, soft story effect, short column
effect, plan irregularity, pounding effect, heavy overhang effect, number of stories, construction year,
structural system state, and apparent building quality. Structural analyses categorized buildings as no
damage, slight damage, moderate damage, or severe damage/collapse. Training the model resulted
in quite good performance (mse = 7.26306 × 10−5). Based on the statistical analysis of the entire data
set, the mean and the standard deviation of the errors were 0.00068 and 0.00852, respectively.

Keywords: building damageability; consensus degree; Likert scale; Levenberg–Marquardt algorithm;
ANN; backpropagation

1. Introduction

Many lives are threatened every year by earthquakes. It is not only developing
countries that suffer from the negative effects of earthquakes on the economy [1] but
also developed ones that experience significant economic losses, massive fatalities, and
the suspension of occupancy as well as businesses every year [2]. A structural safety
assessment or conducting a seismic vulnerability evaluation of existing buildings is crucial,
since some structures may be susceptible to potential risks [3] in earthquake-prone areas,
including some of them which might have been constructed before seismic codes were
developed, which may mean they were not designed to resist earthquakes and therefore
may not be strong enough to withstand them, and the condition of a building may also
have declined as a result of a change in use or land with high liquefaction potential, or as
a result of wear and tear over time [1]. Moreover, city planning and construction quality
are problematic in developing countries due to insufficient expertise, imprecise legislation,
insufficient funds, and unplanned urbanization, which results in low-quality materials and
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work causing earthquake deaths [4]. Estimating seismic damage before an earthquake is
crucial to reducing future losses [5], and assessing building damage after an earthquake is
an essential part of emergency response and recovery efforts as well. The level of building
damage can range from superficial cracks to complete collapse depending on the building’s
properties, soil conditions, and earthquake and ground motion characteristics [6]. Based on
the results of a seismic evaluation, a decision will be made as to whether the building needs
to be repaired or renovated to increase its resistance to seismic forces, or if it should be
demolished [7]. In recent years, alternative methods have been developed to rapidly iden-
tify deficient structures from large building stocks [8] and various rapid visual screening
(RVS) techniques have been developed by different countries to deal with the devastating
effects of earthquakes on buildings and humans [9]. RVS techniques all have their specific
characteristics, but basic structural characteristics like irregularities are taken into consider-
ation; however, the final scores of building vulnerability classifications differ significantly
due to differences in conventional RVS techniques [10]. Bektaş and Kegyes-Brassai argue
that RVS assessments can be used to evaluate the vulnerability of buildings in different
regions, with appropriate adaptations [3]. It is therefore possible to calibrate existing RVS
methods or to develop new RVS methods to overcome the deficiencies [3]. There are some
limitations to traditional RVS methods, including surveyor bias, site-specific characteristics,
and the uncertainty and vagueness of the data. Several computer algorithms can be used to
overcome these kinds of disadvantages in evaluation, such as fuzzy logic, neural networks,
and machine learning. It is generally agreed that further research is needed to implement
or modify the method, according to Aldemir et al. [11] and Harith et al. [12], and that the
methodology needs to be developed based on pre- or post-earthquake data, detailed seismic
risk assessment methodologies, and/or soft RVS methods. With continuous innovation and
refinement of the methodologies, the quality of the results is greatly improved [13]. Türkiye
is located in an active earthquake zone that can cause very severe earthquakes. Türkiye
experiences a severe earthquake every two years, while a very severe earthquake happens
every three years, according to a statistical study [14]. Moreover, Mertol et al. came to
the conclusion that almost all of Kahramanmaraş, Turkey’s seriously damaged or fallen
reinforced concrete structures were built between 1975 and 2000, when site inspections
were rare or nonexistent, and the buildings were not designed and constructed according to
the seismic codes that were in effect at the time [15]. There were several reasons for building
failures and severe damage, including poor material quality, inadequate reinforcement, and
framing problems related to their lateral load-carrying systems, deficiencies in construction
materials and reinforcement configuration [14], inadequate development length, violations
of bending stirrup ends at 135 degrees, violations of confinement zones, violations of the
strong beam–stronger column analogy, and issues with building inspections [15]. Many
models have no consideration for the surveyor’s subjectivity, which causes observational
vagueness and uncertainty [16]. It is also possible that the assessment would be affected by
a lack of sufficient experience or knowledge, as well as many other factors, engineering
errors, and inconspicuous parameters [17]. Therefore, a novel consensus-based Likert–
LMBP model has been developed using post-earthquake visual data of 194 buildings in
the Kahramanmaraş earthquake region for rapidly assessing the seismic performance of
buildings before an earthquake. Building vulnerability variables are measured utilizing a
five-point Likert scale with consensus values derived from linguistic data based on visual
images from expert construction engineers. After structural analyses, each building is
classified as no damage, slight damage, moderate damage, or severe damage/collapse.
Similarly to studies published in the literature, this model was designed for reinforced
concrete buildings of 1–7 stories; thus, it cannot be used for RC buildings higher than
7 stories.
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Research gaps will be filled in the following ways:

• Seismic vulnerability can be assessed quickly before an earthquake occurs.
• Pre-earthquake visual images can be used to assess existing buildings.
• Experts use linguistic variables in their assessments.
• Consensus values combine differing opinions from experts.
• LMBP provides a high-performance solution to the proposed model.

2. Related Studies

Various seismic risk assessment approaches may be used to evaluate the structural
integrity of existing structures [18], but they require complex analysis tools, detailed geo-
metric and material data, as well as considerable time and expertise [4,8]. It is not feasible
to use these detailed procedures to assess a large number of buildings at once due to a lack
of time, resources, and manpower [4]. RVS is used to identify buildings most vulnerable to
earthquake-induced damage by classifying them according to the seismic risk level and
prioritizing them accordingly [19]. RVS procedures are divided into three main categories:
national methods, statistics and machine learning methods, and rule-based methods [20].
These methods have been used in many studies. The following is a summary of a few
studies. Various performance modifiers in the national methods including FEMA P-154,
the EMS-98 scale, the RISK-UE Project, NRCC, RBTE-2019, etc., are used to quantify the
vulnerability of buildings, such as building type, vertical irregularities, plan irregularities,
construction quality, and year of construction [20]. The performance modifiers can be
collected easily through observations and engineering drawings [21]. A statistical regres-
sion method was employed by Chanu and Nanda to analyze the relationship between the
outcome variable (the damage grade of existing buildings) and the explanatory variables
regarding building attributes that increase the vulnerability of buildings to earthquakes.
For calculating the seismic performance scores of buildings, Ansal et al. proposed a gen-
eral linear equation, and the weights of each vulnerability parameter were determined
statistically [22]. In addition, predictor variables and damage grades were modeled as
linear relationships [22]. The use of soft computing techniques in seismic assessments
of existing buildings reduces human effort dramatically and improves accuracy [20]. In
recent years, several soft rapid visual screening (S-RVS) approaches have been created.
These methods can be quickly modified based on breakthroughs and prior earthquake
data, and they provide more accuracy compared to traditional RVS methods [18]. S-RVS
methods utilize artificial intelligence (AI) such as machine learning (ML) [9,17,23], Fuzzy
Logic (FL) [23–27], and Artificial Neural Networks (ANNs) [28–31] in their development
process. In recent years, AI has received significant attention in post-earthquake inspec-
tions because of its rapid advancement and potential to overcome the disadvantages of
manual inspections [31] and has been extensively used in various scientific and technical
fields. Studies on the use of these methods in civil engineering have shown promising
outcomes and decreased reliance on human involvement, hence minimizing uncertainty
and bias [9]. A study published by Mangalathu et al. [6] examined the effectiveness of
four ML algorithms in predicting earthquake damage to buildings, including discriminant
analysis, K-nearest neighbors, decision trees, and random forests. In the study of Harirchian
et al., a comprehensive overview of different AI techniques for analyzing existing build-
ings and evaluating damage is provided [17]. Ogunjinmi et al. developed a web-based
application to classify earthquake damage that can automatically and effectively categorize
structural damage [32]. By using gradient-weighted class activation mappings and the
convolutional neural network (CNN) model, the degree of damage was assessed [31]. FL
evaluates linguistic and information uncertainties and is more realistic when it comes to
qualitative assessment than crisp logic [26]. Şen proposed a supervised FL classification
approach for assigning hazard categories to buildings similar to the classical fuzzy C-means
approach [25]. A fuzzy inference system was proposed by Irwansyah et al. to determine
the building damage hazard category following earthquakes based on a fuzzy inference
system. A two-stage model architecture was developed: the first involved collecting ex-
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pert advice for knowledge acquisition and the second involved building fuzzy rules to
evaluate buildings. A total of nine input parameters were used, including ring balk, floor
block, column, foundation, wall cracks, wall cover and floor cover, Tombak Layar, digi-
tal elevation model, peak ground acceleration, and distance from the fault. There were
three categories of building damage hazards: slight, moderate, or severe [32]. Harirchian
and Lahmer developed an RVS methodology based on an interval type-2 FL system to
prioritize vulnerable buildings for detailed assessment while covering uncertainties and
minimizing their effects [33]. Building vulnerability could be estimated using the proposed
Damage Index, which combines inputs such as the number of stories, the age of a building,
irregularities in the plan, irregularities in the vertical plane, quality of the building, and
peak ground velocity with a single output variable, and the applicability of the proposed
method was examined using a database of reinforced concrete building damage after an
earthquake. Building damage states were divided into “None”, “Low”, “Moderate”, “Se-
vere”, and “Collapse” [34]. The study by Ketsap et al. [33] examined how fuzzy earthquake
risk assessments could be used to prioritize retrofitting buildings. A building’s risk was
assessed by evaluating several risk factors, including (1) building vulnerability determined
by the RVS method based on FEMA 154 [35] and FEMA 155 [36], (2) seismic intensity of
the site determined by peak ground acceleration, and (3) building occupancy (nine types)
representing the significance of the building weighted by the Analytical Hierarchy Process.
Utilizing a fuzzy rule-based model, the total risk scores were calculated by integrating the
building importance and damageability scores [33]. Many studies have also used multi-
criteria decision-making (MCDM) in seismic assessments [5,37–41]. The objective is to
assess the severity of damage and analyze the correlation between observed damage levels
and damage indices derived from various MCDM techniques. Harirchian, Jadhav, et al.
applied several MCDM methods including the Weighed Sum Method (WSM), the Weighed
Product Method (WPM), the Analytical Hierarchy Process (AHP), and the Technique for
Order of Preference by Similarity to Ideal Solution (TOPSIS) [39]. To perform the MCDM
method, several seismic parameters are used, including seismic zone, type of building,
vertical irregularity, plan irregularity, pre-code, post-benchmark, and code details, soil
type, number of stories, and appearance of building quality. The WSM and WPM methods
achieved the highest accuracy among all MCDM methods followed by TOPSIS, while the
AHP method performed worst [37]. It has been suggested by Harirchian, Jadhav, et al.
that damage classifications may vary with a larger amount of data, so the results can be
improved as a result [39]. More precise identification may be possible with the application
of sophisticated MCDM techniques like ELECTRE, PROMOTHEE, and several hybrid
techniques [37]. An innovative GIS (geographic information system)-based model has been
developed by Sadrykia et al. using a modified combination of AHP, TOPSIS, and fuzzy sets
theory to handle one of the important uncertainties in an incomplete data set, which is the
vagueness of the existing knowledge about the factors affecting seismic vulnerability [5].

3. Methodology

Recently, several classic RVS approaches (FEMA 154 [35], EMS-98 [42], the RISK-UE
Project [43], OASP [44], and NRCC [45]) have been established. Buildings constructed
before the current standards may be susceptible to strong seismic effects. Thus, these fast
evaluation methods are critical for current structures. Data from the 1989 Loma Prieta and
1994 Northridge earthquakes in California were used to calculate basic structural hazard
(BSH) ratings in the first iteration of the FEMA 154 RVS method [35], which evaluated
seismic hazard using damage probability matrices based on the modified Mercalli intensity
(MMI). The Medvedev–Sponheuer–Karnik (MSK) scale-based developed EMS-98 scale is
employed to classify buildings both qualitatively (building type and vulnerability) and
quantitatively (indicating degrees of damage). Building type, susceptibility, and damage are
classified subjectively and quantitatively using the MSK scale-based EMS-98 scale [46,47].
The 2003 damage estimate approach for the RISK-UE [43] had three steps: LM1, LM2, and
LM3 methodologies. The LM1 method identifies vulnerability indices and classes. Based
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on the capacity and fragility model, the microseismic model (LM2) of the RISK-UE has been
utilized to analyze the seismic risk in urban areas. The LM3 method calculates the structure
seismic response utilizing thorough acceleration time histories and nonlinear dynamic
analysis. The Earthquake Planning and Protection Organization (OASP) created the Greek
RVS approach called (OASP-0). In the OASP, the structural system, including structural
components and material qualities, is considered when using an RVS technique. The current
NRCC [14] guideline evaluates structural and nonstructural aspects to assess threats to
beams, columns, foundations, slabs, partition walls, ceilings, and building significance.

A consensus-based Likert–ANN approach has been adopted in this study to predict
earthquake damage in residential buildings with RC frames. For this purpose, this research
focused on selecting structures made of reinforced concrete with a maximum height of
7 stories. Furthermore, this assessment specifically focused on structures that were affected
by the catastrophic Kahramanmaraş earthquake that occurred on 6 February 2023. In the
analysis, 194 buildings up to seven stories with different structural characteristics were
evaluated based on linguistic variables, followed by a feed-forward backpropagation (FFBP)
neural network. The proposed model was developed based on structured analyses of the
facade photographs of the selected buildings, and its seismic performance was evaluated.
A Likert scale was used to assess the structural integrity of the buildings, and four damage
levels were differentiated. Following that, ANN inputs from the building properties and
output data from the structural analysis results were combined to create the proposed
model. Lastly, the data were divided into two subsets to train and test the proposed model.

3.1. Obtaining Data for the Model

The ANN was designed using visual images of buildings damaged in the devastating
Kahramanmaraş earthquake of 6 February 2023. It was of magnitudes 7.7 and 7.6 and
severely affected 11 districts in Türkiye. The damage levels for 194 buildings were classified
based on their visual appearance after the earthquake as no damage, slight damage, mod-
erate damage, or severe damage or collapse. No earthquake damage means a structure was
unharmed. There is no risk in using the building. Slight damage implies the earthquake
caused paint, plaster, and tiny fractures on the building’s walls. These are buildings with
plaster. Moderate damage is defined as structures that may develop fine fractures in the
carrying components and walls during an earthquake. Severe damage or collapse means
that the earthquake damaged the building’s load-bearing materials. Large and extensive
shear fractures/separations occur in structures.

In the model, depending on their appearance following the earthquake, structures
were classified as no damage, slight damage, moderate damage, severe damage, or collapse.
After that, the consensus value for each parameter was used to generate the risk index
(RI). Risk indices range from 0 to 1, whereas damage levels are 0.25, 0.50, 0.75, and 1.
Except for building apparent quality, which is rated between 0 (good) and 1 (bad), building
vulnerability parameters like soft stories, heavy overhangs, short columns, pounding effect,
topography effect, vertical irregularity, and plan irregularity are quantified as 0 or 1. The
details of the modeling are given in detail in the following sections.

3.2. The Evaluation Scale

Several research papers in the field of construction management use Likert scales
to quantify both visible and non-observable characteristics. For example, the relative
importance index was used by Datta et al. [48] to rank the critical project management
success factors for the construction industry of Bangladesh, Memon et al. [49] identified
the key challenges affecting construction project completion on time, several high-risk
factors were identified by Yousri et al. [50] for Egyptian building construction projects, a
study conducted by Oke et al. [51] examined the impact of the Internet of Things (IoT) on
construction project performance, Ahmed Marey Alhammadi and Memon [52] identified
factors that inhibit cost performance in United Arab Emirates (UAE) construction projects,
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and so on. A 5-point Likert scale is used in this study to evaluate input parameters to the
proposed model.

3.3. Building Vulnerability Parameters (Inputs to the Proposed Model)

A total of eleven input vulnerability parameters are defined, each with five member-
ship values. A list of linguistic vulnerability parameters and their values is provided in
Appendix A. The following sections provide detailed explanations of these parameters.

3.3.1. Top Hill–Slope Effect

On top of hills, topographic amplification may increase ground motion intensity.
Buildings on steep slopes steeper than 30 degrees also often have stopped foundations
that are incapable of dispersing ground distortion equally to structural members [53]. It is
advisable to avoid hillside slopes that are prone to sliding during an earthquake and instead
choose only stable slopes for construction placement. Moreover, it would be more desirable
to have many blocks on terraces rather than a single huge block with footings at significantly
varying heights [24]. Seismic risk assessments should consider these two factors. A street
survey can easily reveal both factors [53].

3.3.2. Vertical Irregularities

Buildings with columns or curtains that do not follow the height of the building create
vertical irregularities, reflecting the effect of vertically discontinuous frames and changing
floor areas [44]. Vertical irregularities are a major cause of building damage during strong
earthquake excitation. There are a variety of factors that contribute to vertical irregularities,
including steep slopes, significant wall apertures, structurally vulnerable or flexible floors,
discrepancies in floor elevations, setbacks either within the same plane or outside of it [19],
a column sitting on a console, vertically discontinuous columns, a curtain sitting on a
column, and vertically discontinuous curtains.

Weak Stories

A weak story is usually characterized by vertical discontinuities or by reduced member
sizes or reinforcements and tends to concentrate on inelastic activity, which may cause the
story to collapse partially or completely [24].

Soft Stories

Buildings with soft stories have collapsed in past earthquakes around the world [53].
Buildings with soft stories have a larger share of severely damaged buildings than those
with lower damage, regardless of their number of stories [54]. Soft stories typically occur
when the ground floor is less stiff and stronger than the upper floors. Typically, this is the
case in buildings located along the side of a main street in which the ground floor is used as
a commercial or retail space while the upper floors are occupied by residences. The upper
stories are strengthened and stiffened by many partition walls, but at the bottom, the com-
mercial spaces are mostly left open between the frame members for customer circulation.
Additionally, the ground stories may have taller clearances and a different axis system,
causing irregularities in the construction. Euro code 8 stipulates that the displacement in
the direction of seismic forces must not exceed the average story displacement by more
than 20% at any given story [24].

Short Columns

In RC buildings, short columns are formed by semi-infilled frames, band windows
in semi-buried basements, or mid-story beams around stairway shafts. A captive column
usually sustains heavy damage during strong earthquakes due to its short length not being
designed to handle high shear forces. A short column is easily identified from the outside
because it usually forms along an exterior axis [53].
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3.3.3. Plan Irregularities

A non-geometrically symmetrical plan and an irregular placement of vertical structural
elements may cause torsion in a building. Due to its detrimental effects on the transmission
of seismic loads, a large plan or diaphragm opening should be regarded as a serious kind of
plan irregularity [55]. Plan irregularity describes the structural plan with re-entrant corners.
E, L, T, and U are defined as complex building forms or shapes. E, H, L, T, U, Y, cross, or a
mix of these shapes are common architectural configurations with projections or wings in
the plan as re-entrant corners [56]. The irregularity of a structural plan is determined by
plan shapes like E, L, T, U, and Z [19,56].

3.3.4. Pounding Effects

Buildings that are not sufficiently separated pound each other during an earthquake
because vibration periods differ and vibration amplitudes are not synchronous. Pounding
is most detrimental to adjacent buildings at corners, and uneven floor levels aggravate the
effect of pounding. High-rise buildings are more likely to be damaged by pounding [53]. A
misaligned floor level in an adjacent building is considered the worst-case scenario [27]. To
avoid pounding, a building should not be located closer than 4% of its height to an adjacent
building to avoid extensive damage [24].

3.3.5. Heavy Overhang Effect

Identifying the difference between ground and above-ground floors is necessary.
Multistory reinforced concrete buildings with heavy balconies and overhanging floors shift
their mass center upward, causing higher seismic lateral forces and overturning moments
during a seismic event. Buildings with large, overhanging cantilever spans enclosed by
concrete parapets are more likely to suffer heavy damage [53]. Furthermore, this effect is
more noticeable in buildings with four, five, or six stories with heavy overhangs [54].

3.3.6. Number of Stories

A study by Sucuoğlu et al. concluded that building height is one of the most significant
or perhaps even the most dominant determinants of seismic vulnerability in Turkish
multistory concrete structures, and there is a strong correlation between damage and the
number of stories [54], since higher buildings can suffer great deformation and damage
during an earthquake [18]. In a report prepared for the Metropolitan Municipality of
Istanbul following the Kocaeli and Düzce earthquakes of 1999, it was found that building
damage correlated strongly with the number of stories [53]. Şen also found that the most
vulnerable buildings in Istanbul were medium-rise (4–7 stories) reinforced concrete frame
buildings designed based on outdated regulations [24]. It is clearly seen that there is
almost a linear increase in damage with the number of stories. The ratio of moderately and
severely damaged buildings increases steadily with the number of stories [53]. However, if
buildings are designed to comply with modern seismic codes, damage will be distributed
uniformly regardless of the number of stories [54].

3.3.7. Construction Year

The assessment of building vulnerability is based on the construction year, which
serves as an indicator of construction quality, design methodologies used, and seismic
details included in the project. Old structures cannot be expected to function well because
ancient construction procedures ignore the seismic details of modern building require-
ments [18]. Construction years provide information about building design regulations as
well as design standards that are classified as low, moderate, and high. A study by Bektaş
and Kegyes-Brassai examined the effects of the construction year on seismic design codes
in Albania, and the authors concluded that this existing classification technique could be
used by modifying the thresholds based on the seismic standards for the region under
consideration [18].
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3.3.8. Structural System States

Different types of buildings are more or less vulnerable to earthquakes. Structural
load-carrying systems determine a building’s lateral strength and ductility during a seismic
event. Several parameters affect this parameter, including structural geometry, member
dimensions, and design quality. It was stated in the Ministry of Environment and Urban
Planning’s (2019) method for evaluating existing reinforced concrete buildings of 1 to
7 floors that the buildings could have reinforced concrete frames (RCF) or reinforced
concrete frame and curtain (RCFC) systems for load bearing. As stated, the load-bearing
system should be determined from the inside of a basement floor if there is one, or from
inside a store if there is one, or if it cannot be determined, the RCF should be assumed to be
ineffective or zero.

3.3.9. Apparent Building Quality

Building apparent quality and earthquake damage are closely related. Construction
quality, workmanship, and maintenance reflect the apparent quality of the building [53].
Sucuoğlu et al. [54] found that severely damaged buildings in three- to five-story buildings
were of lower quality than those in other damage groups after the Düzce earthquake.
Additionally, apparent quality became more significant as building height increased [54].
The apparent quality of a building can generally be classified by a trained observer [53].
Workmanship, material quality, and existing damage and deterioration are used to deter-
mine whether a building’s construction is poor, moderate, or good. If a building’s flooring,
ceilings, brick walls, uneven surfaces, scratches, or efflorescence have surface or appearance
problems, the building’s construction quality is considered average [18].

3.4. Building Seismic Performance Scores (Outputs of the Proposed Model)

A damage score indicates the level of damage likely to be sustained by a structure.
Building damageability is computed based on the building vulnerability parameters. Some
studies categorize building damage into five damage levels: very low, low, moderate, high,
and very high [25,53]. There are, however, three damage levels according to some studies:
low risk, medium risk, and high risk [57], or four damage grades: none, light, moderate,
and severe/collapse [54]. Damage grades are generally defined as follows. No damage:
the structure is not significantly damaged; slight damage: capillary bending or shear
cracks in columns, beams, and slabs, as well as capillary shear cracks in walls; moderate
damage: local or longitudinal cracks in most columns and beams; severe damage: poured
concrete covers, buckled longitudinal reinforcement bars, and wide cracks; and collapse:
excessive deformation causing a structure to collapse. Damage grades were classified
into four categories in this study: none, slight, moderate, and severe or collapse, as in
the study by Sucuoğlu et al. [54]. As explained in detail in the introduction, determining
building seismic performance varies depending on the proposed model. The use of linear
functions is suggested by some studies, while the use of fuzzy functions, neural networks,
and multi-criteria decision-making methods is suggested by others. A consensus-based
Likert–ANN model is recommended in this study.

3.5. The Consensus-Based Likert–ANN Model

The classical methods linguistically mark pounding effects as Yes or No [24]. With
classical modeling, the building vulnerability parameters such as soft stories, heavy over-
hangs, short columns, pounding effects, topography effects, vertical irregularities, and plan
irregularities are quantified as 1 or 0 depending on crisp two-valued logic, except for the
building apparent quality, which is rated as 0 (good), 1 (moderate), and 2 (poor) [53]. As a
result, no distinction is made between “slightly”, “moderate”, and “very” quantities in this
case. Buildings on steep slopes steeper than 30 degrees, for example, are all quantified as 1;
however, a building on top of a hill may be intensified by topographic amplification. FL
involves fuzzifying inputs and outputs into multiple fuzzy sets. In some cases, FL with
multiple values is more advantageous than crisp logic with two values. The proposed
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model has been developed to predict seismic risk levels of existing buildings based on lin-
guistic information gathered from expert opinions based on a 5-point Likert scale. Figure 1
illustrates the overall structure of the proposed model.
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3.5.1. Consensus Degree

Experts will evaluate each vulnerability parameter individually using the form
(Appendix A) based on a five-point Likert scale. Following that, the risk index (RI)
based on the consensus value for each parameter will be calculated using the equation
shown below.

RI = Cns ∗
N

∑
i=1

ai
5N

(1)

where Cns stands for the consensus degree of responses to each parameter, N indicates the
total number of experts (suggested five), and ai is the constant that represents the weight
assigned to each response (in this case, very low = 1; low = 2; moderate = 3; high = 4;
and very high = 5). Individuals in a sample group are said to be in consensus when they
agree on a declarative statement [59]. Based on this definition, if an equal number of
participants choose their responses in the two extreme categories on a Likert scale, i.e.,
strongly disagree and strongly agree, there is no consensus; however, this group shows
full consensus if all participants choose the same category on the Likert scale. Therefore,
for all combinations of response patterns, the consensus degree varies between zero and
one. Tastle and Wierman [59] concluded that the consensus provides a value for comparing
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different Likert distributions and matches human intuition, and suggested calculating a
consensus (Cns) degree as follows:

Cns(X) = 1 +
n

∑
i=1

pilog2

(
1 − |xi − µx|

dx

)
(2)

where X is the response, µx is the mean of X, n represents the number of categories on
an ordinal scale, xi is the degree of agreement in category i, pi is the probability of the
occurrence of xi, and dx is the width of X, i.e., dx = Xmax − Xmin (in this case, dx = 5 − 1 = 4).

3.5.2. Neural Network (NN) Modeling

This study can be viewed as pattern classification, and feedforward networks can be
used to classify patterns. The non-linearly separable classification problem can only be
solved by multilayer networks, and a multilayer perceptron trained using a backpropaga-
tion algorithm is the most widely used neural network [58]. There is no general knowledge
regarding how many layers or how many neurons are necessary for adequate performance
of multilayer networks. Most neural networks have two or three layers, whereas four or
more layers are rarely used [58]. When choosing the fastest training algorithm for a given
problem, several factors need to be taken into account, including how complex the problem
is, the number of data points in the training set, the weights and biases within the network,
and the error goal [58]. However, LMBP, despite a large number of computations, is the
fastest neural network training algorithm for moderate numbers of parameters [58,60],
and well-suited for neural network training [58]. A two-layer feedforward artificial neural
network was considered. Therefore, this study uses an 11-11-1 ANN model with LMBP
to predict the seismic performances of existing buildings, and the MATLAB NN toolbox
(nntool) is used to train and test the model because the fastest way to train a feedforward
network of small or medium size is to use “trainlm” in MATLAB [61]. The proposed
approach to model training is shown in Figure 2.
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4. Results

An evaluation of 194 buildings was conducted with post-earthquake visual images
and 11 linguistic variables to categorize damage levels following the Kahramanmaraş
earthquake. Thus, it is thought that pre-earthquake visual images can be used to estimate
the possible damage levels of existing buildings before a similar earthquake. The results of
the designed model are described in detail below.
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4.1. Inputs and Outputs of the Model

A visual analysis of 194 buildings affected by the Kahramanmaraş earthquake was
conducted using linguistic variables based on a five-point Likert scale. Based on their
outward appearance after the earthquake, 194 structures were categorized as having no
damage, slight damage, moderate damage, severe damage, or collapse. According to their
damage levels, 48 of the buildings had no damage, 49 had slight damage, 48 had moderate
damage, and 49 had severe damage or collapse. A list of linguistic variables and their
values is included in Appendix A. After that, Equations (1) and (2) were used to calculate
the risk index (RI) based on the consensus value for each parameter. The model inputs
consist of risk indices ranging from 0 to 1, while its outputs consist of damage levels varying
between 0.25, 0.50, 0.75, and 1. An overview of the model’s input–output values is shown
in Figure 3.
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4.2. Architecture of the Model

In most cases, a network with fewer parameters than data points in the training
set can sufficiently represent the training data for the network to generalize. Several
approaches have been used to create simple networks: growing, pruning, global searches,
regularization, and early stopping. A network is grown by starting with no neurons and
adding neurons until its performance is adequate. It is also possible to stop training before
the network overfits. A simple method for improving generalization is early stopping. This
method aims to minimize overfitting by stopping training before the minimum is reached.
Additionally, when the backpropagation algorithm converges, it is not certain that it is an
optimum solution, so trying several initial conditions ensures an optimal solution. As a
step-by-step approach, we compared the performance of various architectures by adding
neurons to the hidden layer from 11-4-1 to 11-11-1 at various initial parameters to find the
ideal solution, as described above by Hagan et al. [58]. The final architecture and training
parameters are shown in Figure 4.
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4.3. Training, Testing, and Validation

The model was trained using the MATLAB neural network toolbox. As a first step,
the data set was divided into training, testing, and validation subsets. There are various
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ratios recommended for this. For example, the MATLAB neural network toolbox (nntool)
normally divides a network’s data automatically when the network is trained, and the
default ratios for training, testing, and validation are 0.7, 0.15, and 0.15, respectively [61]. In
this study, the default ratios were not changed. The model was run many times with various
initial parameters to find the global minimum point, and finally, the global minimum point
sufficient for the model’s performance was reached with the initial values shown in Figure 5.
Figure 5 shows the final parameters as well.
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The error generally reduces as the number of epochs of training increases; however,
the error may start to increase on the validation data as the network starts overfitting
to the training data [62]. In the default Levenberg–Marquardt training parameters, five
consecutive increases in validation error stop the training [61], and the epoch with the
lowest validation error results in the best performance [62]. The proposed model reached
max_fail (five in this case) in its 794th iteration and completed training with an adequate
performance value (mean squared error), as shown in Figure 6. There are three different
colored lines in Figure 6. The blue line represents the mean squared error (mse) of the
training set, the green line represents the mse of the validation set, and the red line repre-
sents the mse of the test set. As the red and green lines overlap, the red line cannot be seen
because it lies beneath the green line. Note that the test curve and validation curve overlap
in the figure.
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Figure 6. Model’s neural network performance graph.

The statistical value for errors in the entire data set (e = t − a) is M = 0.00068 ± STD
= 0.00852. Additionally, we obtained 0.02 on one data point, 0.06 on one data point, and
0.07 on two data points. The model shows quite good performance. All of the data points
are included in Figure 7’s target–output graph. There were 194 structures evaluated for
damage levels: 48 were completely unaffected (represented by a 0.25), 49 were slightly
damaged (represented by a 0.50), 48 were moderately damaged (represented by a 0.75),
and 49 were severely damaged (represented by a 1.00).
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5. Discussion

Ruggieri et al. developed a framework using ML for the analysis of the seismic
vulnerability of existing buildings, which identifies buildings in an area and uses their
photos to generate a vulnerability index, thereby reducing the time and effort required
for surveys and interviews [13]. Similarly, a proposed model was developed based on
the structural analysis of post-earthquake facade photographs in the Kahramanmaraş
earthquake zone, and its seismic performance was evaluated. A five-point Likert scale with
consensus values derived from linguistic data on the visual images was used to measure
building vulnerability levels. Several predictor variables were used as input parameters
for the ML algorithms, including the closest distance to the surface projection of fault
rupture and the spectral acceleration at the site of interest. Variables such as building age
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(in years), number of stories, plan irregularities, floor area, and replacement cost were also
used to predict building performance. Green, Yellow, and Red were the damage tagging
categories [6]. In another study, Allali et al. scaled component damage levels and global
damage levels according to no damage, slight damage, moderate damage, severe damage,
and collapse. Similarly, our study defined eleven input vulnerability parameters with five
membership values each. Based on the structural analysis, buildings were classified as
having no damage, minor damage, moderate damage, or severe damage/collapse.

Various AI techniques have been used in the literature to design models, and their
performances have been analyzed. Kaplan et al. presented a method in which a building’s
performance level was categorized as low risk, medium risk, or high risk, claiming that the
method showed 83% accuracy, compared to the long and hectic code-based method [47].
An approach based on FL with a genetic algorithm was used by Allali et al. to assess the
damage to buildings with different lateral load-resisting components post-earthquake, and
approximately 90% accuracy was achieved in their results [63]. Harirchian et al. examined
the effectiveness of ML applications in damage prediction using a support vector machine
model as the damage classification technique [33]. According to the study, all 22 input
parameters resulted in a 52% accuracy rate, which is acceptable given the sample size [64].
According to the results of the study by Mangalathu et al., predictions made using the
random forest algorithm had a 66% accuracy in assigning tags and 79% accuracy in actual
yellow tags [6]. In the study by Özkan et al., a generalized regression neural network
and an FFBP neural network were used for the network architecture [44]. The nonlinear
incremental mode combination method was used to evaluate the earthquake performance
of these building models. They claimed that an ANN could successfully predict the
earthquake behavior of reinforced concrete buildings [65]. Chen and Zhang developed a
learning model that enables early disaster risk reduction decisions by automating building
vulnerability assessments in seismic areas [54]. The proposed model here, however, uses an
ANN with two layers (11-11-1) and LMBP to predict the seismic performances of existing
buildings. The structural integrity of the buildings was assessed using a Likert scale, and
four levels of damage were differentiated. In the following step, input data from the
building properties and output data from the structural analysis results were combined to
create the proposed model. Training the model resulted in quite good performance. Based
on the statistical analysis of the entire data set, the mean and the standard deviation of the
errors were 0.00068 and 0.00852, respectively. Four data points differed from the others
but were quite acceptable: 0.02 on one data point, 0.06 on one data point, and 0.07 on two
data points.

6. Conclusions

Earthquakes threaten many lives every year. They affect not only developing countries
but also developed ones and they cause significant economic losses, massive deaths, as
well as the suspension of occupancy and businesses. For future losses to be minimized, it
is crucial to estimate seismic damage before an earthquake occurs. Existing buildings in
earthquake-prone areas need structural safety or seismic vulnerability assessments. Various
RVS techniques have been developed by different countries in recent years to deal with
the devastating effects of earthquakes on buildings and humans. However, RVS methods
have some limitations, such as surveyor bias and site-specific characteristics, as well as
data uncertainty and vagueness. Fuzzy logic, neural networks, and ML are all computer
algorithms that can be used to overcome these kinds of disadvantages in evaluation.

Türkiye is located in an active earthquake zone that can cause very severe earthquakes;
every two years, it experiences severe earthquakes, and every three years, it experiences
very severe earthquakes. Therefore, a new model was developed to rapidly assess building
seismic performance. A consensus-based Likert–ANN approach has been used in this study
to predict earthquake damage levels in residential buildings with RC frames. The ANN
was designed by analyzing the visual images of buildings damaged by the devastating
Kahramanmaraş earthquake of 6 February 2023, which measured 7.7 and 7.6 on the Richter
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scale and severely affected 11 districts in Türkiye. Vulnerability variables for buildings are
measured using linguistic data on a five-point Likert scale based on expert consensus values
derived from post-earthquake visual images. An extensive literature review was conducted
to determine the building vulnerability parameters required for the proposed model,
including the top hill–slope effect, weak story effect, soft story effect, short column effect,
plan irregularity, pounding effect, heavy overhang effect, number of stories, construction
year, structural system state, and apparent building quality. Structural analyses categorized
buildings as no damage, slight damage, moderate damage, or severe damage/collapse.
In terms of damage levels, 48 of the buildings had no damage, 49 had slight damage,
48 had moderate damage, and 49 had severe damage or collapse. Model inputs consist of
risk indices ranging from 0 to 1, while outputs consist of damage levels varying between
0.25, 0.50, 0.75, and 1.

A two-layer neural network (11-11-1) with LMBP was used to train the model af-
ter 194 buildings up to seven stories were evaluated. Max_fail (five) was reached in the
proposed model’s 794th iteration, and training was completed with an adequate perfor-
mance value (mse = 7.26306 × 10−5). Statically, errors in the entire data set (e = t − a) are
M = 0.00068 ± STD = 0.00852, with 0.02 on one data point, 0.06 on one data point, and 0.07
on two data points. Using this model, it is possible to assess the seismic vulnerabilities of
existing buildings by analyzing pre-earthquake facade images with 11 parameters. Experts
can use linguistic variables on a five-point Likert scale, and consensus values combine
differing opinions from experts. LMBP provides a high-performance solution to the pro-
posed model. Although the model shows good performance and it can be used for rapid
visual analysis, a detailed analysis may still be needed. There is room for improvement.
A further evaluation of the model’s reliability should be performed with multiple expert
groups and with data from a variety of earthquake zones or should be remodeled with
more data. This requires much time, but if an AI application evaluates relevant parameters
from photographs, this time will be much shorter, and the proposed model will become
more useful.
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Appendix A. Form for Evaluating Building Vulnerability

n Building Vulnerability Parameters
Very
Low

Low Medium High
Very
High

1

Top hill–slope effect:
(Topographic amplification can intensify ground motion on hills. Buildings
on steep slopes steeper than 30 degrees often have foundations that are
unable to disperse ground distortion evenly).

2
Weak story effect:
(Weak stories usually have vertical discontinuities or reduced member sizes
or reinforcements, which can lead to partial or total collapse).
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3

Soft story effect:
(Ground floors typically have softer structures than upper floors.
Commercial spaces at the bottom are mostly left open (large wall openings)
for customer circulation, or the ground stories have taller clearances and
different axis systems).

4
Short column effect:
(Short columns formed by semi-infilled frames, band windows in
semi-buried basements, or mid-story beams around stairway shafts).

5

Plan irregularity:
(A non-geometrically symmetrical plan, an irregular placement of vertical
structural elements, or a large plan or diaphragm opening; plan shapes like E,
L, T, U, +, and Z).

6

Pounding effect:
(A building should not be located closer than 4% of its height to an adjacent
building. High-rise buildings are more likely to be damaged by pounding. A
misaligned floor level in an adjacent building is considered the
worst-case scenario).

7
Heavy overhang effect:
(Buildings with large, overhanging cantilever spans enclosed by concrete
parapets are more likely to suffer heavy damage).

8 Number of stories:
1–2 3 4 5 6–7

9
Construction year:
(Construction years provide information about building design regulations
as well as design standards).

0–10 11–20 21–30 31–40 >40

10

Structural system state:
(Parameters such as structural geometry, member dimensions, and design
quality affect this parameter. If it cannot be determined, the RCF should be
assumed to be medium).

Very
good

Good Medium Poor
Very
poor

11

Apparent building quality:
(Very poor if the structure has severe damage; very good if the structure has
no visible cracks or damage; medium if there are cracks in some
structural members).
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soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings. J. Build. Eng.
2021, 43, 102536. [CrossRef]

21. Barfield, W. The Cambridge Handbook of the Law of Algorithms; Cambridge University Press: Cambridge, UK, 2020.
22. Ningthoujam, M.; Nanda, R.P. Rapid visual screening procedure of existing building based on statistical analysis. Int. J. Disaster

Risk Reduct. 2018, 28, 720–730. [CrossRef]
23. Mora, E.; Ordóñez Bueno, M.; Gómez, C. Structural Vulnerability Assessment Procedure for Large Areas Using Machine Learning

and Fuzzy Logic. IRECE 2021, 12, 358. [CrossRef]
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