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Abstract: Straw and biochar, two commonly used soil amendments, have been shown to enhance soil
fertility and the composition of microbial communities. To compare the effects of straw and biochar
on soil fertility, particularly focusing on soil dissolved organic matter (DOM) components, and the
physiochemical properties of soil and microbial communities, a combination of high-throughput
sequencing and three-dimensional fluorescence mapping technology was employed. In our study, we
set up four treatments, i.e., without biochar and straw (B0S0); biochar only (B1S0); straw returning
only (B0S1); and biochar and straw (B1S1). Our results demonstrate that soil organic matter (SOM),
available nitrogen (AN), and available potassium (AK) were increased by 34.71%, 22.96%, and 61.68%,
respectively, under the B1S1 treatment compared to the B0S0 treatment. In addition, microbial carbon
(MBC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were significantly
increased with the B1S1 treatment, by 55.13%, 15.59%, and 125.46%, respectively. The results also
show an enhancement in microbial diversity, the composition of microbial communities, and the
degree of soil humification with the application of biochar and straw. Moreover, by comparing
the differences in soil fertility, DOM components, and other indicators under different treatments,
the combined treatments of biochar and straw had a more significant positive impact on paddy
soil fertility compared to biochar. In conclusion, our study revealed the combination of straw
incorporation and biochar application has significant impacts and is considered an effective approach
to improving soil fertility.

Keywords: biochar; straw; soil microorganism; soil DOM; carbon components

1. Introduction

Soils are a limited resource that sustain terrestrial life and can provide essential
ecosystem functions for humans [1]. The maintenance and stability of soil fertility are
crucial for ensuring food security in China [2]. However, intensive farming reduces organic
matter, soil structure, and fertility [3]. Unreasonable fertilization harms soil quality, worsens
pollution, and endangers human health [4]. For example, it leads to soil nutrient imbalances,
structure destruction, and issues like acidification and salinization [5]. Additionally, the
application of nitrogen, phosphorus, and potassium fertilizers can significantly reduce
the richness of soil bacterial communities [6]. Thus, addressing how to improve the soil
structure, farmland fertility, crop yield, and sustainable agricultural development is an
urgent issue.

With the increase in agricultural production, the yield of crop straw has been consis-
tently increasing and maintaining a high level. Returning crop straw to the field directly
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fertilizes the soil, improving its structure, fertility, and quality [7,8]. Straw contains rich
nutrients (C, N, P, and K), which increase the content of soil organic carbon (SOC) and
soil fertility [9]. Unreasonable straw returning to the field can also reduce crop emergence
rates and exacerbate the occurrence of soil-borne diseases [10]. Additionally, biochar is a
carbon-rich solid produced from agricultural and forestry waste through high-temperature
and oxygen-limited conditions [11,12]. Biochar contains a considerable amount of organic
carbon (>60%), and the carbon in biochar is mostly aromatic carbon [13,14]. Biochar can
significantly reduce soil bulk density and increase the total soil porosity and moisture
content [15,16]. Biochar, straw, and other organic materials have been shown to increase
the soil organic carbon (SOC) content, improve soil structure, and enhance microbial com-
munity diversity [8]. However, the positive impact of biochar is particularly pronounced
on acidic soils [12]. Biochar is primarily composed of inert carbon, whereas straw consists
mostly of activated carbon that is more readily utilized by microorganisms [17]. Addition-
ally, straw and biochar have different C/N ratios, leading to varying rates of decomposition.
Straw decomposes organic matter like cellulose, polysaccharides, and proteins at a faster
pace compared to biochar [18].

The soil carbon pool is crucial for soil quality and productivity, contributing signif-
icantly to its physical, chemical, and biological characteristics [19,20]. Unstable organic
carbon is easily oxidized and decomposed, serving as an indicator for assessing soil quality
and productivity [21]. Returning straw to the field can improve soil carbon storage and soil
fertility in a short period of time [22]. To date, several studies have investigated how return-
ing straw to the field can greatly enhance soil organic matter, humic acid, humin content,
and humification [23,24]. A meta-analysis has shown that straw returning significantly
increases soil organic carbon concentration and soil active carbon composition, promoting
the formation of soil macroscopic aggregates [25]. Biochar application enhances soil organic
carbon and microbial biomass carbon, thereby influencing soil carbon composition through
improved microbial community structure [26,27]. Extracellular enzymes in the soil play an
important role in regulating the decomposition of soil organic matter and nutrient cycling
processes [28]. Various studies have assessed that biochar and straw can alter the activity
of soil extracellular enzymes by affecting soil physicochemical properties [8,29].

In this study, we used straw and biochar as research materials to conduct field ex-
periments on paddy soils in central China. Through field experiments, we investigated
the impact of applying straw and biochar on soil nutrients, carbon components, enzyme
activity, and the microbiome to reveal their potential for improving soil quality in paddy
soils. We explored the connection between soil carbon composition, enzyme activity, and
microbial community under various treatments using enzymatic techniques, soil DOM
3D fluorescence, and high-throughput sequencing. To be specific, the main hypotheses
we wanted to validate in this study were the following: (1) explore the effects of straw
and biochar on organic matter, carbon components, and DOM components in rice soil;
(2) explore the intrinsic relationship between soil chemical factors and soil microbial com-
munities; and (3) choose the most effective treatment to enhance the rice soil quality.

2. Materials and Methods
2.1. The Experimental Design

This field experiment was conducted at the Xiangyang experimental farm, Hubei
province, China (112◦07′19′′ E, 32◦00′36′′ N). The study site is within the subtropical
monsoon climate zone (15~16 ◦C), with precipitation and annual sunshine hours of
820~1100 mm and 1800~2100 h, respectively. The soil was paddy soil (Acrisols) collected
from the topsoil layer (0–20 cm). The physicochemical properties of the tested soil were
measured as described below. The organic matter was 24.51 g·kg−1; pH was 5.58; and the
available N, P, and K were 92.77, 23.39, and 94.94 mg·kg−1, respectively. The straw used
was wheat straw, with an average nutrient content of N (0.54%), P (0.09%), K (1.25%), and C
(44.51%). The biochar was produced from rice straw at 500 ◦C, and its physical properties
were analyzed as follows: pH, EC, C, N, P, and K were 9.60, 1850 µs/cm, 46.79%, 0.71%,
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0.52%, and 5.30%, respectively. The specific fertilization information for each experiment is
detailed as follows: the amounts of N, P, and K fertilizers applied in the rice season were
150, 39, and 75 kg/hm2, respectively; in the wheat season, the amounts of N, P, and K
fertilizers applied were 120, 33, and 50 kg/hm2, respectively. Rice–wheat rotation is the
typical cropping system in this area. Rice is typically transplanted in early June of each year
and harvested in September, while wheat is usually sown in early October and harvested in
early May of the following year. The trial commenced on 21 May 2019, with soil sampling
conducted on 25 September 2021. Biochar, straw, and fertilizer were applied to the fields
annually in May for a period of 3 years (2019–2021). The other field management practices
remained consistent with the local farming practices.

The experiment consisted of four types of field management practices based on the
results of our previous studies [8,12,29]: without biochar and straw (B0S0); biochar only
(B1S0, 3.5 t/hm2); straw returning only (B0S1, 6 t/hm2); and biochar and straw (B1S1,
3.5 t/hm2 for biochar, 6 t/hm2 for straw), with four replicates of each treatment (n = 16).
The size for each plot was 20 m2 (4 * 5 m).

2.2. Sample Collection and Determination

The soil samples were collected from the tillage layer (0–20 cm), and all stones and
large plant fragments were removed. The soil samples were divided into three parts: one
part was air-dried and used to measure the soil basic chemical properties [30]; another part
was stored at −20 ◦C and used to measure soil enzymatic activities; and another part was
stored at −80 ◦C and used to measure soil microorganisms.

Soil pH and SOM were measured with a pH meter (water/soil = 2.5/1) and chromic
acid redox titration, respectively. Soil AK, AP, and AN were measured using the flame
photometer method, molybdenum–antimony anti-spectrophotometric method, and alkali-
hydrolytic diffusion method, respectively. MBC and MBN were measured using the
chloroform fumigation–extraction method. DOC and DON were measured using a C/N
analyzer. EOC and POC were measured using 333 mol L−1 of KMnO4 and (NaPO3)6,
respectively. Fluorometry was used to measure the activities of soil extracellular enzymes
(NAG, ACP, LAP, POX, and CAT) with a multifunctional microplate reader (Scientific
Fluoroskan Ascent FL, Thermo, Waltham, MA, USA) [31].

The soil total DNA was extracted using the E.Z.N.A.® DNA Kit (OmegaBio-tek,
Norcross, GA, USA). DNA quality and purity were evaluated with a NanoDrop 2000 (Nan-
oDrop Technologies, Wilmington, DE, USA) and visualized via electrophoresis on 1%
agarose gels. The primers for bacteria were 515F (5′-GTGCCAGCMGCCGCGG-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′). The primers for fungi were ITS1F (5′-CTTGGT
CATTTAGAGGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′). PCR prod-
ucts were recovered and purified using 2% agarose gel and Axy Prep DNA Gel Extraction
Kits(Axygen Biosciences, UnionCity, CA, USA). Sequencing was performed on an Illumina
MiSeq with the assistance of Shanghai Majorbio Bio-pharm Technology Co., Ltd.

Fluorescence Spectroscopy DOM: The soil sample was extracted with 1 mol·L−1 at
20 ◦C (200 r·min−1, 24 h). The samples were centrifuged (5000 r·min−1, 15 min) and filtered
with a 0.45 µm glass fiber filter membrane [32]. The DOM solution was measured using a
multi-mode spectroscopy analyzer (BioTek, Winooski, VT, USA). The excitation wavelength
(λEx) was set at 5 nm, the emission wavelength (λEm) at 5 nm, and the scanning speed at
2400 nm/min. The measurement covered an excitation wavelength range of 200–440 nm
and an emission wavelength range of 250–600 nm [33]. The C1, C2, and C3 represented
different fluorescence component characteristics and were subjected to source analysis
(Table S1).

2.3. Data Analysis

The sequencing of microorganisms was performed using the Fastp (version 0.20.0)
and Flash software (version 1.2.7). We used the UPARSE software (version 7.0) to cluster
OTU sequences and excluded chimeras with 97% similarity. The 16S rRNA database (Silva
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v138) and ITS database (Silva v138) were analyzed using a confidence threshold of 0.70. All
sequencing data were combined for further analysis (alpha diversity analysis, beta diversity
analysis, differential species analysis, and correlation and model prediction analysis) using
the R software (version 4.2.3). Excel 2023 and SPSS Statistics 23.0 (IBM, Armonk, NY, USA)
were used for data analysis. The data for the chemical properties of the soil are represented
as the mean ± S.E. of triplicate data (n = 3). Fluorescence spectroscopy data were analyzed
using MATLAB 2007. All graphs were created using the Origin software (version 8.0), R
software (version 4.2), and Adobe Illustrator 2021.

3. Results
3.1. Effect of Various Treatments on Soil Chemical Properties in Paddy Soils

Table 1 shows that there are differences in the soil chemical properties under the
different treatments. The SOM, AN, and AK differed significantly among the treatments,
but the soil pH and AP did not show significant variations. Compared to the B0S0 treatment,
the SOM, AN, and AK were increased by 34.71%, 22.96%, and 61.68%, respectively, under
the B1S1 treatment (Table 1). Additionally, the AN and AK were increased by 22.28%
and 46.48%, respectively, by the B0S1 treatment compared to the B1S0 treatment. These
results show that biochar and straw addition could effectively increase soil fertility. The
results were analyzed with a two-way ANOVA, and we found that straw had a significant
influence on SOM, AN, and AK, while biochar only had a remarkable influence on SOM
(p < 0.05) (Table 1).

Table 1. Effects of biochar and straw on soil basic chemical properties in paddy soils.

Treatment pH SOM
(g/kg)

AN
(mg/kg)

AP
(mg/kg)

AK
(mg/kg)

B0S0 5.61 ± 0.12 a 24.66 ± 0.67 c 97.86 ± 7.08 b 29.05 ± 3.02 a 91.04 ± 4.72 b
B1S0 5.76 ± 0.17 a 29.47 ± 2.13 b 92.81 ± 7.12 b 30.11 ± 3.85 a 99.36 ± 6.48 b
B0S1 5.65 ± 0.23 a 30.92 ± 2.22 ab 113.49 ± 5.83 a 30.68 ± 12.07 a 145.54 ± 20.62 a
B1S1 5.61 ± 0.15 a 33.22 ± 2.03 a 120.23 ± 2.2 a 34.24 ± 3.87 a 147.2 ± 10.47 a

B 0.28 10.78 * 0.06 0.35 0.50
S 0.32 21.43 ** 39.80 ** 0.54 52.44 **

B*S 0.86 1.35 2.98 0.10 0.22

Note: Lowercase letters indicate significant differences in biochar and straw addition among the different
treatments with a Duncan’s test (p < 0.05). Values are the means ± SD (n = 3). The statistical results of a two-way
analysis of variance are expressed as F-value and p-value. * p < 0.05; ** p < 0.01.

A further analysis showed that the carbon (C) and nitrogen (N) components had
different changes under the different treatments (Table 2). Compared to the B0S0 treatment,
the MBC, DOC, and POC were significantly increased with the straw or biochar addition
(Table 2). They increased from 174.67, 79.65, and 4.91 mg/kg under the B0S0 treatment
to 270.97, 92.07, and 11.07 mg/kg under the B1S1 treatment (Table 2), respectively. The
respective increases were 55.13%, 15.59%, and 125.46% in MBC, DOC, and POC. In addition,
the DON also increased from 5.10 mg/kg under the B0S0 treatment to 6.46 mg/kg under the
B1S1 treatment (Table 2). Furthermore, the MBC/MBN ratio increased with straw addition,
while it decreased with biochar application (Table 2). Additionally, compared to the B1S0
treatment, the MBC, DON, and DOC were increased by 85.81%, 39.77%, and 34.06% under
the B0S1 treatment (Table 2), respectively. Moreover, biochar had a significant influence
on the soil MBC, DON, DOC, and POC, and straw also had noticeable effects on the soil
MBC, DOC, and POC (p < 0.05) The interaction effect of biochar and straw on the soil MBC,
DOC, and POC was significant (p < 0.05). The activities of ACP and NAG decreased with
biochar or straw addition. Compared to the B0S0 treatment, the activities of ACP and NAG
decreased by 14.42% and 11.69% under the B1S1 treatment (Table S2), respectively.
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Table 2. Effects of biochar and straw additions on soil carbon and nitrogen components in paddy soils.

Treatment MBN
(mg·kg−1) MBC (mg·kg−1) DON

(mg·kg−1)
DOC

(mg·kg−1)
EOC

(mg·kg−1)
POC

(mg·kg−1) MBC/MBN DOC/DON

B0S0 4.59 ± 0.67 a 174.67 ± 24.57 c 5.10 ± 0.60 b 79.65 ± 3.85 c 21.91 ± 2.13 a 4.91 ± 0.27 c 38.11 ± 2.90 ab 15.71 ± 1.26 a
B1S0 5.81 ± 0.32 a 190.75 ± 5.43 c 5.13 ± 0.48 b 81.12 ± 1.16 c 21.08 ± 2.56 a 8.20 ± 1.43 b 32.95 ± 2.83 b 15.92 ± 1.64 a
B0S1 6.75 ± 1.80 a 354.43 ± 13.00 a 7.17 ± 0.50 a 108.75 ± 2.79 a 19.79 ± 1.94 a 7.71 ± 1.25 b 55.39 ± 16.07 a 15.23 ± 1.36 a
B1S1 6.28 ± 1.53 a 270.97 ± 36.37 b 6.46 ± 0.08 a 92.07 ± 6.86 b 22.98 ± 2.19 a 11.07 ± 1.33 a 43.98 ± 6.02 ab 14.27 ± 1.15 a

B 3.37 95.41 ** 41.18 ** 67.88 ** 0.36 0.01 * 7.73 * 1.85
S 0.27 6.41 * 1.67 9.78 * 0.01 0.86 * 2.65 0.23

B*S 1.39 13.99 ** 1.96 13.93 ** 1.03 2.47 * 0.38 0.56

Note: Lowercase letters indicate significant differences in biochar and straw addition among the different
treatments with a Duncan’s test (p < 0.05). Values are means ± SD (n = 3). The statistical results of two-way
analysis of variance are expressed as F-value and p-value. * p < 0.05; ** p < 0.01.

3.2. Effect of the Various Treatments on Three-Dimensional Fluorescence Spectral Characteristics of
Soil DOM

A closer inspection of Table 3 reveals changes in the three-dimensional fluorescence
spectral characteristics of soil DOM with biochar or straw addition. The FI decreased with
biochar and straw addition (Table 3). Additionally, the BIX decreased by 11.29% under the
B1S1 treatment compared to the B0S0 treatment, while the UV254 increased by 135.71%
(Table 3). Moreover, Table 3 listed the proportions of C1, C2, and C3 as 46.32–49.28%,
44.34–44.43%, and 7.34–9.28%, respectively. Compared to the B0S0 treatment, C1 decreased
from 49.28% to 46.41%, while C3 increased from 7.34% to 9.25% under the B1S1 treatment
(Table 3).

Table 3. Effects of biochar and straw addition on soil DOM fluorescence components, fluorescence
spectral parameters, and ultraviolet spectral parameters in paddy soils.

Treatment
Fluorescence

Index (FI)
Biological

Index (BIX) UV254
The Distribution of Fluorescence Components

C1% C2% C3%

B0S0 2.10 ± 0.03 a 0.62 ± 0.04 a 0.14 ± 0.02 c 49.28 ± 1.48 a 43.38 ± 2.47 a 7.34 ± 0.99 a
B1 S0 1.98 ± 0.03 b 0.55 ± 0.02 a 0.26 ± 0.01 b 49.72 ± 2.46 a 44.43 ± 6.22 a 9.18 ± 1.85 a
B0S1 2.06 ± 0.05 ab 0.57 ± 0.08 a 0.23 ± 0.02 b 46.32 ± 8.66 a 44.41 ± 7.47 a 9.28 ± 1.20 a
B1S1 2.02 ± 0.09 ab 0.55 ± 0.04 a 0.33 ± 0.01 a 46.41 ± 4.37 a 44.34 ± 2.58 a 9.25 ± 2.61 a

B 5.83 * 1.81 124.12 0.01 0.03 0.78
S 0.01 0.68 71.79 ** 1.15 0.02 0.95

B*S 1.24 0.89 1.19 0 0.03 0.83

Note: Lowercase letters indicate significant differences in biochar and straw addition among the different
treatments with a Duncan’s test (p < 0.05). Values are means ± SD (n = 3). The statistical results of two-way
analysis of variance are expressed as F-value and p-value. * p < 0.05; ** p < 0.01.

3.3. Effect of the Various Treatments on Soil Bacteria and Fungi in Paddy Soils

Soil samples were collected from various treatments to study the alterations in the soil
microbial populations by biochar and straw application. The dominant bacteria were Acti-
nobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Myxococcota (Figure 1A).
Additionally, the dominant fungi were Ascomycota, Mortierellomycota, and Basidiomy-
cota. Compared to the B0S0 treatment, the abundance of dominant genera significantly
increased with biochar or straw addition (Figure 1B). We found a significant difference
in the composition of microbial communities (bacteria and fungi) with biochar and straw
addition (Figure 1C,D). Among all treatments, the number of dominant genera was the
highest under the B0S1 treatment, while it was the lowest under the B0S0 treatment
(Figure 2A and Figure S1A). The top five biomarkers were p_Firmicutes, c_Clostridia,
o_Xanthomonadales, f_Rhodanobacteraceae, and f_Clostridiaceae with straw addition
alone. However, g_norank_f_Chthoniobacteraceae and g_Nitrosospira were enriched un-
der the B0S0 treatment (Figure 2B and Figure S1B). Unlike bacterial changes, the number of
dominant genera in fungi was the highest with only biochar addition, while it was the high-
est under the B1S1 treatment. The top five biomarkers were g_Fusarium, f_Cordycipitaceae,
g_unclassified_o_Tremellales, f_unclassified_o_Tremellales, and p_Glomeromycota under
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the B1S0 treatment, while g_Aspergillus, f_Aspergillaceae, and g_Curvularia were enriched
with the B1S1 treatment (Figure S1B).
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Figure 2. The LEfSe analysis of soil bacterial (A) and fungal (B) communities under the different
management measures. The taxa with significantly different abundances among the different treat-
ments are represented by dots with different colors, and from the center outward, they represent the
phylum, class, order, family, and genus levels.
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3.4. The Relationship between Soil Environment and Microorganisms under Different Treatments

Our subsequent objective was to investigate the connections between the soil micro-
biome and environmental factors. It was found that there was a tight link between the soil
microbiome (bacteria and fungi) and environmental factors (p < 0.05) (Figure 3). The Pro-
crustes analysis findings (bacteria R = 0.9970, p < 0.05; fungi R = 0.9539, p < 0.05) show that
the soil bacteria and fungi varied significantly with the soil chemical properties (Figure 3).
Additionally, the analysis of the RDA indicated that the soil microbiome (bacteria and fungi)
changed in response to the surrounding conditions (Figure 4). AK, AN, POC, and MBC
were the main important environmental factors for soil bacterial community composition,
and ACP, βG, and CAT were important soil enzymes for soil bacteria (Figure 4A,B). More-
over, POC, SOM, AN, AK, and MBN were major soil environmental indices for soil fungi,
and ACP, CAT, POX, and βG were also prominent soil factors for the fungal community
structure (Figure 4C,D). In addition, a correlation analysis was performed using a Pearson
correlation analysis to explore the relationship between the soil microbiome (bacteria and
fungi) and environmental factors (Figure 5). The results in Figure 5A also demonstrate
that AK is the most important index influencing the soil bacterial community composi-
tion, and most soil bacterial communities always maintain significant (p < 0.05) negative
associations with the soil AK. The relative abundance of Firmicutes had a strong positive
association with the soil chemical properties (Figure 5A). Moreover, the soil AN, AK, DON,
MBC, and DOC had significant negative correlations with soil fungi at the phylum level
(Mortierellomycota, Glomeromycota, and Zoopagomycota) (Figure 5B).
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4. Discussion
4.1. Effects of Biochar and Straw on the Soil Chemical Properties in Paddy Soils

Soil nutrient levels impact plant growth, metabolism, and other factors [34]. The
current study found that biochar and straw significantly improved soil available nutrients,
especially carbon components (Tables 1 and 2). There are several possible explanations for
this result: (1): Biochar and straw are organic materials rich in carbon, which can increase
soil organic carbon concentration and improve soil nutrient status [35,36]. (2): Returning
biochar and straw to the field boosts soil microbial activity, leading to increased nutrient
release and improved soil organic matter and fertility [8]. (3): Biochar and straw can
improve crop root biomass, enhancing soil organic carbon and nutrient levels [37]. The
study found that the AN did not significantly change with varying amounts of biochar
application (Table 1). This could be attributed to the fact that an excessive biochar (high
C/N ratio of biochar) application may enhance microbial nitrogen fixation, leading to
a reduced nitrogen availability for plants in the soil and lower nitrogen mineralization
utilization rate [38]. Xia et al. [39] found crop straw and biochar returning to the soil
significantly increased the soil carbon component (DOC, MBC, POC, and ROC). Another
important finding was that biochar had more distinct effects on the soil carbon components
(Table 2). Several factors could explain this observation. (1): Biochar contains rich pore
structures, which can reduce the rate of soil nutrient release and reduce nutrient loss [40].
(2): Biochar has a higher charge density, which can effectively absorb soil nutrients and
improve nutrient utilization [41]. (3): Biochar is more decomposed, and soluble carbon is
more readily available under pyrolysis treatment at high temperatures [42]. (4): The carbon
in straw is mainly activated carbon, while the carbon in biochar is mostly inert [43]. One
interesting finding was that some available nutrients were increased less notably compared
to the biochar treatment with straw addition (Table 1). A possible explanation for this
might be that the chemical properties and pore structure are changed in straw during the
pyrolysis process [44]. The content of elements (N, H, and O) in biochar decreases with
the increase in the carbonization temperature [45]. The strong adsorption of biochar in
soil pores can reduce the availability of free nutrients [46]. Many reports found that soil
enzymes were affected by different management measures [47].

Extracellular enzymes in the soil participate in soil biogeochemical cycling through
processes such as the catalysis, degradation, transformation, and synthesis of soil organic
matter [48]. The results of this study indicate that the soil extracellular enzymes (ACP
and NAG) changed with biochar and straw addition (Table 3). The activities of the soil
βG, CBH, NAG, and LAP significantly increased with straw and biochar addition [8]. A
possible explanation for this might be that straw and biochar could provide soil available
nutrients for soil microorganisms, which could incite soil enzymes [49]. Moreover, the
soil enzyme activity had varying responses to biochar and straw addition in our study
(Table 3). This discrepancy could be attributed to two factors: (1) Biochar pores can adsorb
necessary substrates, boost soil enzyme activity, and enhance enzymatic reaction efficiency.
(2) The potentially harmful substances (organic pollutants and heavy metals) in biochar
decrease soil enzymes and microbial activity [50]. Compared to the application of biochar
alone, straw application is more effective in enhancing soil fertility and increasing carbon
components (Tables 1 and 2). We hypothesize that this may be due to one of the following
reasons: As the carbonization temperature increases during the biochar preparation process,
the content of active carbon components in the biochar decreases [51]. (1) Substances with
a high carbon-to-nitrogen (C/N) ratio are less likely to decompose in soil. Thus, the carbon
present in straw is more readily accessible to soil microorganisms compared to the carbon
in biochar [52]. (2) Straw application can lead to an excitation effect on soil organic matter
in the initial stages, while biochar tends to remain stable in the soil as it is resistant to
decomposition [53].
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4.2. Effects of Biochar and Straw on Soil 3D Fluorescence Spectral Characteristics of Soil DOM in
Paddy Soils

Soil dissolved organic matter (DOM) is an active component of SOM, composed
of humic acids, proteins, organic acids, and amino acids [54]. Dissolved organic matter
(DOM) plays a critical role in the breakdown of soil nutrients, as well as in the growth
and metabolism of microorganisms in the field [55]. The current study found that the
value of FI was greater than 1.9 under all treatments, suggesting that microbial metabolism
provides the majority of DOM [56]. Moreover, the value of the BIX lower than 1 under
all treatments indicated the autochthonous or biological production of DOM components
sourced from terrestrial DOM [57]. In addition, the FI decreased with the biochar and straw
treatment (Table 3). These results suggest biochar and straw increase the soil microbial
diversity, promoting the decomposition of plant residues [58]. Biochar exhibits a strong
chemical stability and has the ability to absorb soil organic molecules as it undergoes a slow
decomposition process, ultimately aiding in the formation of humus [59]. Furthermore, the
value of UVA254 increased with biochar and straw addition, indicating the degree of soil
SOM humification was enhanced with straw and biochar addition (Table 3). This result
may be explained by the fact that returning straw to the field is beneficial for increasing
the degree of DOM humification and the hydrophobic component content [32]. Moreover,
straw and biochar promoted the percentage of C3, while decreasing the percentage of C1
(Table 3). Straw and biochar decomposition increases soil DOM aromaticity, humification
degree, and molecular weight, leading to the accumulation of tyrosine, humic acid, and
fulvic acid components [60]. Wu et al. [61] found microorganisms break down straw in the
field to convert organic carbon into smaller DOM fractions. However, some studies have
demonstrated that the porous structure of biochar readily adsorbs soluble organic carbon
from the soil, leading to an encapsulation effect and suppression of soil microorganism
activity, ultimately resulting in a reduction in soil organic carbon mineralization [62]. In
addition, the return of straw to fields has a limited impact on increasing soil organic carbon
storage in the short term, with carbon emissions during its rapid decomposition being the
primary source of greenhouse gases, leading to negative environmental consequences [63].

4.3. Effect of Various Treatments on Soil Microorganisms in Paddy Soils

In our study, we also found that biochar and straw alter the composition of the
soil microbial community (Figure 1). There are multiple potential explanations for this
result [8,12,46]: (1) straw and biochar may offer readily available nutrient content and
carbon sources for soil microorganisms; (2) the combination of biochar and straw could
establish optimal soil moisture and temperature conditions, thereby enhancing the diversity
of soil microbial communities; and (3) biochar and straw may serve as effective shelters
for microorganisms. In addition, straw and biochar could increase the abundance of
beneficial microorganisms in paddy soils (Figure 2 and Figure S2). For example, straw
could promote the abundance of p_Firmicutes, and biochar could promote the abundance
of p_Glomeromycota and p_Zoopagomycota (Figure S2). Several factors could explain this
observation: (1) adding organic matter can supply carbon sources and energy, which greatly
increases soil microbial activity (particularly the growth of R-type microorganisms) [64];
and (2) adding different organic substances to the soil to keep a variety of organic matter
for soil microorganisms, maintaining diversity in agricultural ecosystems [65]. Zhou
et al. [66] found that adding more than six types of organic matter can effectively prevent
tomato wilt disease (particularly in carbohydrates and fatty acids). Based on the plant–soil
feedback effect, long-term intensive agriculture leads to a decrease in the soil organic
matter content, nutrient depletion, and the frequent occurrence of soil-borne diseases [67].
In our study, biochar and straw are common organic materials that can greatly enhance
soil organic matter and available nutrients (Tables 1 and 2). These findings could be
used to explain why exogenous organic matter can alter the structure of soil microbial
communities. In addition, substances such as polycyclic aromatic hydrocarbons (PAHs),
volatile organic compounds (VOCs), and environmental persistent free radicals (EPFRs)
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found on the surface of biochar have the potential to impede the growth and metabolic
functions of specific microorganisms [68]. Furthermore, through a correlation analysis,
Procrustes analysis, and redundancy analysis, there was a close relationship between
soil microorganisms and soil physicochemical properties (Figures 3–5). For example, the
relative abundance of p_Firmicutes was significantly correlated with the soil nutrients (POC,
SOM, AK, AN, DON, and MBC). Many studies found that p_Firmicutes were crucial for
facilitating plant nitrogen fixation, organic matter degradation, environmental remediation,
soil fertility, and crop growth within the ecological environment [69,70].

Microorganisms can decompose organic matter, promote crop growth, and maintain
the nutritional balance and health of the soil [71,72]. Soil pH changes can impact nitrogen-
fixing bacteria abundance and community structure, reduce nitrification-related microor-
ganisms (p_Nitrospinota), and inhibit nitrifying bacteria activity [73,74]. Gao et al. [75]
found that soil bacterial and fungal communities increased with more biochar, and the
timing of biochar application affected soil microbial diversity. In addition, a negative
correlation was found between the relative abundance of soil fungi (p_Glomeromycota and
p_Zoopagomycota) and soil nutrient level (Figure 5). The p_Glomeromycota can form ar-
buscular mycorrhizas with terrestrial plants, which can assist plants in absorbing inorganic
salts and nutrients from the soil, especially in poor soils [76,77]. Thus, applying straw or
biochar to the soil can activate soil microorganisms, maintain soil microbial diversity, and
improve soil health.

5. Conclusions

This study investigates the impact of straw and biochar on soil fertility, organic matter,
dissolved organic matter (DOM) components, and microbial communities in field exper-
iments. The findings indicate that biochar and straw effectively enhanced soil fertility,
particularly soil organic matter and available potassium levels. In addition, biochar and
straw increased soil particulate organic carbon (POC), microbial biomass carbon (MBC),
and total organic carbon contents to different extents. When compared, straw has a more
pronounced effect on increasing the soil carbon component than biochar. Furthermore,
biochar and straw increased the soil microbial diversity, which promoted the decomposition
of plant residues. Additionally, the degree of soil SOM humification was enhanced with
straw and biochar addition. Thus, biochar and straw enhanced the structure of microbial
communities and suppressed the proliferation of harmful bacteria through the restoration
of soil organic matter and essential nutrients. In general, the utilization of biochar, straw
incorporation into the soil, and the combination of straw incorporation and biochar appli-
cation have been shown to enhance soil fertility, soil carbon sequestration capacity, and the
soil microenvironment. Particularly, the combination of straw incorporation and biochar
application has demonstrated the most significant impact and is considered an effective
approach to improving soil fertility.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13111478/s1. Figure S1: The three fluorescence fractions and loading
maps of DOM of paddy soil. (A–C): represented the different fluorescence fractions; (D): Different
Fluorescence characteristics and source analysis; Figure S2: The LEfSe analysis of soil bacterial
(A) and fungus (B) under different management measures. The taxa with significantly different
abundances among different treatments are represented by dots with different colors, and from the
center outward, they represent the phylum, class, order, family, and genus levels; Table S1: Description
and significance of characteristic parameters of ultraviolet-visible spectroscopy of dissolved organic
matter; Table S2: Effects of biochar and straw on soil enzyme activity in paddy soil.
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