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The mortality rate associated with cutaneous melanoma (SKCM) remains
alarmingly high, highlighting the urgent need for a deeper understanding of its
molecular underpinnings. In our study, we leveraged bulk transcriptome
sequencing data from the SKCM cohort available in public databases such as
TCGA and GEO. We utilized distinct datasets for training and validation purposes
and also incorporated mutation and clinical data from TCGA, along with single-
cell sequencing data fromGEO. Through dimensionality reduction, we annotated
cell subtypes within the single-cell data and analyzed the expression of tumor-
related pathways across these subtypes. We identified differentially expressed
genes (DEGs) in the training set, which were further refined using the Least
Absolute Shrinkage and Selection Operator (LASSO) machine learning algorithm,
employing tenfold cross-validation. This enabled the construction of a
prognostic model, whose diagnostic efficacy we subsequently validated. We
conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses on the DEGs, and performed immunological
profiling on two risk groups to elucidate the relationship between model
genes and the immune responses relevant to SKCM diagnosis, treatment, and
prognosis. We also knocked down the GMR6 expression level in the melanoma
cells and verified its effect on cancer through multiple experiments. The results
indicate that the GMR6 gene plays a role in promoting the proliferation, invasion,
and migration of cancer cells in human melanoma. Our findings offer novel
insights and a theoretical framework that could enhance prognosis, treatment,
and drug development strategies for SKCM, potentially leading to more precise
therapeutic interventions.
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1 Introduction

SKCM is globally recognized as the third most prevalent type of skin cancer and the
19th most common cancer overall (Davey et al., 2021). Despite constituting only about 1%
of all skin cancers, SKCM is the most invasive and perilous type, responsible for 90% of skin
cancer-related deaths (Eddy and Chen, 2020). In the United States in 2023, approximately
97,610 new cases of SKCM were projected, accompanied by an estimated mortality of 7,990
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(Siegel et al., 2023). In situ SKCM represents the precursor stage to
malignant SKCM, with its incidence rising even faster than that of
malignant SKCM (Wei et al., 2016; Sacchetto et al., 2018). The 5-
year survival rate for localized SKCM is 99%, but it drops to 63% for
regional metastatic SKCM and further plummets to 20% for distant
metastatic cases (Fakhoury et al., 2024). Major risk factors for SKCM
include environmental factors like excessive UV exposure, genetic
factors, gender, age, race, and immune factors (Hawkes et al., 2016;
Davey et al., 2021). Females have a lower risk of SKCM, and their
prognosis is better than males (El Sharouni et al., 2019).
Socioeconomic status is closely linked to SKCM incidence, with
higher socioeconomic status correlating to higher malignant SKCM
rates, though tumors are thinner, and prognosis is relatively better
compared to lower socioeconomic status patients (Gibson et al.,
2020).Despite advancements in surgery, radiation therapy,
chemotherapy, and targeted treatments such as KIT inhibitors,
SKCM poses challenges due to difficulties in early non-invasive
identification, high invasiveness, and early occurrence of local or
distant metastases, leading to an overall poor prognosis (Lo and
Fisher, 2014; Slipicevic and Herlyn, 2015; Davis et al., 2019).
Therefore, in-depth research into the mechanisms of SKCM
occurrence and development, especially those leading to
metastasis and recurrence, is crucial. Identifying key biomarkers
and exploring crucial target genes are essential for the diagnosis,
treatment, and prognosis of SKCM.

Numerous studies have investigated the role of specific gene
families in SKCM and constructed prognostic models (Luo et al.,
2023; Yue et al., 2023). However, these studies have primarily
focused on subsequent analyses based on specific functional gene
sets. Analyzing the intrinsic correlations and potential therapeutic
targets of gene expression from a holistic transcriptomic perspective
can provide a more comprehensive understanding of the disease.
Additionally, the analysis paradigm has expanded from simple
prognostic model construction and molecular mechanism
analysis to drug prediction. This “treatment-prognosis”
comprehensive analysis offers a theoretical basis for improving
cancer treatment. However, existing studies are based on the
“pRRophetic” R package (Li AA. et al., 2022; Zhao et al., 2023).
Considering the early release year of the “pRRophetic” R package
(Geeleher et al., 2014), it is necessary to perform drug prediction for
SKCM based on the new “oncopredict” package (Maeser
et al., 2021).

In this study, we performed a comprehensive analysis of both
bulk transcriptomic and single-cell sequencing data for SKCM,
sourced from the public databases of The Cancer Genome Atlas
(TCGA) and The Gene Expression Omnibus (GEO). Initially, we
applied dimensionality reduction techniques to the single-cell
dataset, annotating cellular subtypes and examining the
expression of tumor-related pathways across these subtypes. We
then leveraged the bulk transcriptomic data to construct predictive
models, which were rigorously validated using designated training
and validation sets. Differential expression analysis identified a set of
genes (DEGs) from the training dataset. These DEGs were further
scrutinized using the Least Absolute Shrinkage and Selection
Operator (LASSO) machine learning algorithm, enhanced with
tenfold cross-validation, to refine the model development and
perform validation tests. In addition, we conducted Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses, as well as mutation analysis on these
DEGs. Furthermore, we utilized three immune infiltration
algorithms to explore immune-related dynamics within two
defined risk groups, uncovering potential links between the
prognostic model and tumor immunity. Sensitivity analysis was
also employed to guide targeted drug selection. Our findings provide
significant new insights and a solid theoretical foundation for
advancing the prognosis and therapeutic strategies for SKCM.

2 Materials and methods

2.1 Data acquisition and preprocessing

We acquired bulk transcriptome sequencing data, mutation
data, and clinical information for a melanoma cohort of
457 patients from The Cancer Genome Atlas (TCGA, https://
portal.gdc.cancer.gov/), designated as TCGA-SKCM. Additionally,
we downloaded bulk transcriptome sequencing data (GSE65904) for
208 melanoma patients and single-cell sequencing data (GSE72056)
from The Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/). All data utilized in this study are freely available
through these public databases, which ensures compliance with
ethical standards and eliminates the need for additional ethical
approval. Our data acquisition and analysis processes conformed
to all relevant guidelines and regulations.

2.2 Single-cell sequencing analysis

We analyzed single-cell sequencing data using the “Seurat”
package. Our initial steps included stringent quality control and
data cleaning to ensure the integrity and accuracy of our analyses.
The quality thresholds set were: mitochondrial gene content
(percent.mt) less than 10%, a minimum of 1000 RNA counts
(nCount_RNA), and RNA feature numbers (nFeature_RNA)
between 100 and 5000. Following data preprocessing, we utilized
Uniform Manifold Approximation and Projection (UMAP) for
dimensionality reduction of the single-cell data. Cell subtypes
were then annotated using specific markers for each subtype,
with expression distributions visualized through dot plots, violin
plots, and feature plots. Additionally, the “cellchat” package
facilitated the analysis of intercellular communication, visualizing
interactions and quantifying proportions of each cell subtype. To
assess pathway activity, the “PROGENy” package calculated
pathway scores for each tumor-related pathway in individual
cells, averaging these scores to determine the overall pathway
activity level for each cell subtype. A heatmap was then
generated to display and compare pathway activity levels across
14 tumor-related pathways among different cell subtypes, aiming to
elucidate variations in pathway engagement.

2.3 Construction and validation of amachine
learning prognostic model

The analysis is based on a cohort of 457melanoma patients from
TCGA-SKCM dataset. Differential gene expression analysis was
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conducted using the “tinyarray” package, with the criteria for
selecting DEGs set at p < 0.05 and | log2(FoldChange) |> 1.
Subsequently, DEGs underwent univariate COX regression
analysis with a significance threshold of p < 0.05 to identify
genes influencing prognosis. The identified prognostic genes
were subjected to LASSO machine learning algorithm using
the “glmnet” and “survival” packages, with ten-fold cross-
validation. The LASSO algorithm, along with cross-validation,
was employed for further gene selection, and coefficients were
calculated to construct the prognostic model. The computation of
the risk score for each patient involved multiplying the
expression value of each gene by its corresponding coefficient
and summing the outcomes. The formula for the risk score is
as follows:

Risk Score � ∑
n

i�1
Expression valuegenei*Coefficientgenei[ ]

In the context provided, the term “Expression value”
represents the expression level obtained from the sequencing
or chip data of the model genes, while “Coefficient” represents
the coefficient corresponding to the model genes when the error
is minimized during cross-validation calculations. Individual
patient risk scores are calculated, and depending on whether
the score exceeds or falls below the median value of all patient
risk scores, individuals are categorized into either the high-risk
group or the low-risk group. To validate the universality of the
model, we selected GSE65904 as an external validation cohort.
Risk scores were calculated based on the above formula and
method, and patients were grouped accordingly. Validation was
performed alongside the training cohort. Risk cumulative factor
plots were visually represented for both the training and
validation cohorts. Survival curves were also plotted to verify
the overall survival (OS) differences between high-risk and low-
risk patient groups. Following this, the training cohort
underwent univariate COX regression analysis for the selected
model genes to ascertain their potential as prognostic factors.
Forest plots were generated for visualization. Furthermore, age,
gender, and risk score were collectively subjected to univariate
COX regression analysis to evaluate their potential as prognostic
factors and to compare the magnitude of risk associated with
each. We further analyzed the differential expression of model
genes between the two risk groups. The expression correlation
among model genes was also analyzed and presented using a
heatmap. Following this, gender, age, risk score, and metastasis
status were incorporated to construct a nomogram
prognostic model.

2.4 Functional enrichment and
mutation analysis

Prior to constructing the LASSO machine learning model, we
conducted univariate COX regression analysis on DEGs.
Subsequently, we performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses to
observe the enrichment of these genes in specific functional
pathways, visualizing the results through bubble plots. The GO
and KEGG analyses were executed using the R package

“clusterProfiler” (version 4.0.5), with a significance threshold set
at a False Discovery Rate (FDR) < 0.05.

Utilizing the R package “maftools” (version 2.12.0), we analyzed
and visualized the differential mutation profiles of DEGs in two risk
groups. The waterfall plot presented the top 6 genes in each group,
accompanied by statistics on the proportion of nucleotide
transitions and transversions. Moreover, our emphasis was on
scrutinizing the mutation sites and types of genes exhibiting the
highest mutation frequencies among the two risk groups. Employing
the “RCircos” package, we generated a circular chromosome plot to
annotate the positions of model genes on the chromosomes.

2.5 Immune-related analysis

We employed the Spearman correlation method to analyze
the relationship between the risk score and 43 immune
checkpoint genes, presenting the results in a bar chart.
Furthermore, correlations between model genes and the
immune checkpoint genes were visualized using a
heatmap. To assess immune cell infiltration in two risk
groups, we utilized three algorithms: Microenvironment Cell
Populations-counter (MCPcounter), Single-sample Gene Set
Enrichment Analysis (ssGSEA), and Estimation of Cell Types
in Bulk Expression Data (xCell). These algorithms analyzed
transcriptome-wide gene expression data to estimate immune
cell infiltration scores. Initially, ssGSEA assigned scores to
23 immune cell types for individual patients, with variations
depicted in box plots. We then used Spearman correlation to
evaluate the relationships between the risk score, model genes,
and immune cell levels, visualizing these relationships through
scatter plots and heatmaps. The MCPcounter algorithm
identified differences in 10 immune cell types between high-
risk and low-risk groups, with results shown in box plots and
correlations with model genes and risk score illustrated via
scatter plots and heatmaps. Utilizing the xCell package, the
xCell algorithm computed infiltration scores for 67 immune
cell types, with differences between risk groups depicted in
box plots and correlations presented in a heatmap.

2.6 Drug sensitivity analysis

We accessed drug-related data from the Genomics of Drug
Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/)
database using the “oncoPredict” R package. Initial analyses
explored differences in drug sensitivity between the two risk
groups, visualized through a volcano plot. Spearman correlation
was then applied to ascertain the relationships between model genes
and 61 drugs, with the findings displayed in a heatmap. Finally, we
assessed the variations in drug sensitivity between the risk groups,
presenting these findings through box plots.

2.7 Cell culture and transfection

In this study, the malignant melanoma cell line of
human(A375) was procured from the Cell Bank of the
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Chinese Academy of Sciences. We cultured the cell line in high-
glucose Dulbecco’s Modified Eagle Medium (DMEM, Sigma,
Darmstadt, Germany) supplemented with 10% Fetal Bovine
Serum (FBS Premium, BI, Israel). Cell culture flasks were
maintained in a humidified incubator with 5% CO2 at 37°C to
promote exponential growth of the cells.

For transfection experiments with the A375 cell line, two primer
sequences and one siRNA sequence targeting GRM6 were custom-
designed and manufactured by GIMA Corporation, China. Initially,
A375 cells were dissociated from culture flasks and resuspended in
complete growth medium. Cells were evenly seeded onto 6-well
plates at a density of 1 × 104 cells per well, with each well
supplemented to a final volume of 2 mL with complete medium.
Upon cell adherence, siRNA and the transfection reagent PolyFast
(catalog number HY-K1014, MCE, United States) were pre-mixed
according to the instructions of manufacturer and incubated at
23°C for 15 min. Then, the mixture was then evenly distributed
into the respective wells using a pipette. We replaced culture
medium after 6 h of transfection, and subsequent experiments
were performed 48 h post-transfection. Primer sequences: GRM6:
Forward: 5′- ACTGATCTGCAGTGGCTCAT - 3′, Reverse: 5′-
GCCCAGCTTTGTGATCTTGT - 3′; β-actin: Forward: 5′-
CCTGGCACCCAGCACAAT - 3′, Reverse: 5′- GGGCCGGAC
TCGTCATAC- 3′. siRNA: siGRM6: Sense: 5′- ACUGUUUAA
GAUCAGUAUA - 3′, Antisense: 5′ -CAAGTATATCGCCTT
CACAA - 3′; siNC: Sense: 5′- UUCUCCGAACGUGUCACG
UTT- 3′, Antisense: 5′ -ACGUGACUCGUUCGGAGAATT - 3′.

2.8 Total RNA extraction and RT-qPCR

In this study, the RT-qPCR technology was employed to
assess the knockdown efficiency of siGRM6. Cells were
digested using trypsin (HyClone, United States), followed by
three washes with PBS and centrifugation at 4°C to remove the
supernatant. Subsequently, 700 μL of Trizol (Takara, Japan) was
added to operate lysing procedure on cells according to the
manufacturer’s instructions. After incubating on ice for 5 min,
200 μL of chloroform (SINOPHARM, China), 500 μL of
isopropanol (SINOPHARM, China), and 1 mL of ethanol
(SINOPHARM, China) were added. Before new chemicals
were added, full mixing was guaranteed, followed by
centrifugation at 4°C and incubation on ice for 15 min. After
discarding all organic solvents and air-drying for 20 min, RNA
precipitate was obtained.

Then, we added 20 μL of DEPC-treated water to dissolve the
precipitate, and we measuring concentration through a Nanodrop
2000 instrument (Thermo, United States). Based on the
manufacturer’s instructions, we reverse-transcribed RNA into
cDNA using the PrimeScript RT kit (TaKaRa, Japan).
Subsequently, we mixed cDNA samples with SYBR GreenER
Supermix kit (TaKaRa, Japan). We operated real-time
fluorescence quantitative PCR analysis at 7500 Real-Time PCR
System (Thermo Fisher Scientific, United States). The parameters
of PCR were set according to the SYBR GreenER Supermix kit
instructions. Based on the Ct values, the relative expression level on
GRM6 was calculated through the method of 2−ΔΔCT normalized to
β-actin.

2.9 CCK8 assay

After transfection for 48 h, GMR6-NC and GRM6-si cell lines
were transferred to a 96-well plate (6000 cells/well) and returned to
the incubator for attachment. Three replicate wells were set up for
each group. Following the manufacturer’s instructions,
CCK8 reagent (KeyGEN, China) was mixed with complete
culture medium to ensure a total volume of 200 μL per well,
which was swiftly added to the 96-well plate using a pipette. The
plate was completely wrapped in aluminum foil to avoid light
exposure, and the absorbance at 450 nm for each well was
measured on the instrument after 2 h. This process was repeated
at 24, 48, 72, and 96-h time points.

2.10 EdU staining for DNA replication

“GMR6-NC” and “GRM6-si” cells were seeded at a density of 5 ×
104 cells/mL in a 48-well plate and incubated at 37°C for 24 h. Then,
200 μL of EdU culture medium was added to each well, and cells
were incubated for 2 h before collection. The 2 cell groups were
observed under a fluorescence microscope, and images were taken to
record DAPI staining, EdU staining, and merged staining.

2.11 Transwell assay

During the study, a layer of matrix gel was coated on the inner
surface of the chamber (Thermo, United States) diluted at a ratio of
1:9, with 30 μL added to each chamber. Next, 600 μL of complete
culture medium was added to each well of a 24-well plate. After 48 h
of transfection, cells were digested and suspended in culture medium
without FBS. To ensure the accuracy of the experiment, cells were
diluted to a concentration of 30,000 cells per well, with 200 μL of
liquid added to each chamber. The chambers were then incubated in
the incubator for 24 h. During this period, the liquid in the chambers
was removed, and a moist cotton swab was used to wipe off the non-
invading cells.

To further analyze the experimental results, the chambers were
immersed in polyformaldehyde for 20 min. Subsequently, they were
washed three times with PBS and stained with 0.1% crystal violet
staining solution for 20 min. After washing again with PBS, the
chambers were dried, and images were captured under a microscope
for further analysis and discussion.

2.12 Wound healing assay

In cell culture experiments, transfected cells were first removed
from the culture medium after 48 h, followed by three washes with
PBS to clean residual substances. Next, using a 200 μL pipette tip
assisted by a ruler, a vertical line was slowly and evenly scratched in
each well. To avoid cross-contamination between different wells, the
pipette tip was changed with each well. Subsequently, basic culture
medium without FBS was added to each well, and the area of the
scratch wound at time 0 was observed and photographed under a
microscope. The plate was then placed in the cell culture incubator
for cultivation, and photographs were taken again after 48 h to
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record the area of the healed wound. Finally, the percentage of
scratch closure was calculated to evaluate the growth and repair
ability of the cells.

2.13 Statistical analysis

All statistical analyses were conducted using R software (version
4.1.3). COX regression analysis was performed with the “survival”
and “survminer” packages. Differential expression analysis utilized
the “limma” package, and visualization tasks were predominantly
carried out using “ggplot2”. Statistical significance was established at
a threshold of p < 0.05, with significance levels marked as *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001.

3 Results

3.1 Single-cell sequencing analysis

UMAP dimensionality reduction was applied to single-cell
sequencing data (GSE72056), resulting in the classification of
cells into six distinct subtypes: T cells, B cells, tissue stem cells,
monocytes, neurons, and endothelial cells (Figure 1A). Among
these, endothelial cells exhibited the highest expression of von
Willebrand factor (VWF), with significant levels of KLF4 and
LYZ also noted. In monocytes, LYZ, C1QB, and
CD68 demonstrated elevated expression compared to other
subtypes and markers. CD79A was the most expressed gene in
B cells, whereas CD3D was predominant in T cells (Figure 1B).

FIGURE 1
Single-Cell Sequencing Data Analysis (A)UMAP dimensionality reduction and annotation of single-cell sequencing data GSE72056, categorizing cell
subgroups into 6 classes. (B) Dot plot illustrating the differential expression of marker genes in different subgroups. (C) Violin plot displaying the
differential expression of marker genes in different subgroups. (D) Coloring and marking marker gene expression distribution in UMAP visualization. (E)
Analysis of communication relationships between cell subgroups using the “cellchat” package, visualized. (F) Heatmap displaying the score
differences of each tumor-related pathway calculated by the “PROGENy” package in each cell.
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Violin plots further illustrated these gene expression variations
across subtypes.

Notably, CD68 not only showed the highest expression in
monocytes but also exceeded the expression of other markers in
different cell subtypes. Similarly, LYZ exhibited a widespread
expression pattern. KLF4 was more prominently expressed in
neurons and monocytes. The neuron subtype showed higher

expression of MAP2 and COL3A1 (Figure 1C). Each marker
gene’s expression was color-coded in the UMAP visualization to
enhance the clarity of their distribution across subtypes (Figure 1D).

We also explored the communication relationships between cell
subtypes, revealing extensive signaling interactions. T cells were the
most communicative, particularly with other immune cells, followed
by B cells (Figure 1E). An analysis of 14 tumor-related pathways

FIGURE 2
Model Construction and Validation (A) Acquisition of DEGs for univariate COX regression analysis and implementation of LASSOmachine learning to
construct a prognostic model. (B) Survival differences in two risk groups in the training set. (C) Survival differences in two risk groups in the validation set.
(D) Risk score changes in two risk groups in the training set. (E) Survival time comparison in two risk groups in the training set. (F) Risk score changes in two
risk groups in the validation set. (G) Survival time comparison in two risk groups in the validation set. (H) Univariate COX regression analysis to
determine ifmodel genes can serve as prognostic factors, visualized through a forest plot. (I)Univariate COX regression analysis to determine if Risk score,
Age, and Gender can serve as prognostic factors, visualized through a forest plot. (J) Analysis of inter-gene correlations in the model.
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indicated differential activation across cell subtypes. B cells showed
higher activity levels in the WNT, PI3K, and Trail pathways,
although other pathways exhibited lower activity, suggesting a
restricted role in tumor-related functions. Endothelial cells
displayed the highest activity in the TGF-β pathway, with notable
activity in the Estrogen and VEGF pathways, indicating their
dynamic involvement in tumorigenesis. Monocytes had
elevated activity in the TNF-α, NF-κB, and JAK-STAT
pathways, reflecting significant pathway activation. Neurons
showed elevated activity in the MAPK, Estrogen, and
Androgen pathways but lower activity in the WNT and
PI3K pathways, highlighting a selective pathway
engagement. T cells exhibited low activity across all
pathways examined. Tissue stem cells showed notable
activity in the Androgen and TGF-β pathways, with reduced
activity in the WNT and PI3K pathways, suggesting a selective
activation pattern (Figure 1F).

3.2 Constructing and validating of amachine
learning prognostic model

In our study, the SKCM patient cohort served as the training set,
while the GSE65904 patient cohort was used for validation. Initial
analysis identified differentially expressed genes (DEGs), and a
univariate COX regression analysis was conducted. These DEGs
were further refined using a LASSO machine learning algorithm,
resulting in a prognostic model comprising six key genes:
TNFRSF18, CAP2, GRM6, RREB1, SYDE2, and FAT3, as
depicted in Figure 2A. The risk score was computed for each
patient using the formula:

Risk score � TNFRSF18* − 0.585 + CAP2 *0.328 + GRM6*0.305

+ RREB1*1.986 + SYDE2 * − 0.223 + FAT3* − 0.006

Patients were categorized into high-risk and low-risk groups
based on the median risk score. The high-risk group demonstrated
significantly poorer overall survival (OS) than the low-risk group
(p < 0.05, Figures 2B,C). A cumulative risk factor plot showed an
increasing trend of deceased patients and a decline in extended OS
with rising risk scores (Figures 2D–G).

Further univariate COX regression analysis highlighted
TNFRSF18, SRD5A3, and GRM6 as significant prognostic
factors. TNFRSF18 was associated with a protective effect (HR =
0.86), while SRD5A3 (HR = 1.26) and GRM6 (HR = 1.21) were
linked to poorer prognosis (Figure 2H). The risk score and age were
both significant prognostic factors (p < 0.001), with the risk score
providing more substantial prognostic information (HR = 2.1)
compared to age (HR = 1.0) (Figure 2I).

Correlation analysis among model genes revealed that
TNFRSF18 mostly exhibited negative correlations with other
genes. Conversely, positive correlations were observed among the
remaining model genes, with CAP2 showing strong positive
associations with RREB1 (R = 0.31) and SYED2 (R = 0.31),
GRM6 with FAT3 (R = 0.28), and RREB1 with SYED2 (R =
0.40) (Figure 2J).

Gene expression analyses between the two risk groups showed
higher expression levels of all model genes, except for TNFRSF18, in

the high-risk group (p < 0.01, Figure 3A). Chromosome circle plots
highlighted the genomic locations of the model genes (Figure 3B).

A nomogram integrating risk score, age, and type was
constructed to enhance the prognostic model’s accuracy
(Figure 3C). Spearman correlation analysis identified mostly
negative correlations between the risk score and most immune
checkpoint genes, except for positive correlations with EDRNB,
VTCN1, and VEGFB (Figure 3D). Most model genes also displayed
significant negative correlations with immune checkpoint genes,
with the notable exception of TNFRSF18, which showed significant
positive correlations (Figure 3E).

3.3 Enrichment analysis and
mutation analysis

Prior to constructing the LASSO machine learning model, we
conducted univariate COX regression analysis of DEGs
(Differentially Expressed Genes). Following this, GO and KEGG
analyses were conducted on the DEGs. The GO analysis revealed
that DEGs are predominantly enriched in the number of pathways
related to Cell Component (CC). In general, DEGs exhibit
predominant enrichment in biological pathways and processes,
encompassing energy metabolism, substance metabolism, cell
signal transduction, cell structure and dynamics, and protein
processing (Figure 4A).

The KEGG analysis results indicated that DEGs are primarily
enriched in biological processes such as cell signal transduction, cell
metabolism, cell growth and death, and endocytosis (Figure 4B).

Additionally, we conducted mutation analysis on the training
dataset. The results showed that FAT3, GRM6, CAP2, RREB1,
SYDE2, and TNFRSF18 exhibit higher mutation frequencies in
both risk groups. FAT3 has the highest mutation rate in both
risk groups, followed by GRM6. Other gene mutation rates are
significantly lower compared to these two. In the analysis of
mutation types, Missense Mutation appeared most frequently,
followed by Multi Hit. FAT3 exhibited various mutation forms,
with Missense Mutation and Multi Hit being the most prevalent
(Figures 4C,D).

Regarding the analysis of mutation frequencies, the transition
(Ti) frequency was higher than the transversion (Tv) frequency in
both risk groups. Among them, the nucleotide substitution rate of
C>T was the highest (Figures 4E,F).

Moreover, mutation sites and types of GRM6 were analyzed in
the two risk groups. Within the high-risk group,
GRM6 demonstrated an elevated mutation rate, a wider spectrum
of mutation locations, and a greater diversity of mutation types
(Figures 4G,H).

3.4 Immune-related analysis

In this study, we employed the ssGSEA algorithm to perform an
immune-related analysis, evaluating the infiltration of immune cells
in two distinct risk groups. For each patient in the two risk groups,
we calculated scores for 23 immune cells. Statistically significant
distinctions were noted in the scores of the 23 immune cells between
the two risk groups (p < 0.05). Remarkably, the scores of all immune
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cells in the low-risk group surpassed those in the high-risk group,
signifying a heightened immune infiltration activity in the low-risk
group (Figure 5A).

Subsequent analysis employing Spearman correlation unveiled
noteworthy negative associations between the risk score and
Macrophage, Activated CD8 T cell, Monocyte, CD56dim natural
killer cell, Gamma delta cell, and Immature dendritic cell (p < 0.001,
R < −0.2, Figures 5B–G). TNFRSF18 demonstrated a marked
positive correlation with Monocyte (p < 0.001, R = 0.64),
whereas CAP2, SYDE2, and FAT3 displayed substantial negative
correlations with Monocyte (p < 0.001, R < −0.1, Figures 5H–K).

Heatmap results further demonstrated a significant negative
correlation between the risk score and all immune cells (p <
0.05), with the highest negative correlation observed between the
risk score and Activated CD8 T cell (R = −0.55), and the lowest
negative correlation with Type 2 T helper cell (R = −0.1, Figure 5L).

Employing the MCPcounter algorithm, we computed variations
in scores for 10 immune cells between the high-risk and low-risk
groups. The findings suggested elevated infiltration levels of the
majority of immune cells in the low-risk group, with the exception of
Endothelial cells and Fibroblasts (Figure 6A). Spearman correlation
analysis suggested positive correlations between most model genes,

FIGURE 3
Further Analysis of the Model (A) Expression differences of model genes between two risk groups. (B) Chromosome circular plot displaying the
genomic locations of model genes. (C) Construction of a nomogram prognostic model incorporating Risk score, Age, Gender, and Type. (D) Calculation
of the correlation between the riskscore model and 43 immune checkpoint genes using Spearman’s correlation method. (E) Heatmap presenting the
expression correlations between model genes and immune checkpoint genes.
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especially TNFRSF18, and immune cells (p < 0.05, R > 0.1, Figures
6B–H). The risk score exhibited a noteworthy positive correlation
with Endothelial cells (p < 0.001, R = 0.17) and marked negative
correlations with Cytotoxic lymphocytes, Myeloid dendritic cells,
and B lineage (p < 0.001, R < −0.3, Figures 6I–L). The heatmap
indicated that, except for TNFRSF18, most model genes were
negatively correlated with immune cells, while FAT3 exhibited a
highly positive correlation with Endothelial cells and Fibroblasts
(p < 0.001, R > 0.5, Figure 6M). The risk score demonstrated a
significant positive correlation exclusively with Endothelial cells and
exhibited negative correlations with the majority of other cells
(Figure 6N). The high-risk group shows significantly higher levels

of infiltration for several immune cell types compared to the low-risk
group (Figure 7A). Additionally, the risk score is negatively
correlated with specific immune cells, such as Activated CD8 T
cells (Figure 7B).

3.5 Drug sensitivity analysis

We initially performed an analysis of divergent drug sensitivity
between the two risk groups and illustrated the outcomes through a
volcano plot (Figure 8A). TNFRSF18, GRM6, and FAT3 exhibited a
negative correlation with most drugs, while CAP2, RREB1, and

FIGURE 4
Enrichment Analysis and Mutation Analysis (A) Bubble plot illustrating enriched functional pathways in GO analysis of DEGs. (B) Bubble plot
illustrating enriched functional pathways in KEGG analysis of DEGs. (C)Mutation analysis in the high-risk group of the training set. (D)Mutation analysis in
the low-risk group of the training set. (E) Top 6 genes and the proportion of nucleotide transitions and transversions in the high-risk group. (F) Top 6 genes
and the proportion of nucleotide transitions and transversions in the low-risk group. (G)Mutation sites and types of GRM6 in the high-risk group. (H)
Mutation sites and types of GRM6 in the low-risk group.
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SYDE2 showed a positive correlation with most drugs (Figure 8B).
RO-3306_1052 and BI-25361086 demonstrated higher drug scores
in the low-risk group (Figures 8C,D), whereas AZ960_1250,
Entospletinib_1630, Navitoclax1011, XAV939_1268, WEHI-
5391997, and 5-Fluorouracil1073 exhibited higher drug scores in
the high-risk group (Figures 8E–J). Personalized drug selection for
treatment based on individual patient groups may result in
improved therapeutic outcomes.

3.6 Impact of GRM6 knockdown on
A375 melanoma cell functions

Through RT-qPCR experiments, we thoroughly investigated the
expression of the “GRM6-NC” control group and the “GRM6-si”

knockdown group in the A375 cell line. It was accurately determined
that GRM6-si had a good knockdown effect (Figure 9A). CCK8 assays
confirmed that the proliferation ability of the A375 cell line significantly
decreased when the GRM6 gene was knocked down (Figure 9B).
Transwell assays confirmed that after knocking down the
GRM6 gene, the number of invasive cells in the si-GRM6 group
decreased, which means the invasion ability correspondingly
weakened (Figure 9C). We also found that the wound healing assay
showed that themigration ability of the si-GRM6 groupwas significantly
reduced (Figure 9D). EdU experiments also confirmed a significant
decrease in the proliferation ability of the A375 cell line when the
GRM6 gene was knocked down (Figure 9E). Overall, our research results
revealed the role of the GRM6 gene in promoting cancer in human
melanoma, achieved by promoting the proliferation, invasion, and
migration ability of melanoma cells.

FIGURE 5
Analysis Based on ssGSEA Immune Algorithm (A) Immunocell scoring using the ssGSEA algorithm for two risk groups. (B) Correlation between Risk
score and Macrophage. (C) Correlation between Risk score and Activated CD8 T cell. (D) Correlation between Risk score and Monocyte. (E) Correlation
between Risk score and CD56dim natural killer cell. (F) Correlation between Risk score and Gamma delta cell. (G) Correlation between Risk score and
Immature dendritic cell. (H) Correlation between TNFRSF18 and Monocyte. (I) Correlation between CAP2 and Monocyte. (J) Correlation between
SYDE2 and Monocyte. (K) Correlation between FAT3 and Monocyte. (L) Heatmap of the correlation between risk score and immune cells. Significance
levels are denoted as follows: *p < 0.05, **p < 0.01, and ***p < 0.001.
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4 Discussion

Cutaneous melanoma (SKCM) is a type of skin cancer that
initially impacts patient quality of life minimally. However, its non-
invasive discrimination during early diagnosis is challenging, often
resulting in missed opportunities for optimal treatment when
patients first seek medical attention. Malignant SKCM is highly
invasive, with about 20% of patients experiencing metastasis at the
time of initial diagnosis. Advanced-stage malignant SKCM often
responds poorly to radiation and chemotherapy, resulting in severe
side effects and a grim prognosis. The lack of specific treatments for
SKCM, other than early surgical excision, highlights the critical need
for research into the mechanistic roles of SKCM-related genes, the
construction of prognostic models, and the prediction of drug

responses to improve early diagnosis, precise treatment, and
patient outcomes.

To investigate the genetic landscape of SKCM, we accessed bulk
transcriptome sequencing data from the public databases TCGA and
GEO, partitioning these into training and validation sets for robust
model construction and validation. Additionally, we collected
mutation data and clinical information from TCGA and acquired
single-cell sequencing data for SKCM from GEO. These datasets
hold significant potential for enhancing patient diagnosis, treatment,
and prognosis assessment.

Using the single-cell dataset GSE72056, we applied UMAP
dimensionality reduction and annotated cells into six subtypes
using specific marker genes for each subgroup. Communication
analysis among cell subtypes highlighted active immune cell

FIGURE 6
Analysis Based on MCPcounter Immune Algorithm (A) Boxplot showing differences in the scores of 10 immune cell types between two risk groups.
(B) Correlation between FAT3 and Monocyte lineage. (C) Correlation between FAT3 and Myeloid dendritic cells. (D) Correlation between TNFRSF18 and
Myeloid dendritic cells. (E) Correlation between TNFRSF18 and Fibroblasts. (F) Correlation between TNFRSF18 and Endothelial cells. (G) Correlation
between RREB1 and Monocyte lineage. (H) Correlation between ERM6 and Monocyte lineage. (I) Correlation between Endothelial cells and Risk
score. (J)Correlation between Cytotoxic lymphocytes and Risk score. (K)Correlation between B lineage and Risk score. (L)Correlation between Myeloid
dendritic cells and Risk score. (M) Heatmap representing the correlation between model genes and immune cells. (N) Heatmap representing the
correlation between Risk score and immune cells.
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subgroups, such as T cells and B cells, within SKCM tissue,
suggesting a potential limitation in their effectiveness at tumor
suppression, possibly due to mechanisms allowing SKCM cells to
evade immune surveillance.

Comparison of cell subgroups across 14 tumor-related pathways
revealed substantial differences. Both endothelial cells and
monocytes showed elevated activity in several pathways, with
endothelial cells exhibiting the highest activity in the TGF-β
pathway. Given the pivotal role of endothelial cells in
angiogenesis, these findings suggest that SKCM may promote
angiogenesis via the TGF-β pathway to facilitate nutrient
acquisition and metastasis. Additionally, notable pathway
activities were observed in neurons and tissue stem cells, with the
androgen pathway most active in neurons, raising questions about
the role of androgens in the onset and progression of melanoma.
Further experimental studies are required to validate these
hypotheses.

Utilizing multiple independent datasets from diverse
platforms for model construction and validation enhances the

model’s generalization capability, leading to more compelling
conclusions. This strategy is currently widely employed in the
analysis of various diseases (Li J. et al., 2022; Guan et al., 2022).
We conducted differential gene expression analysis on patient
data from the training set to identify DEGs. Subsequently, we
performed univariate COX regression analysis on DEGs to filter
out genes that significantly impact prognosis. The selected genes
underwent LASSO machine learning algorithm, applying
L1 regularization to enhance the model’s simplicity and
accuracy by imposing a penalty on the absolute sum of
regression coefficients. Ultimately, a prognostic model
comprising six genes (TNFRSF18, CAP2, GRM6, RREB1,
SYDE2, FAT3) was constructed. TNFRSF18, also known as
GITR, is a co-stimulatory T-cell receptor and a member of the
TNF receptor superfamily (Nocentini and Riccardi, 2009). Some
cancer patients have shown therapeutic efficacy in checkpoint
inhibition of TNFRSF18, particularly in preclinical models.
However, TNFRSF18 involvement is ineffective in controlling
late-stage, immunogenically poor tumors such as B16 SKCM

FIGURE 7
Analysis Based on xCELL Immune Algorithm (A) Boxplot illustrating differences in immune cell infiltration between two risk groups. (B) Heatmap
showing the correlation between Risk score and immune cells.
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(Hirschhorn et al., 2021).CAP2, a muscle actin-binding protein,
regulates cell processes by controlling the dynamics of the cell
cytoskeleton (Pelucchi et al., 2023). Its expression in cancerous

tissues significantly surpasses that in non-tumor tissues,
rendering it a plausible diagnostic and prognostic marker for
individuals with cancer (Li et al., 2020).GRM6, also known as

FIGURE 8
Drug Sensitivity Analysis (A) Volcano plot illustrating differences in drug sensitivity between two risk groups. (B) Heatmap depicting the correlation
between model genes and 61 different drugs. (C) Boxplot showing the sensitivity difference of RO-3306_1052 between two risk groups. (D) Boxplot
showing the sensitivity difference of BI-2536_1086 between two risk groups. (E) Boxplot showing the sensitivity difference of AZ960_1250 between two
risk groups. (F) Boxplot showing the sensitivity difference of Entospletinib_1630 between two risk groups. (G) Boxplot showing the sensitivity
difference of Navitoclax_1011 between two risk groups. (H) Boxplot showing the sensitivity difference of XAV939_1268 between two risk groups. (I)
Boxplot showing the sensitivity difference of WEHI-539_1997 between two risk groups. (J) Boxplot showing the sensitivity difference of 5-
Fluorouracil1073 between two risk groups.
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mGluR6, is a major excitatory neurotransmitter in the central
nervous system. It activates ionotropic and metabotropic
glutamate receptors, mediating glutamate synaptic
transmission between photoreceptors and ON bipolar cells
(Varin et al., 2021). SKCM may lead to SKCM-related retinal
lesions, as evidenced in GRM6 (Dhingra et al., 2011).RREB1, a
transcription factor that specifically binds to RAS response
elements (RRE) on gene promoters, is associated with scrotal
SKCM (Thiagalingam et al., 1996; Fujimoto-Nishiyama et al.,
1997; Zhang et al., 1999; Date et al., 2004; Mukhopadhyay et al.,

2007).SYDE2, an activator of Rho GTPase, has unclear functional
implications in tumorigenesis. Studies suggest a potential tumor-
suppressive role of SYDE2 in advanced clear cell renal cell
carcinoma (Cui et al., 2022).FAT3, a member of the cadherin-
related family, has been previously correlated with adverse
prognosis in cancer patients (Jiang et al., 2023).

In the training and validation sets, we categorized patients
into high-risk and low-risk groups. The survival prognosis of
patients in the high-risk group was significantly lower than that
in the low-risk group, indicating substantial potential for our

FIGURE 9
Functional consequences of GRM6 knockdown in A375 melanoma cells. (A) RT-qPCR results showing effective knockdown of GRM6 expression in
the “GRM6-si” group compared to the control “GRM6-NC” group. (B) CCK8 assay results indicating a significant reduction in cell proliferation ability
following GRM6 gene silencing. (C) Transwell assay results demonstrating decreased invasion ability in A375 cells after GRM6 knockdown. (D) Wound
healing assay data revealing reduced migration ability of cells in the si-GRM6 group. (E) EdU assay results confirming a significant decrease in
proliferation rates in GRM6-silenced A375 cells.
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model to predict patient outcomes. Among the six genes in the
prognosis model, we identified TNFRSF18 as having a protective
effect on prognosis. Expression differences were observed for all
model genes between the two risk groups, with
TNFRSF18 showing higher expression in the low-risk
group. In the examination of the correlation with immune
checkpoint genes, TNFRSF18 exhibited a significant positive
correlation with most immune checkpoint genes. This suggests
that TNFRSF18 may serve as an immunotherapeutic target for
SKCM, and therapeutic approaches aimed at activating
TNFRSF18 expression while inhibiting negative immune
regulatory activity may enhance the efficacy of SKCM
immunotherapy. Further experimental validation is needed to
confirm our hypotheses.

To explore the functional implications of differentially expressed
genes (DEGs), we conducted Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses. These
DEGs were predominantly enriched in biological processes such
as cell signaling, metabolism, growth and death, and endocytosis.
We hypothesize that the high activity across these biological
pathways contributes to SKCM’s malignancy, highlighting
potential avenues for therapeutic intervention.

A mutational analysis performed on the training set identified
FAT3 as having the highest mutation rate, closely followed by
GRM6. Notably, GRM6 mutations were particularly prevalent
within the high-risk group, characterized by a variety of
mutation types and locations. These findings underline the need
for further comprehensive studies to understand the impact of
GRM6 mutations and aberrant expression on melanoma
progression.

Immunological correlation analysis, utilizing three distinct
immune cell infiltration algorithms, assessed the differences in
immune cell infiltration between the two risk groups. The
analysis revealed that the low-risk group displayed more active
immune infiltration than the high-risk group. Scoring differences
between these groups showed that most model genes, particularly
TNFRSF18, positively correlated with immune cell activity.
Conversely, the risk score exhibited a negative correlation with
most immune cells, reinforcing our previous findings that high-
risk SKCM correlates with poorer prognosis. This analysis also
emphasizes the critical role of TNFRSF18 in the context of
SKCM treatment. Additionally, drug sensitivity analysis
conducted on the two risk groups highlighted significant
differences in their response to various drugs. Based on these
findings, we advocate for personalized drug selection strategies
tailored to distinct patient subgroups to optimize
therapeutic outcomes.

5 Conclusion

In conclusion, this study successfully delineated the complex
molecular landscape of SKCM, revealing significant findings
through the analysis of DEGs, mutation profiles, and
immunological correlations. Our comprehensive examination
of transcriptomic and mutational data enabled the
identification of key genes that are enriched in crucial
biological processes and exhibit high mutation rates, such as

GRM6 and FAT3, suggesting their pivotal roles in SKCM
pathogenesis. The construction and validation of a prognostic
model highlighted the differential risk and survival outcomes
between patient subgroups, underscoring the importance of early
and accurate risk stratification in clinical practice. Moreover, our
findings on immune cell infiltration and drug sensitivity
emphasize the potential of personalized medicine in treating
SKCM, advocating for tailored therapeutic approaches based
on individual genetic and immunological profiles. Ultimately,
this study provides valuable insights into the underlying
mechanisms of SKCM, proposes new therapeutic targets, and
supports the advancement of personalized treatment strategies
that could significantly improve patient outcomes.
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