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ABSTRACT 
 
This study investigates incentive regulation to foster an efficient tariff system in the electricity 
distribution subsector in Uganda. This study seeks to find empirical evidence to support the 
argument that regulation is associated with efficiency among distributors. It seeks to design an 
appropriate model of incentive regulation within the distribution subsector. It assesses the efficiency 
of existing tariff setting system with a view of guiding policy on how best incentives should be 
appropriated. 
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 It uses the data envelopment analysis and stochastic frontier analysis to investigate how 
distribution firms use input costs to come up with an efficient end user tariffs. Quarterly data used is 
from Electricity Regulatory Authority (ERA) covering the period 2013-2019. 
 The findings are that distribution firms cost inputs are inconsistent with the way they their 
operational and maintenance costs are generated and transmitted to end user tariff. The regulator 
should be keen on the way tariff is set such that it is fair to all players in the electricity markets. 
Incentive regulation has a positive influence on cost efficiency and end user tariff. A reduction in 
energy losses and energy purchases from transmitter makes up the most efficient cost drivers. 
Lastly, tariff regulation has increased efficiency in operations through in improved quality and 
reliability of power distribution. First and foremost is reduced load shedding, secondly is more 
reliable power distribution to end users. Appropriate Incentive regulation has a direct effect on cost 
of utility and in increasing access of vulnerable groups. 

 

 
Keywords:  Incentive regulation; efficient tariff; data envelopment analysis; stochastic frontier 

analysis; Uganda. 
 

1. INTRODUCTION 
 
Electricity distribution firms enjoy a preserve of 
natural local monopoly, this creates a need for 
sound regulatory regime to deliver efficiency 
gains to all stakeholders [1]. This monopoly 
would breed inefficiency hence the need for 
market regulation [2].  
 
A study of electricity regulation operates a 
production frontier with stochastic features that 
ought to be integrated on a deterministic 
parametric frontier [3]. This would reveal the level 
of efficiency at which firms operate. 
 
World over, long term regulatory contracts 
enhance investments into the electricity 
infrastructure. Physical infrastructure in the 
sector is mainly fixed costs.  Short term 
regulatory regimes are able to influence 
operational costs. The regulator extracts the 
firm’s rent, the firm will have no additional 
financial resources to invest and achieve overall 
efficiency [4]. 
 
Inadequate regulatory credibility leads to gross 
underinvestment [5,6]. After undertaking market 
reforms, incentive regulation may be adopted. In 
Uganda, Electricity Regulatory Authority (ERA) 
preferred to adopt a price cap where constraints 
are placed on the path of price increases which 
are capped not exceeding 6% per quarter for 
power supplied by distributors to end-users. This 
therefore raises a key question on the optimal 
regulatory mix that would achieve efficiency 
gains. 
 
With regulates prices, UMEME another 
distribution company in Uganda can increase 
profits by reducing costs or increasing sales. This 

means that unexpected cost changes are borne 
by the firm. This is effective in supply-side 
management [7]. Price cap, however, can deter 
investment and reduce service quality this is the 
case with UMEME Ltd expanding grid 
infrastructure and increasing power reliability. 
 
Most effort in promoting efficiency in the 
developing world is by minimising cost. However, 
this can easily lead to service deterioration [8]. It 
may increase social welfare due to efficiency 
gains in a lower tariff, this has not been the case 
with Uganda where the electricity supply capacity 
is 1352MW and at a tariff of US $ 0.2, peak 
demand is 850MW, leaving a reserve capacity of 
40 % (ERA, 2022). 
 
Revenue cap regulation, where constraints are 
placed on regulated firm’s revenues, this 
provides more incentives to demand side 
management (Jarvis, 2011). This scheme 
encourages cost reduction and energy saving 
through flexible price adjustments.  Under a 
binding revenue cap Firms can increase profits 
by reducing costs either through reductions in 
output or increasing price. This tariff is reflective 
of utility’s costs and with inelastic demand, an 
increase in price will reduce quantity of electricity 
demanded; total cost will also reduce by a 
greater proportion hence leading to increased 
revenue. This was proposed by Jamison (2007), 
supported by Lantz (2008) who suggested that 
revenue cap should be used when the firm’s cost 
function is available to the regulator. 
 
Revenue cap has substantial reductions to social 
welfare since it deviates from the Ramsey pricing 
rule. In all an optimal incentive scheme should be 
designed to address the principal agent problem 
associated with asymmetric information Laffont 
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and Tirole (1993), the principal regulator has far 
less information about regulated firm’s operation 
(agent). For instance the regulated firm has more 
information about the cost of providing electricity 
and consumer demand behaviour than ERA.  
 
There exist complex contractual relations 
requiring substantial information between ERA 
and UMEME. Kopsakangas- Savolainen and 
Svento (2010) show that the menu of contract 
regulation provides sufficient incentives to solve 
the moral hazard and adverse selection problem. 
The hypothesis is that regulation should reinforce 
efficiency in tariff setting. 
 
This study hypothesizes that regulation is 
associated with efficiency among distributors [9]. 
It designs an appropriate model of incentive 
regulation within the distribution subsector. The 
central question is to establish how efficiency can 
be enhanced with in the distribution subsector. It 
assesses the efficiency of existing tariff setting 
system with a view of guiding policy on how best 
incentives should be appropriated. 
 
Most studies on efficient have focused on 
revenue and price cap, this study further, 
interrogates the regulator’s role in promoting 
efficiency in the distribution subsector. 
 
The rest of the paper is structured in the 
following way; section two is overview of the 
Electricity Regulatory system in Uganda, while 
section three is literature review while section 
four is methods, section five is findings and 
discussion, and finally is conclusion and policy 
recommendations. 
 

2. REVIEW OF THE ELECTRICITY 
REGULATORY SYSTEM IN UGANDA 

 
The electricity regulation under liberalized 
incentive regulation is about two decades as 
explained below. 
 

2.1 Electricity Regulatory Authority (ERA) 
 

ERA was formed in 2000 following the 
unbundling of Uganda Electricity Board (UEB) in 
November, 1999. It provided the legal structure 
as enshrined in The Electricity Act (Act 6, 1999) 
CAP 145 Laws of Uganda 2000 edition. Its core 
functions included issuing licenses for 
generation, transmission, distribution of 
electricity; establishing a tariff structure and 
investigating charges, whether or not a specific 
complaint has been made for a tariff adjustment; 

approving the rates of charges, terms and 
conditions of electricity services provided by 
transmission and distribution companies and to 
develop and enforce performance standards for 
the generation, transmission and distribution                 
of electricity. The development of electricity 
subsector would foster economic growth              
[10,11].  

 
The tariff structure was spelled out in the section 
75 of the Act referred to as the Electricity (Tariff 
Code) Regulations, 2003. The code provides for 
tariff objectives; principles of tariff setting, ERA is 
guided by two main considerations; Whether the 
revenue requirements as applied for by operators 
are fair and reasonable in light of the objective of 
continuity of supply and affordability; and 
whether the proposed tariff regimes balance the 
interest of all the stakeholders, which include, 
current and potential consumers, government, 
and licensees. 

 
Tariff setting is guided by the following 
objectives: To provide consumers with fair and 
reasonable price structures consistent with 
maintenance of a financially and operationally 
secure electricity supply system; Encourage 
consumers to make efficient use of energy based 
on price signal; encourage operators to make 
efficient use of plant (assets) and operational 
efficiency based on financial benefits and 
penalties; provide operating companies 
reasonable return/profit to give confidence to 
current investors and attract new investors; 
Provide a tariff structure for cost reflective tariff 
for each customer group; and Provide for future 
progress towards a commercially competitive 
system.  

 
Benchmarking of efficiency gains by the regulator 
is associated with four objectives include; 
Providing a fair and reasonable rate of return on 
efficient investment- given efficient operating and 
maintenance practices, foster existing use of 
resources and existing network, encourage 
efficient behaviour by service providers and 
incentives to increase productivity, and provide 
an equitable allocation of efficiency gains. 
 

 The tariff structure is set at three points in the 
industry: At the interface between generation and 
transmission; at the interface between 
transmission and distribution; and at the interface 
between distribution and end-user consumers.  
The elements of end user tariffs are; fixed 
standing charges; capacity (demand) charges; 
and energy or usage charge.  
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2.2 The Electricity Distribution Subsector 
 
2.2.1 Introduction of the electricity subsector 

in Uganda  
 
There are eight distribution companies in the 
country. These include UMEME Ltd, Uganda 
electricity distribution Company (UEDCL), West 
Nile Rural Electrification Company (WENRECo), 
Bundibugyo Energy Electric cooperatives 
(BECs), Pader and Abim Multipurpose Electric 
Cooperatives (PACMECs), Kilembe investment 
limited (KIL), Kalangala Infrastructural Services 
(KIS) and Kyenjojo Rural Electric cooperatives 
(KRECS). We focus on UMEME distribution 
network because it is the largest distributor.  
 
2.2.2 UMEME distribution network  
 
UMEME operates under a concession with a 
structural monopoly on the distribution of 
electricity across Uganda, distributing 95% of 
electricity in Uganda through a single buyer 
model. As of 2019, the UMEME distribution 
network was a total of 57,133 Kilometres 
consisting of   27,037 kilometres of 33KV lines, 
and 29,096 km of low voltage below 11KV lines. 
It has 77 substations and over 10000 pole-
mounted transformers, low-voltage (less than 1 
kV) distribution wiring and meters.  The control 
centre at Lugogo controls 35 out of the 77 
substations. It only controls up to the substation 
level not the feeders. For communication to the 
control centre, the substations and control centre 
are connected by a combination of fibre optic and 
GPRS links.  The fibre optic links are   used in 
urban areas, the GPRS links are used  for the 
substations that are far away from Lugogo.    
 

3. EMPIRICAL LITERATURE 
 

Jamasb and Pollit [12] pioneered work of market 
based reforms in Britain, privatisation and 
competition in the energy industry, their findings 
are that appropriate unbundling fosters 
rationalisation of the energy sector with better 
quality of service, while [7] had relayed useful 
information regarding the source of cost 
information and cost reduction potential and 
whether use a single regulatory contract or 
benchmarks to achieve a comprehensive 
incentive  scheme.  
 

Fuat [13] evaluated the behaviour of electricity 
providers under conditions of asymmetric 
information, with more elastic demand revenue 
cap prices are larger than price cap regulation. 

Revenue cap promotes energy conservation and 
reduces social welfare. He concludes that price 
cap regulation is more appropriate in developing 
countries with considerable inflation tendencies 
while global oil markets also favour price revenue 
cap with more electricity supply constraints and 
climate change. Myers [14] examined tariff model 
considering the technological, environmental and 
structural changes which bring electricity markets 
closer to a complex system. Electricity tariffs are 
based on a tight separation of electricity demand 
and supply, with a regulatory policy controlling for 
electricity supply given aggregate demand 
structure.  

 
According to Myers [14] the complex adaptability 
system has a lot of interdependence hence 
giving rise to the principal agent problem [4] used 
GMM to analyse Russia’s tariff reform structure 
and found that both revenue and price cap 
promoted sufficient investments into the 
electricity infrastructure under long term 
regulatory regimes. 

 
4. METHODS  
 
4.1 Data Source 
 
Quantitative data will be used from ERA and 
supplemented by data from various distributors 
to enable corroboration of findings and 
enhancing data validity (Kamukama 2010, Ntayi, 
2005, Gherardi & Turner 1987). It will be Panel 
data sets that will be used. This study uses a 
balanced panel data set consisting of six 
electricity distributors for a period of 6 years 
2013–2019.Choosing and measuring variables 
for efficiency analysis takes into account the 
diversity and compound services that distributors 
offer. The regulator’s key objective is promoting 
cost efficiency, we use knowledge on each 
utility’s main demand and cost drivers to choose 
inputs, outputs, and environmental variables 
(Coelli et al. 2003).  

 
For purposes of making benchmarks on the 
selected parametric and non-parametric methods 
and guiding decision making. 2 distribution 
companies, Kalangala Infrastructure Services 
(KIS) and West Nile Rural Electrification 
Company (WENRECO) were excluded for 
absence of data. These are small distribution 
companies with their own mini grids. A panel 
consisted of 28 series and 168 observations 
which are adequate for purposes of assessing 
technical efficiency. 
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4.2 The econometric Models Expounded 
 
Efficiency studies use both parametric and non-
parametric measures, the choice of a specific 
model over another remains hotly contested [15] 
(Seiford & Thrall 1990, Berger 1993). This study 
uses both approaches as appropriate to derive 
results on efficient incentives regulation. The 
econometric models of interest to this study seek 
to explain efficiency in the distribution regulation 
system.  
 
4.2.1 The Data Envelopment Analysis (DEA) 

model 
 
DEA is a non-parametric technique of 
benchmarking the most effective activity by using 
linear programming to examine the nature of 
costs and provide relative efficiencies of decision 
making units (DMUs) Jamasb (2003). It shows 
the most productive combination on the 
production frontier. A two-staged, semi-
parametric Data Envelopment Analysis (DEA) 
and bootstrapping techniques will be used to 
develop the models. Technical efficiency shall be 
estimated in the first stage then regressed on a 
set of external variables in the second stage and 
as guided by the works of Similar and 𝛶 
approximation of the efficiency distribution in line 
with the works of Simar and Wilson (2000). 
 
A Data Envelopment Analysis (DEA) is specified 
as an input-minimizing problem providing a set of 
scalar measures of efficiency which come in 
pairs, one set for the input-oriented problem and 
the other for output oriented problem. We will rely 
on the two primary scalar measures of efficiency 
for the input-oriented problem as proposed by 
Farrell (1957); (i) technical efficiency (TE) which 
is the proportional reduction in inputs possible for 
a given level of output in order to obtain the 
efficient input use, and (ii) allocative efficiency 
(AE) which reflects the ability of the operator to 
use the inputs in optimal proportions, given their 
respective prices.  
 
On bench-marking, we will run econometric 
models using a cost function, which will show the 
output–cost relationship for cost minimization. A 
minimum-cost function will provide the periodic 
costs incurred by an efficient network company 
to deliver the network services by modelling the 
technology in place, the output quantities, the 
input prices, and the operating conditions of the 
company [16]. Least-squares-type estimations 
such as ordinary least squares, corrected 
ordinary least squares or modified ordinary least 

squares will be used to estimate the parameters 
of the cost function for comparable operators 
under this approach and in line with the work of 
Richmond (1974). The costs with then be 
compared with their observed costs benchmarks.  
 

Minimise θ0 
 
Subject to  
 

Θ0X = ∑  𝛶𝑋𝑖1 + 𝑆 𝑖𝑛
𝑗=1    Where I = 1,….., M 

 
Yrj  = ∑  𝛶𝑟𝑗𝑌𝑖1 + 𝑆 𝑖𝑛

𝑗=1    Where I = 1,….., S}   Eq1        

 
If the constraint Constraint  
 

∑ 𝛶 = 1  is added to equation 1, then input 
oriented DEA VRS is obtained. 
 
Or Maximise  Z0 

 

Max Z0 = 
∑ 𝛶𝑖1

𝑛    
𝑗

∑ 𝛶𝑗𝑋𝑖1
𝑛
𝑗

  

 
Subject to  
 

 
∑  𝛶𝑟𝑗𝑌𝑖1

𝑛    
𝑗

∑ 𝛶𝑗𝑋𝑖1
𝑛
𝑗

≤  1  …}                           Eq 2 

 
Econometricians developed interest in estimating 
a Production function with an error term. This 
became more pronounced by Farrel (1957) and 
reinvigorated in by Aigner et al. [3]. Performance 
assessment, optimisation policy making of 
electricity distribution are very important issues 
for the regulators in electricity restructuring and 
reform. Data Envelopment Analysis (DEA), 
Stochastic Frontier Analysis (SFA) are robust 
approaches needed to consolidate results of 
efficiency and bench marking of electricity 
distribution.  They are efficient frontier consisting 
of the best practice firms and uses it to measure 
the relative efficiency scores of the less efficient 
firms. It does not require specification of a 
production or cost function. These algorithms 
allow for calculation of allocative and technical 
efficiencies that can be decomposed into scale, 
congestion, and pure technical efficiencies (Fa¨ 
re et al., 1985). An input oriented specification is 
generally regarded as the appropriate form for 
electricity distribution units as demand for their 
services is a derived demand that is beyond the 
control of utilities and that has to be met [17]. 
 

Goto and Tsutsui (1998) using the DEA model, 
measured overall cost efficiency and technical 
efficiency between Japanese and US electricity 
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utilities, results showed that Japanese utilities 
were more efficient than US utilities in terms of 
technical, allocation, and scale efficiency. Fo¨ 
rsund and Kittelsen (1998) applied DEA 
efficiency scores to measure the Malmquist 
productivity index in the Norwegian electricity 
distribution companies. 
 
Resende (2002) used the non-parametric input-
oriented DEA model for evaluation of Brazilian 
electricity distribution firms. In Resende’s study, 
potential and difficulties with the implementation 
of yardstick schemes were discussed. Edvardsen 
and Fbrsund (2003) studied performance of 122 
electricity distributors in the Denmark, Finland, 
Norway, Sweden, and Netherlands in 1997. They 
applied the input-oriented DEA model and the 
Malmquist productivity index and found that 
Finland electricity distributors had the highest 
productivity among other countries. Giannakis et 
al. (2005) applied the DEA model to study 
service quality of United Kingdom electricity 
distribution utilities. They found that cost-efficient 
firms do not necessarily exhibit high service 
quality and efficiency scores of cost-only models 
do not show high correlation with those of 
quality-based models. In other studies, the 
various models have been applied as alternative 
and the correlation between these models have 
been calculated. In spite of this, they have not 
provided any method for calculating final 
efficiency score and rank of every unit. Namely, 
the different models provide the different 
efficiency scores and ranks, but the combination 
of these ranks to obtain the final efficiency scores 
and ranks have not been done. 
 
 Estache et al. (2004) applied DEA and 
econometric methods for performance 
assessment and ranking of South American 
electricity units. They found high correlation 
between different econometrics as well as DEA 
models. However, there was low correlation 
between DEA and econometrics models. Jamasb 
and Pollitt (2003) compared 63 regional 
electricity distribution utilities in the six European 
countries.  
 
To calculate efficiency and to consider the effects 
of choosing the variables and methods, they 
used ten DEA, and SFA models. In addition to 
electricity distribution industry, there are many 
studies about comparison of different models in 
other industries. Zhu (1998) and Premachandra 
(2001) used principle component analysis (PCA) 
as an alternative to DEA. They showed the high 
correlation between DEA and PCA models. A 

study has been done by Bifulco and 
Bretschneider (2001) for estimation of school 
efficiency with DEA and COLS models. Herrero 
(2005) compared four different approaches DEA, 
stochastic production frontier, panel data, and 
distance function. These methods were applied 
to the Spanish Trawl Fishery that was operated 
in Moroccan water. Furthermore, in some studies 
an integrated DEA–PCA model has been used. 
Adler and Golany (2001) have used PCA as a 
data reduction technique to select inputs and 
outputs. 
 
However, in a few studies, efficiency scores of 
different models have been combined to obtain 
the final efficiency scores and ranks. Coelli and 
Perelman (1999) have applied parametric linear 
programming (PLP), DEA, and COLS models to 
investigate technical efficiency in European 
railways. They have used the geometrical mean 
of efficiency scores of the combination of the 
DEA and PLP results for final ranking. As 
mentioned before, using each of above different 
models culminates in specific ranking, without 
considering which model. Other studies involving 
the use of DEA include: Agrell et al., 2005; 
Cullmann, 2009, 2012; Forsund and Kittelsen, 
1998; Hjalmarsson and Veiderpass, 1992; 
Iglesias et al. 2010; Jamasb and Pollit, 2003; 
Kopsakangas-Savolainen and Svento, 2008; 
Korhonen and Syrjänen, 2003; Weyman-Jones, 
1991. 
 
4.2.2 The Stochastic Frontier Analysis (SFA) 
 
The SFA has for been popularised by the works 
of Aigner et al. [3]; Lovell, (1993); Greene, 
(1993). SFA allows estimates of both cost 
efficiency and production efficiency. The 
literature related to the SFA model is highly in 
line with strong policy implementation especially 
for public utilities (Lovell, 1995). It’s therefore 
employed by different scholars to measure 
efficiency for different Decision Management 
Units (DMUs) at different  phases within the 
production and supply chain of DMUs. Such 
scholars as; [9] (Burns & G.Weyman-Jones, 
1996); (Hiebert, 2002)  have employed SFA 
specifically for electricity utilities regulation 
 
Ci= α + βiX +εi                          eq 3 
 

Ci is the cost for firm i 
Xi is the matrix of independent variables for 
the ith firm 
α and β are parameters of the model 
ε is the error term 
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The error term is accordingly decomposed into 
its stochastic and efficiency components as given 
by Aigner et al (1977). 
 

Ci= α + βiX +ui+V i                         eq 4 
 

Ui≥ 0 and Vi is unrestricted  
 

The distribution Ui is taken to be half normal [3] 
truncated normal (Stevenson, 1980) or 
exponential (Meeusen and van den Broeck, 
1977)  
 

The error due to cost inefficiency cannot be 
observed directly but is generated from the 
composite error ε. 
 

Panel data estimates examine DMUs’ 
observations over time and the model is 
estimated as below: 
 

Cit= α + βitX +εit                          eq 5 
 

ε it = U it +V it 
 

Vit capture measurement error and random 
disturbances resulting from factors beyond the 
control of the firm. 
 

The one-sided error terms Uit, represent the 
increase in cost relative to the frontier due to 
managerial operating inefficiency given output 
levels, input prices, and the existing production 
technology. 
 

In this model, there are different DMUs (N) 
observed over time (T) for each DMU. If there 
are no time invariant factors considered, then 
there is no need for the assumption that the 
errors are uncorrelated with the variables. 
Implying that the estimation does not take the 
assumption  ≥ 0 and the estimate of U i is 
consistent. Then the model may be estimated 
using Generalised Least Squares (GLS) or by 
maximum likelihood Estimation (MLE). Panel 
data estimates are regressed using natural logs 
for the variables of consideration for robust 
outcomes. 
 

LnC= C(Y it,  P it,    K it, X it) + uit+V it   
 

Yit denotes output 
Pit denotes the variable input prices 
Kit denotes the plant capacity 
Xit represents the technology related 
characteristics of the firm 

 

It’s based on random estimates using both cross 
section data and panel data. However, the 
conditions for set for the error term for cross 

section data led to the use of panel data more 
relevant and reliable, since it allows comparison 
of DMUs over a longer time period. Panel 
analysis also has its own shortfalls as it requires 
data over time which sometimes may not be 
available. However, panel data has been 
established to produce results which are more 
robust for decision making. Initially, a 
deterministic approach would be used to 
measure the inefficiencies, but it fell short of 
separating the technical inefficiency from the 
purely random shocks of the DMUs. E.g. 
changes in weather conditions, which have an 
implication on the costs and output (Burns & 
G.Weyman-Jones, 1996). 
 
A study conducted by Filipini & Luis Orea (2014), 
on the applications of stochastic frontier in 
energy economics established that, this method 
can both be used for efficiency measures in the 
energy sector and rebound effects due to 
improvement in the energy efficiency. In this 
study, the distribution network of DMUs were 
analysed using panel data to estimate their 
robustness. SFA has been used by different 
scholars to analyse efficiency of distribution 
networks of the power sector. It’s at the 
distribution phase of electricity that the 
operational performance is a very key issue of 
consideration within the power sector and 
therefore regulation is very crucial for both 
observed and unobserved heterogeneity [9] 
(Kopsakangas-Savolainen & Svento, 2011) 
(Khetrapal, Thakur, & Gupta, 2015). 
 
Khetrapal et al. (2015), used SFA to model 
technical efficiency in the distribution power 
sector of India. The model used was based on 
Battese & Coelli (1992) to estimate the 
production efficiency of 37 regulated electricity 
distribution DMUs using a cross section data with 
a Cobb Douglas production function estimated, 
due to low sample from a cross section. In this 
analysis inputs were considered as total 
operating expenditure, total distribution network 
length, total number of distribution transformers 
and percentage distribution energy losses. 
Output variable was electricity delivered to end 
users. Results indicated that technical efficiency 
of these firms was relatively high with an average 
technical efficiency of 81.8%. 
 
Leite, et al. (2020), SFA model was used 
determine non-technical losses of 41 distribution 
DMUs, for cost regulation. The technical losses 
had to be disaggregated from non-technical 
losses to compel DMUs cater for the cost 
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inefficiency losses through incentivised 
regulation. The study centred on theft of 
electricity taken as a major non-technical loss 
and the magnitude of losses it causes to 
electricity distribution DMUs in Brazil. SFA was 
used to set target values for the percentage of 
non-technical losses. Panel data was used and a 
translog cost function was employed due to its 
favourable functional properties and flexibility 
(Coelli, Rao, O’Donnell, & Battese, 2005) (Behr, 
2015). The method was found relevant to 
estimation of likelihood of occurrences of non-
technical losses, hence informative to the 
National Electric Energy Agency (NEEA), for how 
to reduce non-technical losses to achieve targets 
of incentive regulation of electricity regulation by 
electricity distribution DMUs. 
 

4.3 Variables 
 
4.3.1 Input data variables 
  
Cost data is defined and synchronised in Uganda 
shillings where applicable. It is collected and 
presented on a quarterly basis by ERA. Variables 
relevant to the study of inputs, include operation 
and maintenance (O&M) costs, a proxy on wage 
rate was got by dividing O&M by the number of 
employees and energy price by dividing O&M by 
power purchased by distribution companies from 
UETCL. Vital data on network length was 
discarded because it had only been recorded for 
6 of the 28 series and for very few firms, this a 
great limitation to the inclusion of this variable. 

Most of the DMUs had been in existence for the 
last 7 years and data compilation was                      
complete for the 28 quarters. Ferdsult which 
exited in 2016 had its assets taken over by 
UEDCL which makes UEDCL’s data complete 
form as early as 2013 and therefore useable in 
this study. 
 
4.3.2 Output data variables  
 
The examination of output variables for purposes 
of attaining technical efficiency is very                        
critical, energy units sold, number of customers 
and energy losses. Energy losses was                
obtained by computing the difference               
between energy sold and energy bought for each 
period. 
 

5. RESULTS AND DISCUSSION 
 

5.1   Findings Using the DEA model 
 

From the descriptives, there is a positive means 
value for all the DMUs. The 6 DMUs have an 
overall average efficiency for the distribution 
subsector is 90.9% with a declining trend. DMU 1 
(KRECs) had an average efficiency score of 
79.3%, while DMU 2 (KIL) had 93.4%, DMU 3 
(BECs) had while 89% while DMU 4 (PACMECs) 
had 95.3, DMU 5 (UEDCL) had 87.9% DMU6 
(UMEME) had 100%. Therefore UMEME was 
used to benchmark other distribution              
companies within the subsector. Summarised in 
Table 2. 

 
 Table 1. Variable description 

 

 Variable code Variable Name Variable description 

 ly1  Total energy sold Natural log of Total energy sold 
 ly2  Number of customers Natural log of Number of customers 
 ly3  Energy loss Natural log of Energy loss (kwh) 
 Lw  Wage rate or OPEX per 

employee 
Natural log of Wage rate or OPEX per employee 

 Lep  Cost per kw bought Natural log of Cost per kw bought 
 lntep_kwh  Total energy produced Natural log of Total energy produced (kwh) 
 lnemployees  Number of employees Natural log of Number of employees 
 lnom_millions  Operations and 

maintenance 
Natural log of Operations and maintenance (million) 

 

Table 2. Summary Descriptive statistics (VRS_TE) for the distribution companies 
 

Stats dmu_1 dmu_2 dmu_3 dmu_4 dmu_5 dmu_6 

N 28 28 28 28 28 28 
Mean 0.793 0.934 0.890 0.952 0.879 1.000 
SD 0.352 0.027 0.029 0.0256 0.188 0.000 
Min 0.000 0.910 0.850 0.9200000 0.460 1.000 
Max 0.970 0.980  0.930 0.9900000 1.0000 1.000 
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5.2 Using the SFA Model 
 

SFA allows us estimate inefficiency and some 
determinants of this inefficiency. 
 

5.2.1 Selection of regression factors 
 

At this stage, the choice was made of variables 
that characterize the natural indicators of the 
electricity grid business (electricity distribution), 
prices for production factors and characteristics 
of the functioning environment. The regression 
model factors must meet the following 
requirements:  quantitative measurability. If it is 
necessary to include qualitative factors in the 
model, they should be given quantitative 
certainty (scores, ranks); absence of correlation 
of factors among themselves and functional 
connection. For our study input variables 
remained O&M, Wage rate, Energy Price while 
output variables were energy sold, energy losses 
and number of customers. 
 

The data is normally distributed and not 
correlated and with no functional connections 
among variables meant that there was no need 
to include qualitative variables. 
 

5.2.2 The form of the cost function  

 
In determining the form of a function form the 
linear, the Cobb-Douglas function was selected, 
since costs depend on many factors (the number 
and cost of factor inputs, cost of equipment, 
labour costs, supply of electricity, Opex). The 
form of the cost function is determined for this 
study and justified over others, which is the 
bottleneck of the parametric method of 
estimating costs. 

 
In Table 4, we test the functional form of the 
model when variables are in level form to 
compare them to the model in Table 5, which 
includes square and cross variables. First, the 
tiered model results show that all variables were 
significant at a 5% level, with an F-statistic 
confirming a correct functional form of the model. 
In evaluating the model function form of the 
model, the researcher concludes that the model 
given in Table 4 has the best parameters and 
criteria with an Akaike criterion of 213.747, an R-
square of 0.997, and a probability of the F-
statistic of 0.000. This makes it the best model 
for this analysis. 

Table 3. Testing for efficiency 
 

 lnom_millions  Coef.  St.Err.  t-
value 

 p-
value 

 [95% 
Conf 

 Interval]  Sig 

ly1 .955 .091 10.55 0 .776 1.134 *** 
ly2 .233 .068 3.43 .001 .099 .368 *** 
ly3 .3 .092 3.28 .001 .119 .481 *** 
Lw -.322 .127 -2.53 .012 -.572 -.071 ** 
Lep .815 .138 5.89 0 .542 1.088 *** 
ly1y1 .123 .006 21.52 0 .112 .134 *** 
ly2y2 0 .002 0.19 .852 -.004 .004  
ly3y3 .081 .002 35.20 0 .076 .085 *** 
Lww .029 .013 2.17 .032 .003 .055 ** 
Lepep -.059 .011 -5.44 0 -.08 -.037 *** 
ly1y2 -.023 .008 -3.01 .003 -.038 -.008 *** 
ly1y3 -.241 .007 -35.29 0 -.255 -.228 *** 
ly1w -.018 .013 -1.36 .175 -.044 .008  
ly1ep .026 .011 2.41 .017 .005 .047 ** 
ly2y3 .026 .008 3.34 .001 .011 .041 *** 
ly2w -.01 .014 -0.74 .458 -.037 .017  
ly2ep .027 .011 2.48 .014 .006 .049 ** 
ly3w .049 .009 5.76 0 .032 .066 *** 
ly3ep -.112 .011 -10.33 0 -.133 -.091 *** 
Lwep .01 .021 0.46 .644 -.031 .051  
Constant -3.568 .472 -7.56 0 -4.501 -2.636 *** 

Mean dependent var 6.616 SD dependent var  2.438 
R-squared  1.000 Number of obs   177 
F-test   154715.317 Prob > F  0.000 
Akaike crit. (AIC) -892.646 Bayesian crit. (BIC) -825.947 

*** p<.01, ** p<.05, * p<.1  
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Table 4. Testing for the Functional form – Model in Levels 
 

lnom_millions  Coef.  St.Err.  t-value  p-value  [95% Conf Interval] Sig 

ly1 .497 .021 23.92 0 .456 .538 *** 
ly2 .062 .016 3.83 0 .03 .094 *** 
ly3 .425 .017 24.89 0 .391 .459 *** 
Lw .162 .03 5.40 0 .103 .221 *** 
Lep .87 .03 29.15 0 .811 .929 *** 
Constant -.287 .162 -1.77 .078 -.607 .033 * 

Mean dependent var 6.616 SD dependent var  2.438 
R-squared  0.997 Number of obs   177 
F-test   12328.197 Prob > F  0.000 
Akaike crit. (AIC) -213.747 Bayesian crit. (BIC) -194.690 

*** p<.01, ** p<.05, * p<.1 

 
Table 5. Testing the Functional form - Model in levels, squares and interactions 

 

lnom_millions  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval] Sig 

ly1 .955 .091 10.55 0 .776 1.134 *** 
ly2 .233 .068 3.43 .001 .099 .368 *** 
ly3 .3 .092 3.28 .001 .119 .481 *** 
Lw -.322 .127 -2.53 .012 -.572 -.071 ** 
Lep .815 .138 5.89 0 .542 1.088 *** 
ly1y1 .123 .006 21.52 0 .112 .134 *** 
ly2y2 0 .002 0.19 .852 -.004 .004  
ly3y3 .081 .002 35.20 0 .076 .085 *** 
Lww .029 .013 2.17 .032 .003 .055 ** 
Lepep -.059 .011 -5.44 0 -.08 -.037 *** 
ly1y2 -.023 .008 -3.01 .003 -.038 -.008 *** 
ly1y3 -.241 .007 -35.29 0 -.255 -.228 *** 
ly1w -.018 .013 -1.36 .175 -.044 .008  
ly1ep .026 .011 2.41 .017 .005 .047 ** 
ly2y3 .026 .008 3.34 .001 .011 .041 *** 
ly2w -.01 .014 -0.74 .458 -.037 .017  
ly2ep .027 .011 2.48 .014 .006 .049 ** 
ly3w .049 .009 5.76 0 .032 .066 *** 
ly3ep -.112 .011 -10.33 0 -.133 -.091 *** 
Lwep .01 .021 0.46 .644 -.031 .051  
Constant -3.568 .472 -7.56 0 -4.501 -2.636 *** 

Mean dependent var 6.616 SD dependent var  2.438 
R-squared  1.000 Number of obs   177 
F-test   154715.317 Prob > F  0.000 

Akaike crit. (AIC) -892.646 Bayesian crit. (BIC) -825.947 
*** p<.01, ** p<.05, * p<.1 

 

5.2.3 Choosing a method for estimating the 
cost function 

 
In panel data analysis, the best model for 
estimating the cost function is determined from 
the pooled, fixed and random effect models. The 
fixed effect model is shown in Table 6, with a 
significant F statistic at a 5% level. The 
Haussman test for the most suitable model gives 
a chi-square test value probability of 0.9915. 
Hence, we cannot reject the null hypothesis that 

a random effects model is the most appropriate 
model. 
 
After a critical Haussman test analysis for the 
most suitable model, which confirms the random 
effects model. The researchers begin by 
analyzing the final random effects models.        
These models include; 1) Green 2005b                      
true fixed effects model (exponential), 2)                   
Green 2005b true random effects model (semi-
normal). 
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Fig. 1. Histogram of OLS Residuals 
 

Table 6. Fixed effects model 
 

lnom_millions  Coef.  St.Err.  t-value  p-value  [95% Conf  Interval] Sig 

ly1 1.249 .109 11.43 0 1.033 1.465 *** 
ly2 .058 .093 0.63 .533 -.126 .243  
ly3 .47 .095 4.94 0 .282 .659 *** 
Lw -.097 .144 -0.68 .499 -.381 .186  
Lep .709 .144 4.92 0 .424 .993 *** 
ly1y1 .11 .007 16.45 0 .097 .123 *** 
ly2y2 .001 .002 0.36 .716 -.003 .005  
ly3y3 .082 .003 30.41 0 .076 .087 *** 
Lww .019 .013 1.43 .155 -.007 .045  
Lepep -.05 .01 -4.98 0 -.07 -.03 *** 
ly1y2 -.01 .008 -1.22 .223 -.025 .006  
ly1y3 -.241 .007 -35.08 0 -.255 -.227 *** 
ly1w -.029 .015 -1.95 .053 -.059 0 * 
ly1ep .03 .013 2.39 .018 .005 .055 ** 
ly2y3 .021 .008 2.64 .009 .005 .037 *** 
ly2w -.007 .015 -0.45 .656 -.036 .023  
ly2ep .022 .013 1.68 .096 -.004 .048 * 
ly3w .049 .009 5.65 0 .032 .066 *** 
ly3ep -.094 .011 -8.56 0 -.115 -.072 *** 
Lwep .017 .021 0.81 .419 -.024 .057  
Constant -6.454 .803 -8.04 0 -8.04 -4.867 *** 

Mean dependent var 6.616 SD dependent var  2.438 
R-squared  1.000 Number of obs   177 
F-test   15699.928 Prob > F  0.000 
Akaike crit. (AIC) -931.072 Bayesian crit. (BIC) -864.373 

*** p<.01, ** p<.05, * p<.1 
 

Table 7. Haussman test for the most appropriate model 
 

     Coef. 

 Chi-square test value  36.844 
 P-value .012 
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Table 8. Random effects model is the best model 

 

lnom_millions Coef. St.Err. t-value p-value [95%Conf Interval] Sig 

ly1 .955 .091 10.55 0 .778 1.133 *** 
ly2 .233 .068 3.43 .001 .1 .367 *** 
ly3 .3 .092 3.28 .001 .121 .48 *** 
Lw -.322 .127 -2.53 .011 -.57 -.073 ** 
Lep .815 .138 5.89 0 .544 1.086 *** 
ly1y1 .123 .006 21.52 0 .112 .134 *** 
ly2y2 0 .002 0.19 .852 -.004 .004  
ly3y3 .081 .002 35.20 0 .076 .085 *** 
Lww .029 .013 2.17 .03 .003 .055 ** 
Lepep -.059 .011 -5.44 0 -.08 -.038 *** 
ly1y2 -.023 .008 -3.01 .003 -.038 -.008 *** 
ly1y3 -.241 .007 -35.29 0 -.255 -.228 *** 
ly1w -.018 .013 -1.36 .173 -.044 .008  
ly1ep .026 .011 2.41 .016 .005 .047 ** 
ly2y3 .026 .008 3.34 .001 .011 .041 *** 
ly2w -.01 .014 -0.74 .457 -.037 .016  
ly2ep .027 .011 2.48 .013 .006 .049 ** 
ly3w .049 .009 5.76 0 .033 .066 *** 
ly3ep -.112 .011 -10.33 0 -.133 -.091 *** 
Lwep .01 .021 0.46 .643 -.031 .05  
Constant -3.568 .472 -7.56 0 -4.494 -2.643 *** 

Mean dependent var 6.616 SD dependent var  2.438 
Overall r-squared  1.000 Number of obs   177 
Chi-square   3094306.346 Prob > chi2  0.000 
R-squared within 0.999 R-squared between 1.000 
*** p<.01, ** p<.05, * p<.1 

 
In order to enable a meaningful interpretation of 
the estimation results, the researcher carries out 
the test for cross-sectional dependence. We use 
Frees and Pesaran tests for cross-sectional 
independence, the test statics of which are 0.234 
and -0.633, respectively. The Frees-Q 
distribution test statistic is below the critical value 
of the significance level of 0.01, which means 
that the null hypothesis of cross-sectional 
independence is not rejected. This result agrees 
with Pesaran's test, the probability of which is 
greater than 0.05 level of significance. This 
finding indicates the presence of 
heteroscedasticity in the data set. 
 
In this section we present results of the semi-
normal true random effects model from Greene 
2005b. Considering 6 DMUs, the results of this 
model were based on 50 randomized Halton 
sequences that produced a logarithmically 
simulated probability of 163.2509. The minimum, 
mean, and maximum observations per DMU 
were recorded at 22, 29.5, and 43, respectively. 
The probability of the model chi-square of 0.0000 
indicates that the model is correctly specified and 

that the interpreted results are therefore 
meaningful. 
The model results are discussed using five 
boundaries that form the regressors of the cost 
function. With operations and management as 
the predicted variable for our panel model, the 
results show highly significant coefficients at           
the 0.05 level. A percentage increase in                     
the total energy sold by distribution                       
companies increases their O&M costs by             
56.2%. This result is highly significant at the 0.01 
level.  
 
We continue to observe that a percentage 
increase in energy losses significantly increases 
the operating and maintenance costs of 
distribution companies by up to 29.5%. A result 
highly significant at the significance level of 0.01. 
The estimated results show the same effect 
pattern for the number of customers, the wages 
of the employees (OPEX per employee) and               
the costs per KW purchased with a         
percentage change in the operating and 
maintenance costs of 3.9%, 8.8% and 78.3%, 
respectively.  
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In the next section, we embark on a detailed 
discussion of the results presented in the above 

model. 

Table 9. Greene 2005b true random-effects model 
 

True random-effects 
model (half-normal)      

Number of obs 177  

Group variable: dmu                                Number of groups 
  

6  

Time variable: time                              Obs per group: min 22  
 avg  =      29.5  
 max  =        43  
 Prob > chi2    =    0.0000  
 Log simulated-

likelihood            
 =   163.2509                  

 Wald chi2(5) =12905.75  
 Number of 

Randomized Halton 
Sequences 

=50  

 Base for Randomized 
Halton Sequences 

=7  

lnom_milli~s   Coef.  Std.Err.  Z  P>z  [95%Conf. Interval] 

Frontier      
Total energy sold  0.562  0.019  29.800 0.000   0.525 0.599 
Number of customers  0.039  0.013  3.030 0.002   0.014 0.064 
Energy loss  0.295  0.018 16.390 0.000   0.260 0.331 
OPEX per employee  0.088  0.029 3.000 0.003  0.031 0.146 
Cost per kw bought  0.873  0.027 31.960 0.000   0.819 0.926 
Constant    0.866 0.299 2.890  0.004   0.279 1.452 
Usigma_cons   -208.350  5.002 -41.650 0.000  -218.154 -198.547 
Vsigma_cons   -4.876  0.107 -45.370  0.000  -5.086 -4.665 
Theta_cons   0.237  0.036 6.650  0.000   0.167 0.307 
sigma_u   0.000  0.000 0.400 0.689   0.000 0.000 
sigma_v   0.087  0.005 18.610 0.000   0.079 0.097 
lambda   0.000 0.005 0.000 1.000  -0.009 0.009 

 

5.3 Discussion of Results 
 

DEA was analysed using DEA- Stata program an 
input DEA was run. It does not concern itself with 
functional form and does not test the hypothesis 
so no statistical tests were run while SFA gave 
us room to separate random error and 
inefficiency of the distribution companies, it            
took into consideration differences in                          
operating conditions of the companies,                     
and allowed room to conduct statistical tests  
[17]. 
 

The examination of service costs enables the 
Electricity Regulatory Authority (ERA) re-assess 
the levels of inefficiency among the system 
operators which informs the decisions to control 
or minimize increase in tariffs. The research will 
also inform the relevant government officials on 
the efficiency levels of the system operators 
which may lead to policy review. There will be 
increased awareness of the various types of 

regulatory capture and the nature of impediment 
encountered in realizing the targets of the 
regulatory framework. This should enable the 
concerned officials to reorganize accordingly. 
Through increased usage of electricity, the level 
of manufacturing is boosted, while standards of 
living could be positively impacted with reference 
to the beneficiary communities, thereby 
enhancing entrepreneurial initiatives. In general, 
the contribution over a period of time should be 
able to cause an increase in per capita              
electricity consumption; contribute to a reduction 
in the share of biomass energy used for              
cooking and on the overall, contribute to an 
increase in the share of clean energy used for 
cooking. 

 
5.3.1 Is there technical efficiency in the 

distribution industry? 

 
A test conducted on the SFA model is to 
establish whether technical inefficiency exist in 
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the distribution subsector. This is done by putting 
restrictions on the translog model that 𝛶 = 𝛿1 =
𝛿2  = 𝛿3 = 𝛿4 = 𝛿5 =  𝛿6 = 0  indicate that energy 
loss and energy purchased by DMUs constitute 
the most efficient cost drivers. 

 
This therefore implies that incentive regulation 
has a positive influence on cost efficiency and 
tariff setting. 

 
6. CONCLUSION AND POLICY 

RECOMMENDATIONS 
 
6.1 Conclusions 
 
This study has looked at incentive regulation in 
the electricity distribution subsector with a view of 
establishing an efficient tariff regime. Based on 
the findings modelling of incentive regulation in 
electricity distribution subsector in Uganda using 
price cap has enhanced investment into 
electricity infrastructure under long term 
regulatory contracts. Our study confirms that 
under the self-selection, regulated firms have no 
adverse effects on investments and hence 
improve welfare ceteris paribus [4]. 

 
Secondly the reduction in energy losses and 
energy purchases from transmitter make up the 
most efficient cost drivers. This explains the fairly 
stable tariff to the end user that the regulator has 
capped at an increment not exceeding 6% per 
quota tagged to some macroeconomic variables 
of inflation, oil prices and exchange rates 

 
Lastly, tariff regulation has increased efficiency in 
operations through in improved quality and 
reliability of power distribution. First and foremost 
is reduced load shedding, secondly is more 
reliable power distribution to end users. This 
improves the overall living conditions of the 
citizens [18]. 
 

6.2 Policy Recommendations 
 

Cost input DEA gives recommendation of 
inefficiencies existing in the way distribution firms 
cost their operational and maintenance costs 
which leads to higher tariff. Therefore the 
regulator should keenly and independently verify 
the costing of O&M and the way it’s transmitted 
to the end user tariff. Otherwise this can explain 
the low rate of investment into grid expansion by 
the distributors, which ultimately reduces access 
to end users. 
 

6.3 Further Research 
 

Further research should interest itself in 
understanding how self-selection methods of 
incentive regulation by regulator on the 
distribution firms are able to mitigate the problem 
of regulatory capture.  
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