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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions
of individuals worldwide, causing severe cognitive decline and memory impairment. The early and
accurate diagnosis of AD is crucial for effective intervention and disease management. In recent
years, deep learning techniques have shown promising results in medical image analysis, including
AD diagnosis from neuroimaging data. However, the lack of interpretability in deep learning models
hinders their adoption in clinical settings, where explainability is essential for gaining trust and
acceptance from healthcare professionals. In this study, we propose an explainable AI (XAI)-based
approach for the diagnosis of Alzheimer’s disease, leveraging the power of deep transfer learning and
ensemble modeling. The proposed framework aims to enhance the interpretability of deep learning
models by incorporating XAI techniques, allowing clinicians to understand the decision-making
process and providing valuable insights into disease diagnosis. By leveraging popular pre-trained
convolutional neural networks (CNNs) such as VGG16, VGG19, DenseNet169, and DenseNet201,
we conducted extensive experiments to evaluate their individual performances on a comprehensive
dataset. The proposed ensembles, Ensemble-1 (VGG16 and VGG19) and Ensemble-2 (DenseNet169
and DenseNet201), demonstrated superior accuracy, precision, recall, and F1 scores compared to
individual models, reaching up to 95%. In order to enhance interpretability and transparency in
Alzheimer’s diagnosis, we introduced a novel model achieving an impressive accuracy of 96%. This
model incorporates explainable AI techniques, including saliency maps and grad-CAM (gradient-
weighted class activation mapping). The integration of these techniques not only contributes to the
model’s exceptional accuracy but also provides clinicians and researchers with visual insights into
the neural regions influencing the diagnosis. Our findings showcase the potential of combining deep
transfer learning with explainable AI in the realm of Alzheimer’s disease diagnosis, paving the way
for more interpretable and clinically relevant AI models in healthcare.

Keywords: Alzheimer’s disease; transfer learning; explainable AI (XAI); saliency maps; grad-CAM

1. Introduction

Alzheimer’s disease is a progressive neurological disorder that primarily affects older
adults, gradually impairing memory, cognitive functions, and eventually the ability to perform
daily activities. It is the most common cause of dementia, a syndrome characterized by a
decline in memory, thinking, behavior, and the ability to perform everyday activities [1].
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According to the World Alzheimer’s Association [2]. The prevalence of Alzheimer’s
disease in the United States is on the rise, with more than 6 million Americans currently
affected by the condition. Among Americans aged 65 and older, an estimated 6.7 million
individuals are living with Alzheimer’s as of 2023, with the majority being 75 years or older.
Approximately 10.7% of people aged 65 and older have Alzheimer’s, and women make
up nearly two-thirds of those affected. Furthermore, older Black and Hispanic Americans
are disproportionately affected by Alzheimer’s compared to older White Americans. With
the aging population, it is projected that the number of individuals with Alzheimer’s will
continue to increase, potentially reaching 12.7 million by 2050 if no medical breakthroughs
are made to prevent or cure the disease. Moreover, it is a formidable challenge in contempo-
rary healthcare, affecting millions globally and imposing significant burdens on healthcare
systems and societies [3,4]. These statistics underscore the urgent need for advancements in
Alzheimer’s research and care to address the growing impact of the disease on individuals,
families, and society as a whole. The timely and accurate diagnosis of AD is imperative
for facilitating early intervention and potential disease-modifying therapies. However, the
intricacies of AD, coupled with the overlap of symptoms with other neurodegenerative
conditions, render the accurate identification and classification of the disease, especially in
its early stages, intricate tasks [5].

We know that machine learning is currently one of the methods to solve many kinds
of problems, such as disease detection [6,7], sports [8], natural language processing [9–11],
and so on. Based on this, this paper introduces a revolutionary approach to address
the complexities of Alzheimer’s disease diagnosis through the fusion of deep transfer
learning and explainable artificial intelligence (XAI) techniques [12]. Our investigation
involved the utilization of well-established pretrained convolutional neural networks
(CNNs), including VGG16, VGG19, DenseNet169, and DenseNet201. Through extensive
experimentation, we assessed their individual performances on a comprehensive dataset.
Notably, our proposed ensembles, Ensemble-1 (VGG16 and VGG19) and Ensemble-2
(DenseNet169 and DenseNet201), exhibited superior metrics—accuracy, precision, recall,
and F1 scores—outperforming individual models, with achievements reaching up to 95%.

In order to fortify interpretability and transparency in Alzheimer’s diagnosis, we
present a novel model attaining an impressive accuracy of 96%. This model integrates
cutting-edge explainable AI techniques, such as saliency maps [13] and grad-CAM (gradient-
weighted class activation mapping) [14].

The integration of these techniques not only enhances the model’s outstanding ac-
curacy but also provides clinicians and researchers with valuable visual insights into the
neural regions pivotal in the diagnostic process.

The primary objectives of this paper are as follows:

1. To develop reliable Alzheimer’s classification using a deep transfer learning ensemble;
2. To introduce a novel model for transparent Alzheimer’s diagnosis with high accuracy;
3. To enhance interpretability using XAI methods such as saliency maps and grad-CAM;
4. To evaluate the proposed approach against benchmarks, highlighting superior accu-

racy and interpretability.

The subsequent sections of this paper are organized as follows: Section 2 provides an
overview of related works in the field of AI-based AD diagnosis, transfer learning, and XAI.
Section 3 outlines the methodology employed in developing the deep transfer learning
ensemble and integrating XAI techniques. In Section 4, we present our experimental setup
and evaluation results. The discussion of the findings is presented in Section 5, and finally,
Section 6 concludes the paper with future directions for research in this domain.
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2. Related Works

The field of Alzheimer’s disease diagnosis has witnessed growing interest in lever-
aging artificial intelligence (AI) techniques, particularly deep learning [1], for enhanced
accuracy and efficiency. Numerous studies have contributed valuable insights into various
aspects of Alzheimer’s disease classification, utilizing diverse data types, machine learning
methodologies, and XAI techniques.

Ref. [15] focuses on a classification task distinguishing between healthy controls (HCs)
and Alzheimer’s disease (AD) using numeric data. It employs LIME and SHAP as XAI
frameworks, revealing significant features, such as whole brain volume, years of education,
and socio-economic status. The classifiers include support vector machine (SVM), k-nearest
neighbors (kNN), and multilayer perceptron (MLP).

Ref. [16] utilizes image data for HCs vs. AD classification, incorporating XAI frameworks
such as HAM and PCR. Significant features include salient aspects related to AD, like cerebral
cortex and hippocampus atrophy. The classifier employed is a deep learning (DL) convolutional
neural network (CNN), achieving an impressive accuracy of 95.4%.

By examining HCs, MCI, and AD, Ref. [17] employs image data and the XAI frame-
work GNNExplainer. The significant features encompass volume, area of cortical regions,
and vertex-based thickness measures. The classifier is a DL graph neural network (GNN),
yielding an accuracy of 53.5 ± 4.5%.

By using image data, Ref. [18] adopts the XAI framework of occlusion sensitivity map-
ping, focusing on white matter hyperintensities (WMHs). The classifier is a DL EfficientNet-
B0, achieving an accuracy of 80.0%.

Incorporating image data and XAI frameworks such as saliency maps and layer-wise
relevance propagation (LRP), Ref. [19] considers MRI, 3D PET, biological markers, and
assessments. The classifier is a DL 3D CNN AD.

Ref. [20] involves image data and XAI frameworks utilizing decision trees (DTs). The
significant features include demographic data, cognitive factors, and brain metabolism
data. The classifiers include Bernoulli naive Bayes (NB), SVM, kNN, random forest (RF),
AdaBoost, and gradient boosting (GBoost), achieving an accuracy of 91.0%.

Utilizing image data, Ref. [21] employs XAI frameworks such as 3D Ultrametric
Contour Map, 3D Class Activation Map, and 3D GradCAM. Significant features encompass
3D MRI features, and the classifier is a DL 3D CNN, achieving an accuracy of 76.6%.

Ref. [22], involving image data, utilizes Sensitivity Analysis and Occlusion as XAI
frameworks. Significant features include 3D Image features, and the classifier is a DL 3D
CNN, achieving an accuracy of 77.0%.

3. Materials and Methods

The section offers resources for the diagnosis of Alzheimer’s disease using MRI images,
as illustrated in Figure 1, in order to identify the disease at an early stage of development.
The VGGNets (very deep convolutional networks) and DenseNets models were fed with
the enhanced MRIs of Alzheimer’s illness using the same technique across all platforms.
First of all, we trained the AD dataset with VGGNets, such as VGG16 and VGG19. Then,
we trained the AD dataset with DenseNets, such as DenseNet169 and DenseNet201. After
examining the above net results, we integrated the VGGNets (VGG16 and VGG19) and
DenseNets (DenseNet169 and DenseNet201) together.
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Figure 1. Workflow diagram for diagnosing MRI images for the detection of AD.

3.1. Dataset Collection

Methods with enhanced capabilities for the detection of AD were established in this
study by analyzing MRI images from the AD dataset. The dataset was gathered and
downloaded from kaggle [23]. It contained four classes and 6400 images. The 6400 images
in the OASIS-2 collection have a size of 176 × 208. The images for each class are shown
in Figure 2, with the labels and classes verified. The Alzheimer’s dataset contains the
following images for each class: 896 MRIs for mild dementia, 64 MRIs for moderate
dementia, 3200 MRIs for non-dementia, and 2240 MRIs for very mild dementia. The
samples from the Alzheimer’s dataset are shown in Figure 2.

Figure 2. MRI image samples from AD dataset.
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Table 1 demonstrates how the four classes of images are divided into an imbalanced
configuration. According to the table, the dataset looks to be significantly imbalanced
across all classes. The biased level contains 3200 images and traditional learning makes
it difficult to classify all of the levels correctly because they are not all the same number.
As a result, we employ data augmentation to label the images with an equal number,
where every class has the same number of images. The procedure is described in the data
augmentation section. Multiple transfer learning models and ensemble models were used
to appropriately categorize all of the levels.

Table 1. Dataset statistics

Class Name Number of Images

Mild Dementia 896
Moderate Dementia 64

Non-Dementia 3200
Very Mild Dementia 2240

3.2. Image Preprocessing

Image preprocessing techniques are needed because of the noise that MRI images
exhibit for a variety of reasons, including imaging procedures, brightness, reflections, low
contrast, and acquiring MRI images from many sources. As a result, enhancing MRI images
results in image enhancement, which aids in obtaining high performance and collecting
the right information from the images [24].

3.2.1. Image Resizing

The complete set of images was shrunk to 224 × 224, including training, testing, and
validation, when the primitive size was 176 × 208. The image size for transfer learning
models was 224 × 224, and RGB values were used for ensemble models as well [25].

3.2.2. Normalization

Normalization is the process of transforming features to be of the same scale. This in-
creases the model’s performance and training stability. We projected into a preset range (i.e.,
usually [0, 1] or [−1, 1]) to normalize all image data, and we also used the same techniques
(transfer learning and ensembling) on them, as described in Equation (1) and typically
performed as follows:

img =
1

255.0
(1)

3.2.3. Removing Noise by Median Filtering

Median filtering is utilized similarly to an averaging filter. In contrast, during median
filtering, a pixel’s value is determined by the neighborhood’s median of pixels, as opposed
to an average. Compared to the average, which is substantially less sensitive to outliers or
extreme values, median filtering is more capable of removing these without compromising
the image’s clarity [26].

3.2.4. Image Segmentation

For a better image experience, we go through numerous segmentation procedures to
extract the most useful information from the images. Compared to gray images, which
are one-dimensional, RGB images have three color channels. First of all, we converted
the RGB images to grayscale. In order to convert images from RGB to gray, we used the
OpenCV library’s built-in Canny edge detection function. The Canny() function can be
used to conduct this process on an image; the function’s syntax is as follows:

Canny(image, edges, T_lower, T_upper)
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We set the lower threshold and upper threshold to 175.5 and 207.5, respectively. After
that, we inverted the gray scale image, setting the value ‘0’ to ‘1’ and ‘1’ to ‘0’. Now,
“true and accurate” segmentations, which are typically made by one or more human
experts, were used to convert the inverted grayscale images into ground truth. Following
the preprocessing stage, the subsequent step involves segmentation, where a threshold
value is determined. In the process of thresholding an image, the selected thresholds
aim to optimize the distinction between the average gray levels of the foreground and
background regions, along with the overall average gray level across the entire image. This
optimization is reflected in the variance of the regions. Otsu’s maximum variance method,
derived from the least squares principle of discriminant analysis, is commonly employed
in stable threshold segmentation approaches [27–29].

For a given input image, I, with a height of H and width of W, the image’s normalized
gray histogram is represented by the histogram1. Here, histogram1(k) denotes the ratio
of pixels in the image with a gray value equal to k, where k is in the range [0, 255]. The
algorithm’s detailed steps include straightforward calculations based on Otsu’s method,
ensuring an effective and widely utilized threshold segmentation approach.

Step 1: Calculate the zero-order cumulative moments, also known as cumulative his-
tograms, of the gray histogram described in Equation (2).

zeroCumuMoment(k) =
k

∑
i=0

histogram1(i), k ∈ [0, 255] (2)

Step 2: Compute the cumulative first-order moments of the gray histogram shown in
Equation (3).

oneCumuMoment(k) =
k

∑
i=0

((i) ∗ histogramI(i)), k ∈ [0, 255] (3)

Step 3: Compute the mean gray level of image I by calculating the first-order cumulative
distance when k = 255, expressed as

meanoneCumuMoment = (255)

Step 4: In the process of determining each gray level as a threshold in Equation (4), the
calculations involve the computation of the average gray level for the foreground area, the
average gray level for the background area, and the variance of the overall average gray
level for the entire image. The variance is measured using the following metrics:

σ2(k) =
(mean ∗ zeroCumuMoment(k)− oneCumuMoment(k))2

zeroCumuMoment(k) ∗ (1 − zeroCumuMoment(k))
, k ∈ [0, 255] (4)

Step 5: From Equation (4) mentioned above, the corresponding k is the threshold of Ostu
automatic selection, that is

thresh = argk∈[0,255]max(σ2(k))

Following segmentation, we employed image masks in the form of (num_masks, H,
W) or (H, W), with an alpha value between 0 and 1 indicating the masks’ transparency. A
value of 1 indicates complete transparency, whereas 0 indicates none. There are lists of
colors that contain the mask colors or use a single color for all masks. PIL strings or RGB
tuples, such (240, 10, 157), can be used to represent the color. Each mask generates random
colors by default [30].
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3.3. Balancing the Dataset through Data Augmentation

A dataset with limited images is one of the drawbacks of deep learning (pretrained)
models. In order to be able to train the systems and provide them with enough data
during the training phase, deep learning requires a dataset with a large number of images.
Additionally, because the accuracy is skewed toward the class that contains the majority of
images, the unbalanced dataset affects model performance and is one of its drawbacks. The
data augmentation technique addresses the aforementioned issues by artificially boosting
the dataset’s image count with additional images from the same dataset [31].

In order to address the unbalanced dataset, the data augmentation technique [4]
generates images from the minority class by using a more significant percentage than the
rise in the majority class in order to balance out the unbalanced dataset. As a result, this
method balances the dataset while increasing image quality. Images from the dataset are
enhanced by a variety of processes, including horizontal and vertical shifting, horizontal
and vertical flipping, random rotating, random zooming, random brightness, and others.

Figure 3 depicts images distributed within the dataset classes, where the image counts
prior to data augmentation are relatively small and imbalanced. The diagram also depicts
the dispersion of MRI. After performing data augmentation, the images were transferred
between the dataset classes. Table 2 summarizes the MRI images amongst the dataset classes
before and after training data augmentation is used. According to the table, Moderate
dementia has the lowest number of images at 52, and the non-dementia class has the highest
number of images at 2560. We chose a middle number of 1280, which was easily achievable
for each class, with each having fewer or more images regarding their image class [32].

Figure 3. Training dataset before and after data augmentation.

Table 2. Training dataset before and after data augmentation.

Class Name Before Data Augmentation After Data Augmentation

Mild Dementia 717 1280
Moderate Dementia 52 1280

Non-Dementia 2560 1280
Very Mild Dementia 1792 1280
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3.4. Feature Extraction

There are some difficulties with using deep learning (pretrained) models to train a
dataset, including the need for powerful computers and the cost; as a result, we chose
some pretrained models, such as VGG16 and VGG19 (VGGnets) and DenseNet169 and
DenseNet201 (DenseNets) for feature extraction. At first, we went for VGG16 to extract
features (with 512 features) and added a fully connected layer. Unlike VGG16, we con-
structed VGG19 for extracting features at 512 after connecting a fully connected layer.
Therefore, the features matrix had a size of 5120 × 512 for each model. Then, we extracted
features through DenseNet169 and DenseNet201, where 1664 features were extracted with
a fully connected layer and 1920 features were extracted through a fully connected layer,
respectively. Therefore, the features matrix had a size of 5120 × 1664 for DenseNet169
and 5120 × 1920 for DenseNet201. For feature extraction, by leveraging its ability to cap-
ture high-level features from input images, such as edges, textures, and shapes, we used
EfficientNet as a feature extractor [1], where we realized a 6400 × 1280 feature matrix [33].

3.5. Addition of New Layers

After extracting the features from the above-mentioned feature extraction subsection,
we added some layers for training (see Figure 4). For simplicity, we used the same layers
for all pretrained models and ensemble models also.

Figure 4. Addition of new layers after feature extraction.

We used a dropout layer for batch normalization, two dense layers with a kernel size
of 3 × 3, the activation function of which is ‘RelU’, and finally, an output layer with four
nodes, with the activation function being ‘softmax’ [34].

3.6. Training with Pretrained Models

In this section, we will describe the materials needed to train the training dataset using
the 5120 images contained within the training data. First of all, we focus on the VGG16 and
VGG19 models, then DenseNet169, and finally, DenseNet201 [35].
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3.6.1. VGG19 and VGG19

The architecture of VGG16 and VGG19 is Google’s pretrained architecture, which uses
fine-tuning across all layers and replaces the top layers with 53,540,868 trainable parameters
(as is the case for both the models shown in Figures 5 and 6). Some new layers were added,
which are described in Section 3.5.

Figure 5. Addition of new layers after feature extraction using VGG16.

Figure 6. Addition of new layers after feature extraction using VGG19.

The input images were all resized to (224, 224) to be compatible with this model. The
learning rate was set to 0.001, and the Adam optimizer algorithm was used as the optimizer.

3.6.2. DenseNet169 and DenseNet201

A DenseNet, short for dense convolutional network, is a type of convolutional neural
network that incorporates dense connections between layers through dense blocks. These
blocks establish direct connections between all layers, ensuring matching feature map sizes.
In order to preserve the feed-forward structure, each layer not only receives additional
inputs from all preceding layers but also transmits its own feature maps to all subsequent
layers. This design facilitates enhanced information flow and gradient propagation through-
out the network, contributing to improved learning capabilities. Fine-tuning across all
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layers and replacing top layers with 169,259,268 and 194,974,468 trainable parameters for
DenseNet169 and DenseNet201, respectively, is shown in Figures 7 and 8. Some new layers
were added, which are described in Section 3.5.

Figure 7. Addition of new layers after feature extraction using DenseNet169.

Figure 8. Addition of new layers after feature extraction using DenseNet201.

The input images underwent resizing to dimensions (224, 224) to align with the
compatibility requirements of the model. A learning rate of 0.001 was chosen, and the
optimization process employed the Adam optimizer algorithm.

3.7. Ensemble Models

An ensemble model is a machine learning strategy that integrates several other models
in the prediction process. These models are known as base estimators. The technical
obstacles experienced when developing a single estimator can be overcome by using
ensemble models [36]. We employed two ensemble models, which are detailed below.
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3.7.1. Ensemble-1

In order to improve accuracy, we investigated two ensemble models, Ensemble-1
and Ensemble-2, with the Ensemble-1 model combining VGG16 and the VGG19 models,
comprising 107,081,736 trainable parameters. The model architecture of Ensemble-1 is
shown in Figure 9. For Ensemble-2, the Input images were all resized to (224, 224) to be
compatible with this model. The learning rate was set to 0.001, and the Adam optimizer
algorithm was used as the optimizer.

Figure 9. Ensemble-1 model architecture.

3.7.2. Ensemble-2

The Ensemble-2 model incorporates the DenseNet169 and DenseNet201 models to-
gether with 364,233,736 trainable parameters. Figure 10 shows the model description, with
input images all resized to (224, 224) to be compatible with this model. The learning rate
was set to 0.001, and the Adam optimizer algorithm was used as the optimizer.

Figure 10. Ensemble-2 model architecture.



Diagnostics 2024, 14, 345 12 of 24

3.8. Proposed Model

Instead of traditional learning, deep learning, like other convolutional neural networks,
is used for the training, testing, and validation, with the input layer of all images having a
size of 224x224 for the RGB values. Then, a convolution and pooling layer, such as max
pooling and min pooling, is used, with a fully connected layer for classifying all classes.
This figure is a basic CNN model after successful feature extraction by using EfficientNet.
A convolution layer (32, 64, 128, 256, and 512, with a kernel size 3 × 3, a pooling layer
with flatten, and a dense layer with 512 units) and a final output of four dense layers were
added. Table 3 shows a description of the architecture of the proposed model.

Table 3. Description of the proposed model architecture.

Model Content Details

Input Image Size 224 × 224 × 3, with 5120 training images and 1280 images in each class
Feature extraction Using EfficientNet with 1280 features
First Convolution Layer 32 filters; size = 3 × 3; ReLu; Padding = ‘Same’
First Max Pooling Layer Pooling Size: 2 × 2
Second Convolution Layer 64 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Second Max Pooling Layer Pooling size: 2 × 2
Third Convolution Layer 128 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Third Max Pooling Layer Pooling size: 2 × 2
Fourth Convolution Layer 256 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Fourth Max Pooling Layer Pooling Size: 2 × 2
Fifth Convolution Layer 512 filters; size = 3 × 3; ReLu; Padding = ‘Same’
Fifth Max Pooling Layer Pooling Size: 2 × 2
Fully Connected Layer 4096 nodes; ReLU
Dropout Layer 50% Neurons dropped randomly
Dense_1 Layer 8320 nodes; ReLu
Dense_2 Layer 516 nodes; ReLu
Output Layer Four nodes; Softmax activation
Optimization Function Adam optimization
Learning Rate 0.001
Loss Function Categorical cross entropy

3.9. Saliency Map

In computer vision, a saliency map is a visualization approach that highlights the
most essential regions or features within an image. It aids in the identification of areas of
interest or the significance of a certain job, such as object detection or image classification.
The saliency map shows the image regions that get the most attention, pixel by pixel.

There are numerous approaches for creating saliency maps, but one typical method is
to analyze the gradients of a pretrained convolutional neural network (CNN). The goal is
to compute the gradients of the output class score with respect to the pixels in the input
image. High gradients show that a minor change in a specific pixel has a substantial impact
on the output score, implying that the relevant region is important [37].

The typical process for creating a saliency map using gradient-based techniques is
summarized below:

Select a CNN model that has already been trained using a sizable dataset, such as
ImageNet. The network must forward-pass an image in order to determine the expected
class probabilities. Then, it must determine the gradients of the projected class score in
relation to the pixels of the input image. By using the gradients, it calculates the importance
scores for each pixel (for example, by taking the absolute values or squaring them). In order
to have the importance ratings fall inside a particular range, such as [0, 1], the values are
normalized. Finally, the network maps the importance scores to the image dimensions to
create the saliency map, emphasizing the salient areas [38].

Saliency maps can be used for a variety of purposes, such as object localization, image
captioning, and human attention modeling. They provide insights into deep learning
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models’ visual attention mechanisms and aid in understanding which components of an
image contribute the most to the model’s decision-making process. The input image x is
passed through the network to determine the network output value, f (x), which is used
to compute the saliency map. The gradient of f (x)y with respect to the input image x is
then calculated using a backward pass, where y is the ground truth label corresponding
to the input image x. Formally, Formula (6) is used to determine the gradient G(x), which
estimates the significance of each pixel in the image, x. G(x) has the same dimensions as
the image, x, and is a tensor. G(x) is a tensor with a dimension of 3, W × H and is indexed
by three indexes: i for indexing channels and j, k for i. This is the case if x has a width, W,
height H, and three channels [39].

G(x) =
d f (x)y

dx
(5)

The maximum of the absolute values across channels is determined to estimate the
relevance of a pixel x(i, j). As a result, the created matrix with the dimension W × H is
known as saliency map(SM).

SM(i, j) = Max[|G(0, i, j), |G(1, i, j), |G(2, i, j)|] (6)

The saliency map can localize (with good precision) the infected regions in the input
leaf image.

3.10. Grad-CAM

The grad-CAM method leverages gradients between the classification score and the
ultimate convolutional feature map to identify specific regions within an input image that
exert the greatest impact on the classification score. The significance of these areas in
influencing the final score is heightened in locations where the gradient is pronounced [40].
When we focus this on the images, it detects their regions with the help of the accuracy
they achieved. Now, we move to grad-cam, where an activation map that localizes the
identified object to a specific area of the image is known as the Grad-CAM output. It has
both width, u, and height, v, for class c.

Le
Grad−CAM ∈ R(uxv)

The gradients take the shape (u,v,Z), where (u,v) is the width and height of the 2D
convolution filter, and Z is the number of filters. The following phase averages each of the
filters to produce a single value, resulting in a final shape of Z or the number of filters. This
corresponds to the global average pooling 2D layer.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(7)

Each one of these gradients represents the connection from one of the pixels in the
2D array to the neuron/output representing the target class. This is accomplished by the
global average pooling 2D layer; the following layer in the model flattens Z and averages
the number of form filters (u ×v) to single numbers. In order to establish a link between the
final prediction outputs and the fully linked (Dense) layers, this is required. Subsequently,
the gradients can be increased, which indicates the significance of the provided feature
map or filter by using the feature map or filter that it truly reflects [41].

ReLU
(

∑
k

ac
k Ak

)
(8)



Diagnostics 2024, 14, 345 14 of 24

We can generate a map of the regions that would reduce the network’s confidence in
its prediction by negating the value of

∂yc

∂Ak .

4. Experimental Results

This section provides an overview of the results obtained from our model. The entire
experiment was conducted on “Google-Colab”, utilizing the provided GPU, specifically the
“Tesla-K80”. The training of the model involved using 80% of the available information,
and the evaluation was performed on the remaining 20%. A comprehensive comparison
of various models is presented in this section. In order to assess the model objectively,
classification matrices, including accuracy, precision, recall, and the macro F1 score, were
computed. These metrics provide a thorough evaluation of the model’s performance across
different aspects without introducing bias.

4.1. Splitting Dataset

In order to facilitate the categorization or prediction tasks in a machine learning
domain, the OASIS dataset is partitioned into three distinct sections: training, testing, and
validation. Examining Table 1 reveals a notable imbalance in the dataset. During the dataset
split, 80% of the total images are allocated for training and validation purposes, while the
remaining 20% is designated for testing.

4.2. Accuracy

Accuracy is the most intuitive performance measure, and it is simply a ratio of the correctly
classified observations to the total observations. It is said that if accuracy is high, then the model
is accurate in predicting or classifying. The equation for accuracy is shown below in Equation (9).

Accuracy =
TP + TN

TP + FP + FN + TN
(9)

4.3. Precision

Precision is the ratio of the correctly predicted positive observations to the total predicted
positive observations. The equation for precision is shown below in Equation (10).

Precision =
TP

TP + FP
(10)

4.4. Recall

Recall is the ratio of the correctly predicted positive observations to all observations in
an actual class. The equation for recall is given below in Equation (11).

Recall =
TP

TP + FN
(11)

4.5. F1 Score

The F1 score is also alluded to as the F1 measure. It is nothing but the weighted
harmonic mean of recall and precision. It is calculated in Equation as follows (12).

F1 − score = 2 ∗ PRECISION ∗ RECALL
PRECISION + RECALL

(12)

TP denotes true positive, TN denotes true negative, FP denotes fake positive, and FN
denotes false negative.
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4.6. Results

The section includes a confusion matrix for evaluating different network performances
by merging the pretrained model and the ensemble model with CNN features with the
features for AD progression diagnosis. Because of the similarity in the MRI images during
the evolution of Alzheimer’s disease, the features are critical when distinguishing between
the phases of the disease. Thus, in this phase, the VGGNet model’s deep features were
combined with handcrafted features, and this was saved in a features matrix; the deep
features of DenseNet169 and DenseNet201 are coupled with the handcrafted features
and saved in a features matrix. Finally, the CNN was given two 15 out of the 22 feature
matrixes, which divided the feature matrix into 80% for training and validation and 20%
for performance.

The confusion matrix for different network performances in the evolution of AD
detection is shown in Figures 11–13 . For each class—mild dementia, moderate dementia,
non-dementia, and very mild—the models using the merged features between the VGGNets
and ensembles obtained a true predictive of 492 images, which was the highest score, and
365 was the lowest for non-demntia. In comparison, the ensembles combining features
from VGGNets and DenseNets found 192 and 227 for non-dementia, respectively; for the
proposed model, the number is 170, as shown in Figure 13.

(a) (b)

Figure 11. Confusion matrix for VGG16 and VGG19. (a) VGG16. (b) VGG19.

(a) (b)

Figure 12. Confusion matrix for DenseNet169 and Densenet201. (a) DenseNet169. (b) DenseNet201.
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(a) (b)

(c)

Figure 13. Confusion matrix for Ensemble-1, Ensemble-2, and the proposed model. (a) Ensemble-1.
(b) Ensemble-2. (c) Proposed model.

Table 4 depicts the accuracy of the proposed model and all the transfer learning
models and ensemble models. With more epochs, better accuracy can be obtained. After
100 successful epochs for the proposed model, it provided an accuracy of 96%, a precision
of 89%, a recall of 93% and an F1 score of 91%. The transfer learning models have the highest
accuracy for VGG16 at 90%.The other model—VGG19, DenseNet169, and DenseNet20—had an
accuracy of 89%, 87%, and 88% respectively. For the two ensemble models, 95% accuracy was
achieved; Ensemble-1 had an accuracy of 92%. Figures 14–17 depict the training and validation
curves for VGG16, VGG19, DenseNet169, and DenseNet201. The accuracy and loss curves for
the two ensemble models are also shown in Figures 18 and 19. Finally, the accuracy–loss curve
for the proposed model can be seen in Figure 20.

(a) (b)

Figure 14. Accuracy and loss curve for VGG16. (a) Accuracy. (b) Loss.
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(a) (b)

Figure 15. Accuracy and loss curve for VGG19. (a) Accuracy. (b) Loss.

(a) (b)

Figure 16. Accuracy and loss curve for DenseNet169. (a) Accuracy. (b) Loss.

(a) (b)

Figure 17. Accuracy and loss curve for DenseNet201. (a) Accuracy. (b) Loss.

(a) (b)

Figure 18. Accuracy and loss curve for Ensemble-1. (a) Accuracy. (b) Loss.
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(a) (b)

Figure 19. Accuracy and loss curve for Ensemble-2. (a) Accuracy. (b) Loss.

(a) (b)

Figure 20. Accuracy and loss curve for the proposed model. (a) Accuracy. (b) Loss.

Table 4. Model performance.

Model_Name Accuracy Precision Recall F1-Score

VGG16 90% 89% 84% 86%

VGG19 89% 86% 82% 84%

DenseNet169 87% 85% 84% 83%

DenseNet201 88% 86% 81% 85%

Ensemble-1 92% 90% 88% 87%

Ensemble-2 95% 91% 90% 89%

Proposed model 96% 89 % 93% 91%

4.7. Exploring Saliency Maps and Grad-CAM

As previously mentioned in Sections 3.9 and 3.10, the relevant studies have focused on com-
putational techniques such as saliency maps and grad-CAM. These techniques serve as analytical
tools that estimate the significance of each pixel solely by traversing through the network.

The underlying concept of this approach lies in identifying pixels that have a sub-
stantial impact on the node corresponding to the input image. If altering the values of
a particular pixel leads to a noticeable change in that node, it is considered significant.
Conversely, pixels with gradients close to zero are deemed unimportant, as their fluctua-
tions do not affect the output node associated with the input images. Aggregate analysis
across channels is employed to determine the collective relevance of the pixels rather than
assessing the importance of each pixel channel in isolation.

For Alzheimers disease classification, we used saliency maps and grad-CAM. A saliency
map and grad-cam can be used in a similar way as in occlusion experiments; they aid users in
recognizing illness symptoms. In addition, this approach lacks sensitivity to the scattered critical
areas since pixel importance is determined analytically rather than through occluding pixels.
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This method might be thought of as an analytical form of occlusion experiments. The
saliency map matrix is numerically computed in occlusion tests by modifying pixels and
analyzing the output changes.

As a result, calculating a saliency map is not as computationally expensive as calculat-
ing a heat map in occlusion experiments because calculating a gradient in a numerically
discrete manner necessitates the modification of each pixel or region in the image in order
to approximate the gradient.

However, when calculating a gradient analytically, only one backward pass is required
to calculate all derivatives with respect to all pixels.

The saliency map and grad-CAM are capable of accurately locating the diseased
areas within the supplied AD image. Good examples of how the visualization of saliency
maps precisely marked the infected sections of leaves are shown in Figures 21 and 22.
Furthermore, the two distributed AD mold disease patches are localized, whereas the
occlusion trials only reveal one diseased zone. Even with these encouraging outcomes,
saliency maps frequently have noisy activations and lack clarity, which can be frustrating
to users. For instance, in addition to the infected locations, the visualizations can display
numerous activated regions. We have gone through several processes of saliency mapping
operations, where some images are taken as input and are used to visualize the images,
as was the case for the model we used throughout our paper. We used all the models
represented in Figures 21 and 22 to explore the maps. As mentioned earlier in Table 4, the
models acquired some accuracy, and we tried to visualize the accurate combination and
how the images behave when it is time to predict using saliency maps and gard-cam. It
seems the edges are correctly identified, and there are some yellow dots in the saliency
maps, as well as when there are two competing factors in the image; this is helpful. With
these areas hidden, we can create a “counterfactual” image that should increase confidence
in the first prediction. By combining this with guided backpropagation, which zeroes
the gradient parts that have a detrimental impact on choice, the grad-CAM output can
be further enhanced. This method more accurately reflects producing a high-resolution
map with the same resolution as the input image using the guided backpropagation
methodology. The high-resolution map is then masked using the grad-CAM heatmap to
concentrate solely on the details that contributed to the prediction outcome.

Figure 21. Visual depiction of the saliency map and grad-CAM results for the pretrained model .
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Figure 22. Visual depiction of the saliency map and grad-CAM results for the ensemble and pro-
posed model.

5. Discussion
5.1. Interpretation of Results

Performance Evaluation: This study evaluated various deep transfer learning models,
including VGG16, VGG19, DenseNet169, and DenseNet201, as well as two ensembles,
termed Ensemble-1 and Ensemble-2. The proposed model outperformed all individual
models and ensembles, achieving an impressive accuracy of 96%. The precision, recall,
and F1-score metrics were also considered, indicating robust performance across different
aspects of classification. Notably, the proposed model demonstrated a superior recall and
F1 score, highlighting its effectiveness in correctly identifying Alzheimer’s cases while
minimizing false negatives.

Comparison with Baseline Models: The performance of the proposed model was
compared against baseline models such as VGG16, VGG19, DenseNet169, and DenseNet201.
While these models exhibited respectable accuracies, ranging from 87% to 90%, they were
surpassed by the proposed model, emphasizing its efficacy in Alzheimer’s diagnosis.
Furthermore, the two ensemble models showed promising results, particularly Ensemble-2,
which achieved a remarkable accuracy of 95%. This underscores the potential benefits of
integrating multiple architectures for improved classification outcomes.

Interpretability Using XAI Methods: The integration of saliency maps and grad-CAM
in the proposed model enhances its interpretability and transparency in Alzheimer’s diag-
nosis. These XAI techniques provide valuable insights into the neural regions influencing
diagnostic decisions, aiding clinicians and researchers in understanding the underlying
mechanisms driving classification outcomes. By visualizing the regions of interest identi-
fied by the model, clinicians can gain confidence in its diagnostic recommendations and
explore the potential biomarkers associated with Alzheimer’s disease pathology.

5.2. Comparison with Previous Studies

This study stands at the forefront of Alzheimer’s disease diagnosis research by inte-
grating deep transfer learning and explainable artificial intelligence (XAI) techniques. A
comparative analysis with prior studies in the field highlights the distinctive contributions
and advancements of our proposed model (see Table 5).

The proposed method, which employs VGG16, VGG19, DenseNet169, and DenseNet201,
as well as two ensembles (VGG16/VGG19 and DenseNet169/DenseNet201), along with
EfficientNetB3 and CNNs, achieved a remarkable accuracy of 96% on MRI OASIS scans.

In order to fortify interpretability and transparency in Alzheimer’s diagnosis, our
study introduces a novel model that achieves an impressive accuracy of 96%. What distin-
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guishes our model is the integration of cutting-edge XAI techniques, including saliency
maps and grad-CAM (gradient-weighted class activation mapping). Unlike some of the
existing studies that focus on specific XAI frameworks, such as LIME [15], SHAP [15],
GNNExplainer [17], or occlusion sensitivity mapping [18], our research embraces a combi-
nation of techniques to provide a comprehensive and visually intuitive understanding of
the model’s decision-making process.

Table 5. Comparison of the proposed method with the state-of-the-art.

Paper Classifier Best Score (Accuracy) XAI Method Dataset

[15] Support Vector Machines,
KNN, MLP 91.4% LIME, SHAP Dementia dataset

[16] CNN 95.4% HAM, PCR MRI scans ADNI

[17] Graph Neural Network (GNN) 53.5 ± 4.5% GNN Explainer ADNI

[18] EfficientNetB0 80% Occlusion Sensitivity Mapping MRI scans OASIS

[19] 3D CNN - Saliency Map, LRP 18F-FDG PET

[20] KNN, RF, AdaBoost, Gradient
Boosting Bernouli NB, SVM 91% DT Cognitive and and PET images

[21] 3D CNN 76.6%
3D Ultrametric Contour Map,
3D Class Activation Map, 3D
GradCAM

ADNI

[22] 3D CNN 77% Sensitivity Analysis Occlusion MRI, PET

Proposed Method

VGG16, VGG19, DenseNet169,
DenseNet201,
Ensemble 1 (VGG16, VGG19)
Ensemble 2 (DenseNet169,
DenseNet20), Proposed model
(EfficientNetB3 & CNN)

96%
Saliency maps, Grad-CAM
(Gradient-weighted Class
Activation Mapping)

MRI scans OASIS

When compared to the current methods, we see the following results:
Support vector machines, MLP, and KNN: Achieved 91.4% accuracy using LIME and

SHAP on a dementia dataset [15].
CNN: Achieved 95.4% accuracy using HAM and PCR on MRI ADNI scans [16].
Graph neural network (GNN): Yielded an accuracy range of 53.5 ± 4.5% using GNN

explainer on Ex-ADNI data [17].
EfficientNetB0: Attained 80% accuracy through occlusion sensitivity mapping on MRI

OASIS scans [18].
3D CNN (multiple instances): Performance varies across different approaches and datasets,

ranging from 18% to 77% accuracy, using various XAI methods on PET and MRI scans [19].
Various classifiers (KNN, RF, AdaBoost, gradient boosting, Bernoulli NB, and SVM):

Achieved 91% accuracy using DT on cognitive and PET images [20].
3D CNN (using various XAI methods): Achieved 76.6% accuracy using 3D ultrametric

contour maps, 3D class activation maps, and 3D gradCAM on ADNI scans [21].
3D CNN (with sensitivity analysis occlusion): Achieved 77% accuracy using sensitivity

analysis occlusion on MRI and PET scans [22].

6. Conclusions and Future Work
6.1. Conclusions

This paper presents a pioneering approach to Alzheimer’s disease diagnosis by inte-
grating deep transfer learning and explainable artificial intelligence (XAI) techniques. The
extensive experimentation with popular pretrained convolutional neural networks (CNNs)
demonstrated the effectiveness of ensembles, specifically Ensemble-1 (VGG16 and VGG19)
and Ensemble-2 (DenseNet169 and DenseNet201), in terms of achieving superior diagnostic
performance, reaching up to 95% accuracy, precision, recall, and F1 scores. This signifies the
potential of leveraging pretrained models and ensemble techniques for enhanced predictive
capabilities in Alzheimer’s diagnosis.
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In order to address the crucial need for interpretability and transparency in medical diag-
nostics, we introduced a novel model with an impressive accuracy of 96%. The incorporation
of explainable AI methodologies, including saliency maps and grad-CAM, played a pivotal role
in enhancing the accuracy of our model. Furthermore, these techniques offered clinicians and
researchers insightful visualizations of the neural regions, influencing diagnostic decisions.

6.2. Contributions of This Study

In summary, this research significantly contributes to the realm of Alzheimer’s disease
detection through the following key contributions:

1. The development of a robust deep transfer learning ensemble model for accurate
Alzheimer’s disease classification;

2. The introduction of a novel diagnostic model that achieved an impressive 96% accuracy;
3. The advancement of interpretability and transparency through the integration of

explainable AI techniques such as saliency maps and grad-CAM;
4. The implementation of cutting-edge XAI methods to provide transparent and intuitive

explanations for diagnostic predictions;
5. A rigorous performance evaluation using benchmark datasets showcasing the model’s su-

periority in both accuracy and interpretability when compared to state-of-the-art methods.

6.3. Future Work

As we look ahead, there are several avenues for future research and development in
this domain. Firstly, further exploration of deep transfer learning ensembles could involve
investigating additional pretrained models and their combinations to optimize diagnostic
performance. Additionally, refining the explainable AI techniques employed in our model
and exploring newer methods might contribute to even more transparent and interpretable
diagnostic systems.

Furthermore, the evaluation of the proposed model on diverse and larger datasets
would enhance its generalizability and robustness. Collaborations with healthcare institu-
tions for real-world validation and integration into clinical workflows would be crucial to
assess the practical utility and impact of the developed model in a clinical setting.

The continuous evolution of AI and medical imaging technologies opens possibilities
for incorporating multi-modal data and advanced feature extraction methods. Integrating
genetic, demographic, or longitudinal data might potentially improve the accuracy and
early detection capabilities of the diagnostic model.
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