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Abstract 

 
The study proposes a fuzzy-based control of admission of customers in a queue network with two stations in 

tandem. Each of the stations has individual arrival streams which may either be accepted or rejected. Class i 

arrivals occur in a Poisson stream with constant rate λi, i = 1, 2. Successive services in each station j are 

independent and exponentially distributed, with mean 1/µj  in station j, j =1, 2, irrespective of the customer’s 

class. The objective of the study is to decide an optimal admission policy based on the state of the queue such 

that profit is maximized. The state of the system is described by (z1, z2), where zi  is the number of customers 

in station i, and i = 1, 2. The tool adopted is a fuzzy process which determines this policy using the fuzzy 

input values, s and λ giving a corresponding decision, dec. which is either  a ‘1’ or ‘0’ representing ‘Admit’ or 

‘Reject’ respectively. The membership functions of arrivals were defined and implemented using fuzzy rules 
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to derive a fuzzy output of decision which either ‘Admit’ or ‘Reject’ an arrival. Numerical results show a 

considerable improvement in the control of customers’ admission and it was concluded that the proposed 

method is efficient in the control of customers’ admission in queue network. 

 

 

Keywords: Exponential server; reward; holding cost; state transmission; tandem queues. 

 

1 Introduction  
 

Queuing theory is the mathematical study of waiting lines. Queue lengths and waiting times can be depicted via 

the use of a queuing model. Queuing theory plays an important role in our daily life. It is not possible to exactly 

determine the arrival and departure of customers when the number and types of facilities as well as the essential 

of the customers are not known. Queuing theory techniques, in particular, can help us to determine suitable 

number and type of service facilities to be provided to different types of customers [1].  

 

There are many applications of queuing theory. This include traffic flow, programming patients in hospital, 

facility design in bank and other institutions, programming of service facilities in a repair and maintenance in 

workshop, programming of limited transport fleet to a large number of users, programming of reconstruction of 

used engines and assemblies of aircrafts, missile system, transport fleet, among others [2].  

 

It is desirable to have customers’ serviced within the shortest possible time in any service system. However, it is 

almost possible to meet up with all customers’ service requirements at all times as these preferences for services 

changes with time. This is inevitable in a world of technology where service needs and customers’ 

characteristics are dynamic in nature. In other to ensure that customers are serviced within the shortest possible 

time, it is imperative to have a system which can accommodate and service a sizeable number of customers. 

 

The need for service providers to cope with dynamic and varying customer needs with limited resources has 

become an issue of great concerns in recent times. This is because service providers have to find effective 

control mechanisms to manage their revenues as well as customer satisfaction in order to make the best use of 

their service capacities. In literature, these service systems are modeled as multi-class queuing systems with 

admission controls.  

 

The optimality of trunk reservation policy for a multi-class loss queuing system in which the rewards that 

customer classes pay for being on their classes is significant as acceptance decisions on individual customer 

classes have threshold structures, with respect to the number of customers in the system [3]. Consequently, if 

customer class i is accepted when there are n customers in the system, then class i should also be accepted when 

the system is less crowded. The admission control studies which consider class-dependent service rates have 

focused on providing heuristic policies [4]. The most common approaches of these studies include linear 

programming techniques [5] and asymptotic analyses [6]. 

 

The waiting times of customers awaiting service in any system is one of the important service quality indicators, 

which has significant consequential effects on revenues or customer satisfaction levels. Consequently. waiting 

times can affect customer choice in selecting service providers. In essence, for a specific service provider, 

waiting times can be a determinant of the demand intensity of their system [6].   

 

The effects of system congestion on customer behaviour in a queue system had been studied by [7] in which the 

objective of the study was to minimize a weighted difference between the average expected waiting time of 

those that enter, and the acceptance rate of customers. Similar studies to this include [8] and [9] which discussed 

the potentials of systems to obtain admission rewards when customers behave greedily based on congestion 

levels. These studies fail to consider heterogeneity among arrivals. Similarly, [10] studied congestion-related 

costs through the abandonment of customers in a single-class multi-server model for controlling the admission 

decisions of arriving customers.  

 

 Admission control in a single-server model with retrials where holding costs are used as means to incorporate 

congestion sensitivity of customers was considered by [11]. Similarly [12] investigated the callback option to 

mitigate congestion in call centres. The study was modeled such that arriving customers were routed to an 
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offline queue to be called back later when they accept the callback offer else customers were routed to the 

online queue in which they incur congestion-related waiting time costs [13] considers a Make-to-Stock queuing 

model with impatience when unsatisfied demands are backlogged.  The control consists of both an admission 

decision to the system and an admission in service decision. There are no ordering costs while threshold policies 

were optimal using the propagation of structural properties.  

 

The congestion effect through class-dependent holding costs in the admission control problem of a multi-class 

queue model was considered by [14]. The model used a continuous-time Markov decision process formulation 

and relative bias functions in their policy iteration algorithm for obtaining the optimal policy of an M/M/c/N 

queue with class and congestion-dependent admission rewards.  [15] considers a parametric admission in a 

retrial queue with impatience on retrials and introduces a Smoothed Rate Truncation method in order to work 

with models with bounded transition rates. 

 

Stochastic controlled queuing models, have been largely studied in the literature as a result of its wide 

applications in networking, resources allocation, inventory control, etc. [16]. This approach had been used in 

solving a variety of optimization problems including admission control systems [17]; optimal scheduling [18] or 

optimal routing between queues [19] so as to minimize deadline misses; scheduling in order to minimize long 

run costs [20]; inventory control in Make-to-Order systems [21]; optimal control of the service rates [22]; 

admission in service involving slotted models [23]. The concept of optimality is an important concept in 

customer admission and management in any queue system. Consequently, there is a direct relationship between 

the admission control system as well as queue size and server vacations. This is corroborated in [24], [25] and 

[26]. These studies established the fact that a significant relationship exist in the customers’ admission policies 

as well as queue size and servers’ vacations. 

 

The problem of dynamic control of admission of customers had been solely based on network metrics and this 

does not adequately meet the need and flexibility of a dynamic queue system. This is because the nature and 

service requirements of customers in contemporary business environments are changing on daily basis and this 

requires a large degree of flexibility on the admission control system. This is the reason the study is proposing a 

fuzzy-based admission control system which can adequately cater for these challenges.  

 

Fuzzy set theory is a paradigm shift which helps to resolve classical and non-classical problems in a more 

convenient way than crisp systems by softening set boundaries. Fuzzy queues were first proposed by R. J. Lie 

and E. S. Lee in 1989 [27]. A Poisson arrival queueing system is a fairly reasonable appropriation where the 

arrival and service rates are really more realistic than probabilistic. However, in many practical situations the 

parameters of arrival rate (λ) and service rate (µ) are frequently fuzzy and cannot be expressed in exact terms 

[28].  

 

Optimality in queue control is an aspect of mathematical modeling which have been found to have multi-

dimensional applications [29]. Of focus, the present-day advancement in business requirements and expansion 

in the expectation of customers from essential service providers have made it necessary to have a system which 

regulates admission into a queue system with the sole aim of rendering efficient and timeless services. 

 

The study is aimed at designing a system that dynamically manages customers’ admission in a queue network. 

This is necessary to ensure that the buffer is not over-congested with customers awaiting service turns which 

could result in queue instability, customers’ dropping and deficient customer management system. Particularly, 

the system adopted a two-station queue network structure with independent queue capacities.  

 

2 Materials and Methods  
 

2.1 Problem definition 
 

We consider a continuous-time controlled queuing model in which customers arrive according to a Poisson 

process with a constant intensity. The model has two queues in tandem, each having independent input of 

arriving customers that may either be admitted or rejected. The service admission decision is made by a 

controller. Once admitted in service by the controller, the service begins instantly and it is not interrupted. The 

model is shown in Fig. 1. 
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Fig. 1. Proposed customers’ admission system in a two-station queue network 

 

The capacity of the server in each station is exponential while the buffer has an unlimited queueing capacity. 

Class1 customers seek admission to station A and later to station B after being served in station A while Class 2 

customers seek admission to station B only. However, what is common to both classes of  customers is that they 

both exit the system after being served in station B. Class i arrivals occur in a Poisson stream with constant rate 

λi where i = 1, 2. Services in each station j are independent and exponentially distributed, with mean 1/µj  in 

station j, where j = 1, 2, irrespective of the customer’s class.  

 

If the system has a fixed reward ri  for each admitted customer of class i and pays a holding cost hj for each 

customer per time unit in station j. In this case, it is possible to decide the optimal admission policy, based on 

the state of the system in order to optimize profit. In this case, the state transitions depend on the current state 

while the times between two successive admissions are no longer exponential random variables because of the 

possibility of non-admittance of some arrivals. 

 

2.2 Modeling customers’ admission and rejection as a dynamic fuzzy control system 
 

Modeling a continuous-time dynamic queue system in the conventional approach is to describe the physical 

system by, for example, a non-linear ordinary differential equation of the form as given in (1):  
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                                                                                                     (1) 

 

where x(t)  Rn is the state-vector, u(t)  Rm (m ≤ n) is the control vector, f: Rn X Rm → Rn is a non-linear 

integer function while x0 is the initial state of the system.  This mathematical model is well defined on [t0,∞∞) 

because for each initial state x0  and each control input u(t), there exists a unique solution x(t).  The 

mathematical model expressed in (1) represents a dynamic process via its explicit or implicit solution function: 

x(t) = x(t; u(t), x0). At any instant t = t*  [t0, ∞), the system is described by the relation that if the state vector x 

is equal to x(t*) and the control vector u is equal to u(t*), then the derivative of the state vector can be expressed 

as given in (2): 

 

                                                                                                                                              
(2)

 
 

In this case, both the state and the control vectors, i.e. x and u respectively have “fuzzy values,” instead of crisp 

values. This implies that these values at any instant are located within certain subsets with membership values. 

The derivative of the state, x has a fuzzy value at each instant which makes both the state and the control 

possible. By standard, a function y = y(t) which assumes a fuzzy value at instant t = t
~

 is described such that if I 
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is an interval with µ   being the membership function defined on it, then the fuzzy value )
~

( ty  is located in I 

with a corresponding membership value measured by µ   which is a  membership value equal to ))
~

(( tyI . 

 

Consider a control system with state x = x(t) and control input u = u(t) defined on the time domain [0, ∞) in 

which the system dynamics are described by the derivative of the state x which is a function of both x and u. If 

the relation between x  and both (x, u) is exactly known, then mathematical modeling techniques and the 

systems control theory can be applied. The exact modeling x  = ax + bu simply implies that at any instant t = t* 

 [0, ∞), if x= x(t*) and u = u(t*), then this is (3): 

 

                                                                                                                                      

(3) 

 

2.3 Design of the fuzzy controller 
 

A fuzzy control system was designed to manage the admission and rejection of customers in the system. 

 

2.3.1 Fuzzy inputs and rules 

 

The system is described by (z1, z2), where z1 is the number of customers in station i, where i = 1, 2. In order to 

prevent a situation whereby an arriving class 1 customer is rejected even when the system is empty or an 

arriving class 2 customer is rejected even when station 2 is empty, it is assumed that the reward at each station 

for every customer is greater than the corresponding expected holding cost. Consequently,  

 

r1   > 

2

2

1

1



hh
+                                                                                                       (4) 

 

r2   > 

2

2



h
                                                                                                                        (5) 

 

The system receives a reward for admitting customers while also incurring a cost for holding customers. 

Considering (4) and (5) above, it is optimal for the system to keep the server in station B busy provided there is 

a continuous arrival of customers and no customer is held in queue. It is important to observe that this condition 

is temporal as a result of the memoryless property of the exponential distribution whereby neither the inter-

arrival nor the service times can be conditioned on the present observable state. Similarly, if the system is 

highly rewarded for admitting customers and incurs a low cost for holding class 1 customers, then the system 

accepts class 1 customers easily. 

 

The fuzzy inputs are si = 0, 1, …,  where i = 1, 2 of customers in the buffer of station i and the customer arrival 

rates λj  [0, ∞), j = 1, 2 of class j. The fuzzy outputs are decisions, decj = 1, 0. When an arriving class j 

customer is admitted, it is a 1, while it is a 0 if it is rejected. The fuzzy inputs include “zero”, “fairly positive”, 

“positive” and “highly positive” represented as “NE”, “FP”, “PO” and “HP” respectively. A four fuzzy sets for 

each of the four inputs were chosen and the complete rule base consists of 256 (i.e. 44) rules combinations. 

However, only 15 combinations of the rules produce output decision ADMIT while the other 241 combinations 

produces the output decision REJECT. However, all rule combinations that produce output decision ADMIT 

and only 10 rule combinations that produces output decision REJECT were recorded. The fuzzy rule base is as 

shown in Table 1.  

 

In Table 1, ADMIT implies that an arriving customer of class j is admitted into station j. In this case, there are 

15 combinations that produces ADMIT as output while 241 combinations produces REJECT as output decision. 

The membership functions for the fuzzy inputs si , i = 1, 2, and λj, j =1, 2, are depicted shown in Fig. 2. 
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Table 1. All rule combinations with ADMIT as output and only 10 rule combinations with REJECT 

decision 

 

SA SB λ1 λ1 Decision (dec) 

NE NE NE NE ADMIT 

NE NE NE FP ADMIT 

NE NE NE PO ADMIT 

NE NE FP HP ADMIT 

NE NE FP FP ADMIT 

NE NE PO NE ADMIT 

NE FP NE NE ADMIT 

NE FP NE FP ADMIT 

NE FP FP NE ADMIT 

NE PO NE NE ADMIT 

FP NE NE NE ADMIT 

FP NE NE FP ADMIT 

FP NE FP NE ADMIT 

FP FP NE NE ADMIT 

PO NE NE NE ADMIT 

NE NE NE NE REJECT 

NE FP NE FP REJECT 

NE FP NE PO REJECT 

NE FP FP FP REJECT 

NE PO PO NE REJECT 

FP NE NE FP REJECT 

FP FP NE FP REJECT 

FP NE FP HP REJECT 

FP PO NE NE REJECT 

PO NE NE HP REJECT 

 

 
 

Fig. 2. Membership functions for the fuzzy input, s 

 

Similarly, the membership for the fuzzy input, λ is given in Fig. 3. 

 

The fuzzy output, dec. is shown in Fig. 4. 
 

The universes of discourse for the fuzzy inputs si  and λj are [0, ∞] while for the fuzzy output dec. is [0, 1]. 
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Fig. 3. Membership for the fuzzy input λ 

      

 
 

Fig. 4. Fuzzy output, dec 

 

 

2.3.2 Membership functions applicable in the control of class 1 arrivals  

 

Since it is necessary to determine the relationships between the fuzzy inputs si and λj, as well as fuzzy output 

dec., it is assumed that z1 + z2 > 0. The scenario given by the rule: 

  

If s1 is HP while s2 is zero (NE) while each of λ1 and λ2 is NE, then dec1 is REJECT.  

 

In this case, it is necessary to decide whether to admit the last class 1 customer when there are s1 ≥ 0 customers 

already in queue 1, one customer is in server 1 while all other input variables are zero, if E1 is the mean holding 

cost the last customer incurs in queue 1. Similarly, E2 is the mean holding cost from the time service starts at 

server 1 until exit from server 2. In this case, the customer is admitted only if its reward compensates its 

expected holding cost which is as expressed in (6):   
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r1 ≥ E1 + E2.                                                                                            (6) 

 

Since there are s1 + 1 customers in station A, then E1 = h1(s1 + 1) / µ1. Consequently, E2 is computed as follows. 

Server 1 starts to service the customer just when server 2 starts to service the previous customer. In this case, 

the state of the system is (z1, z2) = (1, 1). The system continues to state (0, 2) if server 1 is done with service 

before server 2. The system moves from state (0, 2) or (1, 0) to state (0, 1) and lastly to (0, 0). It is obvious from 

these transitions that the sojourn time in state (1, 1) is a random variable with exponential distribution and mean 

1/(µ1+ µ2). As a result, the mean holding cost from server 1 to exit becomes (7):  

 

                                                                                                                                       
(7)
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Substituting E1 = h1 (s1 + 1)/µ1  and the above into  (5) and solving for s1 gives  (8): 

 

                                                                                                                       

(8)

 
 

However, if the number of customers in queue 1 is greater than the threshold s1, then the dec1 is REJECT. 

 

2.3.3 Membership Functions Applicable in the Control of Class 2 Arrivals 

 

It is necessary to specify the numerical settings of si and λj for the fuzzy output dec2 with the assumption that z2 

> 0. Considering the rule scenario:  

 

If s1 is HP and s2 is NE while each of  λ1 and λ2 is 0, then dec2 is REJECT.  

 

It is necessary to determine a condition for s1 under which a class 2 customer is REJECTED when each of λ1, λ2, 

and s2 is zero. If it is assumed z2 > 0, then there is a customer in server 2. If this customer is accepted, the state 

of the system at time zero will be (s1 + 1, 2), else the system starts from state (s1 + 1, 1).   

Let F(i, j) be the total expected holding cost from state (i, j) to state (0, 0). If both i and j are greater than 0, then 

the system moves from state (i, j) to (i - 1, j + 1) with probability µ1 /(µ1+ µ2) or to state (i, j - 1). When i = 0 (j 

=  0), the system will visit state (0, j -1) with probability 1. Consequently, F(i, j) can be computed as given in 

(9): 
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(9)

 
 

Consequently, the only condition under which an arriving class 2 customer is rejected is given in (10): 

 

 1) 1, +(   - 2) 1, +( 112 sFsFr −                                                                                                  (10) 

 

If the condition depicted in (6) holds for some value s1, dec2  then it will also hold for every s1 ≥ s1,,dec2. This 

implies that the fuzzy set HP for s1 with membership grade 1.0 in the fuzzy rule base for dec.2 is at: 

 

 211121 r1) 1,+(s-2) 1,+(s:smin=dec, FFs                                                               (11) 

 

If a case described by the rule: if s1 is NE and s2  is HP while each of λ1 and λ2 is NE, then dec.2 is REJECT. It is 

important to determine a condition for s2 under which a class 2 arrival is rejected when x1 = s1= λ1 =  λ2 = 0, 

while the number of existing customers in station B is x2 = s2 + 1. This is the optimal decision provided the 

expected holding cost for the new customer is greater than the corresponding reward. This can be expressed as  

r2 < (s2 + 2)h2/μ2.  In this case, the fuzzy set HP for s2 with membership grade 1.0 in the fuzzy rule base for dec.2  

is fixed at: 

 

                                                                                                                         

(12)

 
 

As for the fuzzy input λ1, if we consider the rule: if each of  s1 and s2  is NE while λ1 is HP and λ2   is NE, then 

dec.2  is REJECT. Consequently, an arriving class 2 customer is REJECTED while xi = 1, si = 0, i = 1, 2. In this 

case, only class 1 arrivals are ADMITTED. 

 

3 Results and Discussion 
 

Consideration is given to the proposed queue network structure in Fig. 1 with parameters µ1= 1, µ2 = 1.5, λ1= 

0.5, λ2 = 0.5, h1= 1, h2 = 1, r1= 10, r2 =  6. The optimal policy for dec.1 is determine using the fuzzy logic rule in 

Table 1. The logic processes adopted are as follows: 

 

a. The scaling were determined and the factors for the fuzzy inputs s1, s2, λ1, and λ2  in the rule base for dec1; 

b. The algorithm begin from an initial state s1 = s2 = 0; 

c. With the current s1 and s2 and the given λ1 and λ2 as inputs, the decision is made using fuzzification, fuzzy 

inference as well as de-fuzzification; 

d. The decision dec.1 is plotted in the two-dimensional plane of s1 and s2; 

e. Proceed  to step (f) if dec1 = 0; else set s2 =  s2 + 1 and proceed to step (c); and 

f. If dec1 = 0, then stop; else set s2 = s2 + 1 and proceed to step (c). 

 

Step (c) in the logical processes can be illustrated with an example. Assume that s1 =  s2 = 2, then s1 should be 

scaled down to 1.7 while s2 is scaled down to 0.9. From Fig. 3, s1 corresponds to NE with grade 0.43, FP with 

grade 0.90 and PO with grade 0.23, while s1 corresponds to NE with grade 0.69 and FP with grade 0.64. 

Similarly, λ1 = 0.5 is NE with grade 1.0 and λ2 =  0.5 is FP with grade 0.67 and PO with grade 0.67. The inputs 

s1, s2, λ1 and λ2 have 3, 2, 1, and 2 fuzzy sets respectively. Consequently, this gives 3 x 2 x 1 x 2 = 12 fuzzy 

decisions for fuzzy output dec.1.  Going by the fuzzy rule base, the 12 fuzzy decisions dec.1  are expressed as 

follows: 
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i. If s1 is NE with grade 0.43, s2 is NE with grade 0.69, λ1  is NE with grade 1.00 and λ2 is FP with grade 

0.67, then dec.1 is ADMIT with grade 0.43; 

ii. If s1 is NE with grade 0.43, s2 is NE with grade 0.69, λ1 is NE with grade 1.00 and λ2 is PO with grade 

0.67, then dec.1 is ADMIT with grade 0.43; 

iii. If s1 is NE with grade 0.43, s2 is FP with grade 0.64, λ1 is NE with grade 1.00 and λ2 is FP with grade 

0.67, then dec.1 is ADMIT with grade 0.43; 

iv. If s1 is NE with grade 0.43, s2 is FP with grade 0.64, λ1 is NE with grade 1.00 and λ2 is PO with grade 

0.67, then dec.1 is REJECT with grade 0.43; 

v. If s1 is FP with grade 0.90, s2 is NE with grade 0.69,  λ1 is NE with grade 1.00 and λ2 is FP with grade 

0.67, then dec.1 is ADMIT with grade 0.67; 

vi. If s1 is FP with grade 0.90, s2 is NE with grade 0.69, λ1 is NE with grade 1.00  and λ2 is PO with grade 

0.67, then dec.1 is REJECT with grade 0.67; 

vii. If s1 is FP with grade 0.90, s2 is FP with grade 0.64, λ1 is NE with grade 1.00 and λ2 is FP with grade 

0.67, then dec.1 is REJECT with grade 0.64; 

viii. If s1 is FP with grade 0.90, s2 is FP with grade 0.64, λ1 is NE with grade 1.00 and λ2 is PO with grade 

0.67, then dec.1 is REJECT with grade 0.64; 

ix. If s1 is PO with grade 0.23, s2 is NE with grade 0.69, λ1 is NE with grade 1.00 and λ2 is FP with grade 

0.67, then dec.1 is REJECT with grade 0.23; 

x. If s1 is PO with grade 0.23, s2 is NE with grade 0.69, λ1 is NE with grade 1.00 and λ2 is PO with grade 

0.67, then dec.1 is REJECT with grade 0.23; 

xi. If s1 is PO with grade 0.23, s2 is FP with grade 0.64, λ1 is NE with grade 1.00 and λ2 is FP with grade 

0.67, then dec.1 is REJECT with grade 0.23; and 

xii. If s1 is PO with grade 0.23, s2 is FP with grade 0.64, λ1 is NE with grade 1.00 and λ2 is PO with grade 

0.67, then dec.1 is REJECT with grade 0.23. 

 

The peak values and heights of the fuzzy decisions, dec. from Fig. 3 are е1=1, е2=1, е3=1, е4=0, е5=1, е6=0, 

е7=0, е8=0,  е9=0 е10=0 е11=0 е12=0. Similarly, ƒ1 = 0.43,  ƒ2 = 0.43, ƒ3 = 0.43, ƒ4 = 0.43, ƒ5 = 0.67, ƒ6 = 0.67, ƒ7 

= 0.64, ƒ8 = 0.64, ƒ9 = 0.23, ƒ10 = 0.23, ƒ11 = 0.23, ƒ12 = 0.23. Using the height method of de-fuzzification, the 

crisp output dec.* can be expressed as: 

 

0.4=
12

1= i
ƒ

12

1=i i
ƒ

i
e

=*.





i

dec  

 

Since dec.* < 0.5, the decision, dec.1 is REJECT which means that the server at station A will not admit an 

arriving class 1 customer. The outputs for dec.1 is indicated in Fig. 5. 

 

 
 

Fig. 5. Outputs for dec.1 
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Similarly, the outputs for dec.2  is indicated in Fig. 6. 

 

 
 

Fig. 6. Outputs for dec.2 

 

4 Conclusion 
 

The proposed model was able to manage the admission of arrivals in a two-server queue using a fuzzy-based 

policy such that the performance of the system is optimal. The tool adopted is a fuzzy process which determines 

this policy using the fuzzy input values, s and λ giving a corresponding decision, dec. Numerical results show a 

considerable improvement in the control of customers’ admission and it was concluded that the proposed 

method is effective in the control of customers’ admission in a queue network. 
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