
_____________________________________________________________________________________________________ 
 
+ +Research Scholar; 
#Associate Professor;  
†Assistant Professor; 
*Corresponding author: E-mail: abisheksundar2000@gmail.com; 
 
Int. J. Plant Soil Sci., vol. 35, no. 19, pp. 1416-1426, 2023 

 
 

International Journal of Plant & Soil Science 
 
Volume 35, Issue 19, Page 1416-1426, 2023; Article no.IJPSS.105970 
ISSN: 2320-7035 

 
 

 

 

Soil Texture Prediction Using Machine 
Learning Approach for Sustainable Soil 

Health Management 
 

J. Abishek a++*, P. Kannan a#, M. Nirmala Devi b†,  
J. Prabhaharan c#, T. Sampathkumar c† and M. Kalpana d# 

 
a Department of Soils and Environment, Agricultural College and Research Institute, Madurai,  

Tamil Nadu - 625 104, India. 
b Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai, 

Tamil Nadu - 625 015, India.  
c Department of Agronomy, Agricultural College and Research Institute, Madurai,  

Tamil Nadu - 625 104, India.  
d Agricultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore,  

Tamil Nadu – 641 003, India.  
 

Authors’ contributions  
 

 This work was carried out in collaboration among all authors. All authors read and approved the final 
manuscript. 

 
Article Information 

 
DOI: 10.9734/IJPSS/2023/v35i193685 

 
Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  
peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/105970 

 
 

Received: 25/06/2023 
Accepted: 01/09/2023 
Published: 04/09/2023 

 
 

ABSTRACT 
 

Soil in the earth acts as a foothold for all crops. Soil texture is the most important soil health 
indicator being used for the selection of crops, mechanical manipulation, irrigation management, 
and fertilizer management. The texture of the soil influences the storage and flow of air and water 
within the soil, as well as root development, the accessibility of plant nutrients, and the activities of 
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different microorganisms. These factors collectively impact the soil's fertility, quality, and soil health. 
A conventional method of soil texture analysis is cumbersome, time-consuming, and labor-
intensive. Machine learning (ML) is a newly emerging technique being used to assess the soil's 
physical, chemical, and biological properties quickly in real-time. This is an eco-friendly approach 
since it does not involve any hazardous chemicals. Machine learning can learn complex features 
and predict nonlinear properties. Convolutional Neural Networks (CNN) employs convolutional 
layers to automatically learn features from the input data and is widely used in image classification, 
object detection, and image generation tasks in a short time. Soil texture images are given as input 
dataset after the completion of image subsetting, data preprocessing, and Image augmentation. 
This gives a CNN-based soil texture predictive model with a reliable accuracy of 87.50% at a lower 
cost. 
 

 

Keywords: Machine learning; convolutional neural network; soil texture prediction; soil management. 
 

1. INTRODUCTION  
 

Agriculture stands as a pivotal component within 
India's economy, engaging a considerable 
segment of its populace. It holds the capacity to 
impact the nation's Gross Domestic Product 
(GDP) while also serving as a principal source of 
livelihood for a substantial proportion of the 
workforce. In rural areas, the agriculture sector 
assumes the role of a primary income generator. 
As per the National Sample Survey, 
approximately 70% of India's rural population 
relies on agriculture to secure their means of 
sustenance. The integration of contemporary 
advancements in precision agricultural methods 
and sensor technology has led to the 
establishment of lucrative agricultural operations 
[1]. Soil texture is an important soil physical 
property being used as a soil health indicator for 
sustainable crop production. Soil texture is the 
relative proportion of the sizes of soil particles, 
such as sand, silt, and clay. Soil texture is 
defined as the particle size distribution of the 
finer earth fraction (<2mm fraction). Sand and silt 
have their subclasses [2]. Sand can be classified 
as extremely coarse sand, coarse sand, medium 
sand, fine sand, or very fine sand [3]. This 
particle size distribution of soil plays a major role 
in water holding capacity, suitable crop 
cultivation, root penetration, preparatory tillage,  
irrigation scheduling, cropping system, soil 
erosion,  fertilizer application rates, and 
frequency [4]. A better understanding of soil 
texture paves the way for implementing 
sustainable crop management practices. Soil 
texture is traditionally determined in the field 
using the feel method and then confirmed in the 
laboratory using the international pipette method 
[5] or the hydrometer method on particle size 
fractions (sand, silt, and clay). Traditional 
mechanical approaches utilized for soil texture 
analysis involve a multitude of intricate 
procedures, including drying, crushing, and 

sieving [6]. Among the mechanical methods, 
hydrometers and pipettes find extensive 
application [7]. In the laboratory, standard soil 
textural examination entails time-consuming 
techniques such as drying, grinding, and 
screening before sedimentation analysis of sand, 
silt, and clay using a hydrometer or pipette [8]. 
While this method produces accurate soil textural 
results, it is not intended for quick and high-
density textural evaluation for geographic 
variability analysis. Furthermore, these 
procedures necessitate the use of H2O2, a 
corrosive reagent, to degrade the native soil 
organic matter (SOM). Machine learning offers a 
clear edge over conventional approaches when it 
comes to predicting complex soil properties [9]. 
Artificial neural networking, also known as neural 
networks or deep learning, is a subfield of 
artificial intelligence (AI) that seeks to simulate 
the functioning of the human brain.  ANNs use 
radial basis function networks, perceptron 
algorithms, and backpropagation to build 
predictive models [10]. Its multi-layered neural 
architectures possess the innate ability to 
autonomously comprehend intricate spatial and 
temporal patterns present in intricate soil data, 
effectively overcoming the constraints of 
conventional methods. CNNs are specialized 
neural networks designed for processing grid-like 
data, such as images or time series. CNN was 
developed in the 1980s and requires a huge 
amount of training data as well as a high degree 
of computing resources [11]. They employ 
convolutional layers to automatically learn 
features from the input data and are widely used 
in image classification, object detection, and 
image generation tasks. CNN algorithms have 
shown extraordinary ability in analyzing 
complicated information, recognizing nuanced 
patterns, and generating predictions according to 
intricate data linkages. The convolutional neural 
network (CNN) stands as a potent technique 
widely employed in image processing and the 
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detection of objects [12,13]. Deep learning has 
achieved remarkable success in various 
domains, including computer vision, digital soil 
mapping, soil texture prediction, and heavy metal 
prediction. 
 

1.1 Advantages of Machine Learning 
 
Enhanced Data Analysis: Machine learning 
techniques facilitate the efficient analysis of 
expansive and intricate soil datasets, unearthing 
concealed patterns and insights that may pose 
difficulties to discern manually. 
 
Predictive Modeling: ML empowers the 
construction of predictive models that address 
diverse soil properties and behaviors, aiding in 
informed decision-making concerning agricultural 
and environmental practices. 
 
Feature Extraction: ML algorithms possess the 
capability to autonomously identify pertinent 
features from soil data, diminishing the necessity 
for domain experts to manually curate or 
engineer features. 
Tailored Recommendations: ML models can craft 
personalized recommendations tailored to soil 
management practices, encompassing optimal 
irrigation schedules, fertilization approaches, and 
crop selections. 
 

Real-Time Environmental Monitoring: Machine 
learning expedites real-time monitoring of shifts 
in soil conditions, contributing to enhanced 
comprehension and effective management of soil 
health. 
 
Eco-Friendly Applications: ML-driven analyses 
often eliminate the demand for destructive 
sampling or hazardous chemicals, aligning 
harmoniously with eco-conscious principles. 
 

Integration of Diverse Data Sources: ML 
proficiently integrates a spectrum of data sources 
like satellite imagery, weather data, and remote 
sensing, culminating in comprehensive insights 
into soil dynamics. 
 

Streamlining Repetitive Tasks: Routine tasks 
such as data cleansing, preprocessing, and 
quality assessment can be streamlined through 
ML automation, resulting in time savings and 
reduced errors. 
 

1.2 Disadvantages of Machine Learning 
 

Dependency on Quality Data: Machine learning 
models heavily rely on substantial and high-

quality data for effective training, and sourcing 
such data can be particularly challenging for rare 
soil conditions. 
 
Model Complexity: Advanced ML techniques like 
deep learning can exact significant computational 
resources and time commitments for training and 
operational deployment. 
 
Risk of Overfitting: Elaborate models may 
excessively fit the training data, yielding 
suboptimal generalization to novel, unseen data. 
The implementation of regularization methods is 
imperative to mitigate this concern. 
 
Interpretability Challenges: Certain ML models, 
particularly intricate neural networks, may pose 
interpretability challenges, complicating the 
understanding of the underlying rationales for 
model predictions. 
 
Synergy of Expertise and Collaboration: 
Successful integration of ML in soil science 
necessitates collaboration between ML experts 
and domain specialists to ensure meaningful, 
accurate outcomes. 
 
Model Generalization: Models tailored to specific 
geographic regions or soil types may exhibit 
limitations in generalizing effectively to dissimilar 
regions, warranting adaptation or retraining. 
 
Ethical Considerations: Ethical alignment is 
crucial in ML-powered decisions and 
recommendations, particularly when influencing 
agricultural and environmental practices. 
 
Optimization of Hyperparameters: Achieving 
optimal model performance through 
hyperparameter tuning demands expertise and 
meticulous experimentation. 
 
In summation, machine learning harbors a wealth 
of advantages for propelling soil science 
research and applications. Nonetheless, prudent 
evaluation of data quality, model selection, 
interpretative challenges, and domain knowledge 
is pivotal to extracting the full benefits while 
proactively addressing potential limitations. 

 
2. MATERIALS AND METHODS 
 
Soil samples were collected from the twenty 
villages of Madurai district. In total, 20 soil 
samples having different soil textures were 
collected by the feel method. The collected soil 
samples are processed, labeled, and stored in a 
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poly container. Soil texture was determined using 
the International pipette method [8]. Based on 
the soil texture results from the international 
pipette method in terms of Sand, Silt, and Clay 
percentages together constitute the real texture 
of the soil when fitted in a soil textural triangle. 
That laboratory-assessed Soil texture data is 
used to train and test the developed CNN model. 
 

2.1 CNN Methodology 
 
The proposed methodology of this research 
study has a Convolutional neural network (CNN) 
to predict the soil texture by classifying the soil 
which takes soil images as input. The currently 
employed machine learning models for 
classifying the soil type were compared to CNN. 
Convolutional neural networks (CNN or ConvNet) 
are a subclass of neural networks that are mostly 
employed in voice and image recognition 
applications. With no loss of information, its 
integrated convolutional layer lowers the high 
dimensionality of images. CNNs are therefore 
very well suited for this soil texture prediction. 
CNN models were developed to classify soil 
texture using soil images [14]. This model utilized 
a Convolutional Neural Network (CNN) 
architecture, a pre-trained model capable of 
classifying images into 1100 different object 
classes. The significance of CNN-based deep 
learning models in this context was highlighted 
by [15]. 

 
2.1.1 Image acquisition 

 
The images of soil samples were captured using 
a Samsung Galaxy M33 smartphone equipped 
with a high-resolution 50-megapixel camera. 
These images were taken from various angles 
against a white background at the Department of 
Soils and Environment, Agricultural College and 
Research Institute, Madurai, between 9:00 a.m. 
and 11:30 a.m. under sunlight and shade 
conditions. Research centered around identifying 
soil images using smartphones has explored a 
variety of approaches, including soil profiles [16] 
and the utilization of digital RGB photography 
combined with neural network models [17]. In the 
context of Convolutional Neural Network (CNN) 
prediction, "sub-setting images" involve the 
process of carefully choosing specific localized 
portions within an image to thoroughly analyze 
and predict outcomes. This technique is 
frequently employed to detect Regions of Interest 
(ROIs) encompassing the target object or feature 
that requires identification. Concentrating on 
these ROIs enhances CNN's predictive precision 

and operational efficiency. Feature extraction 
represents a vital phase in the utilization of 
computer vision methodologies to scrutinize and 
differentiate among diverse soil textures. This 
procedure encompasses capturing unique visual 
patterns capable of discerning varying soil 
textures based on the proportions of sand, silt, 
and clay particles present in the soil. Diverse 
methods are employed to quantitatively define 
these textural characteristics and distinguish 
between different soil textures. 
 

2.1.2 Dataset pre-processing 
 

The photographs that are taken from the dataset 
are of different shapes and sizes so they must be 
suitably resized and modified to meet the 
requirements before being fed into the model. 
Every image with colorfulness contains a color 
format of RGB in which it obtains three 
channels—each of them has three colors—Red, 
Green, and Blue—and must be read by the 
process for each use case. To enable the model 
to successfully process the data, the images are 
then turned into numerical arrays. The dataset 
may contain unclean data, hence preprocessing 
is required to clean the data. A substantial 60% 
of machine learning projects' effort should be 
dedicated to data preparation, underscoring its 
substantial influence on project outcomes [18]. 
Transforming raw data into a suitable format for 
machine learning is instrumental in shaping the 
quality and quantity of insights derived during 
training procedures. 
 

2.1.3 Image augmentation 
 

Image augmentation, a well-utilized strategy in 
Convolutional Neural Network (CNN) prediction 
tasks, holds particular relevance within the realm 
of computer vision. Its objective is to amplify the 
diversity of the dataset by subjecting original 
images to various transformations. The aim is to 
introduce variations without altering the core 
content or labeling of the images, mirroring real-
world scenarios encompassing diverse lighting 
conditions, rotations, scaling, and other 
influencing factors. 
 

Flipping: This technique entails horizontally or 
vertically flipping images to simulate different 
orientations. 
 

Rotation: Images are rotated by specified angles 
to emulate changes in viewpoint. 
 

Scaling: Images are resized to different 
dimensions, mimicking objects at varying 
distances. 
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Translation: Images are shifted in different 
directions to replicate slight positional changes. 
 
Shearing: Introducing skew along the x or y-axis 
imparts a deformation effect. 
 
Zooming: Images are expanded or compressed 
to represent a range of scales. 
 
Brightness and Contrast Adjustment: Modifying 
brightness and contrast accommodates distinct 
lighting conditions. 
 
Noise Addition: Introducing random noise 
imitates real-world noisy scenarios. 
 
Color Shifting: Adjusting color balance, 
saturation, and hue accommodates diverse color 
variations. 
 
2.1.4 Standardization of images 
 
Image standardization involves preprocessing 
and scaling photographs using a standardized 
method to ensure uniform dimensions in terms of 
height and width. Following this rescaling 
process, the data exhibit a mean of 0 and a 
standard deviation of 1 (unit variance). This 
standardization process contributes to enhancing 
the quality and consistency of the data. 
 
2.1.5 Convolutional layer  
 
The convolutional layer comprises multiple 
channels, each containing learnable parameters 
or filters. The CNN network comprises four 
convolutional layers, each with a max-pooling 
layer, and was created to predict clay [19]. 

Building of multivariate statistical models 
combining photographs of soil samples to their 
known particle size distribution, seven image-
processed data matrices (RGB, HSV, Grayscale, 
RGB + HSV, RGB + Grayscale, HSV + 
Grayscale, and RGB + HSV + Grayscale) were 
used (Fig. 1). These filters, with dimensions and 
weights smaller than the input volume, produce 
activation images by convolving each channel 
with input segments. Essentially, each filter 
traverses the input's height and width, performing 
dot product computations at localized positions. 
The output segment of the convolutional layer is 
generated by aggregating activation images from 
all channels. These channels can be applied to a 
single image or separate feature images within a 
CNN. Notably, the convolutional layer's 
parameters, including filter size and channel 
count, are crucial user-defined aspects of the 
network. Image classification follows five steps: 
convolution, activation, pooling, flattening, and 
dense. The convolution layer of 3x3 is built 
alongside 32 convolutional channels (filters). An 
image's pixels are input individually into the 
network for processing. Hence, for a 200x200x3 
image, we need to feed 200 * 200 * 3 = 120,000 
input neurons (i.e. 200 pixels on 200 pixels with 3 
color channels, e.g. red, green, and blue). Thus, 
each matrix has a dimension of 200 by 200 
pixels, totaling 200 * 200 entries. The matrix is 
then duplicated three times, with one copy for 
each of the colors red, blue, and green. A 
problem then occurs because each of the 
neurons in the first hidden layer would get 
120,000 weights from the input layer. This 
suggests that the number of parameters would 
increase quickly as we add more neurons to the 
Hidden Layer.  

 

 
 

Fig. 1. CNN architecture 
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2.1.6 Pooling layer 
 

Pooling, also referred to as subsampling, 
operates to reduce the resolution of features, 
bolstering their robustness against noise and 
distortions. This layer effectively achieves the 
down sampling of feature images by aggregating 
the proximal features. While convolution layers 
can accomplish down sampling through varying 
strides, a more potent strategy entails employing 
a pooling layer. Pooling essentially entails 
applying a filter to feature images, with the 
magnitude of the feature image being greater 
than that of the pooling activity. A common 
instance is the utilization of a 2×2 pixel pooling 
activity with 2-pixel strides. This approach 
consistently reduces the feature image's size by 
a factor of 2. Consequently, the dimensions are 
divided, resulting in a quarter-sized reduction in 
pixel quantity or value within every feature 
image. 
 

2.1.7 Maximum pooling (or Max Pooling) 
 

Maximum pooling, a specific pooling operation, 
selects the maximum element within a region of 
the feature soil texture image delineated by the 
filter. This type of pooling emphasizes the most 
prominent feature within the soil texture image. 
Maximum pooling contributes to reduced 

computational demands by curtailing the number 
of learnable parameters. Additionally, it imparts 
vital invariance to inner representations (Fig. 2). 
 
2.1.8 Activation function   
 
Activation functions are mathematical 
expressions that determine the outcome of a 
neural system. These functions are integrated 
into each neuron within the network and make 
decisions regarding their activation or 
deactivation, based on the relevance of the input 
data for the model's predictions. Furthermore, 
activation functions aid in standardizing the 
output of each neuron within a range spanning 
from 0 to 1 or from -1 to 1. In neural networks, 
nonlinear activation functions are increasingly 
employed, enabling the network to comprehend 
intricate data patterns, conduct complex 
computations, and provide precise predictions. 
Among these functions, the Rectified Linear Unit 
(ReLU) function holds prominence, particularly in 
computer vision tasks. ReLU's widespread 
adoption stems from its efficient computational 
speed and its effectiveness in mitigating 
vanishing gradient issues [20]. Specifically, ReLU 
stands for the "rectified linear unit," constituting a 
category of activation function. Mathematically, it 
can be expressed as y = max (0, x) (Fig. 3).  

 

 
 

Fig. 2. Max pooling 
 

 
 

Fig. 3. Rectified linear unit (ReLU activation function) 
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2.1.9 Fully connected layer 
 

Fully connected layers frequently find application 
as the concluding layers within a neural network 
(Table 1). In the context of a Convolutional 
Neural Network (CNN), the fully connected layer 
computes a comprehensive amalgamation of the 
preceding CNN model's weights, determining a 
specific target output outcome. This 
encapsulates the precise combination of 
elements. When fully connected layers are 
introduced, each component of a substantial 
number of extracted features from the previous 
layer becomes incorporated in the calculation of 
the output feature for each component. Among 
prominent AI models, certain final layers 
comprise fully connected layers that amalgamate 
the insights extracted by previous layers to 
compose the ultimate output. This layer stands 
as the second most labor-intensive stage 
subsequent to the convolution layer. 
 

2.2 Data Splitting 
 

After, processing of images, the dataset 
becomes primed for the application of machine 
learning algorithms. However, before selecting 
the appropriate training algorithm, it is 

recommended to partition the image data into 
three distinct segments: training data, validation 
data, and testing data. The sequence of 
operations involves initially training the artificial 
intelligence algorithm on the provided dataset, 
followed by validation and testing phases. Once 
testing is concluded, the resultant model is 
poised for deployment in real-world scenarios. 
 
2.2.1 Training  
 
In this study, the data was divided into 1100 
images for training. The training process aimed 
to capture the dataset's complexities and 
attributes, mitigating challenges like underfitting 
and overfitting. Overfitting occurs when a model 
is too tailored to a limited dataset while 
underfitting results in a model that fails to capture 
the training data or generalize to new data. We 
have set training the model for 35 epochs, 
compiled with categorical cross entropy loss 
function and SGD (stochastic gradient optimizer) 
optimizer.  

 
Training of model is performed on hp-laptop 
which have following hardware and software 
parameter (Table 2).  

 
Table 1. CNN layer-wise architecture of data 

 

Layers Parameters Description 

Input JPEG, GIF, and other image files are expressed in an RGB format that may be 
represented as a 3D matrix. 

Conv(a,b,c,
d,e,f,g,h) 

a=amount of anticipated input channels in the displayed picture (3 for RGB) 
b=number of output channels following the CONV phase. 
c=The convolution's kernel size 
d=The convolution kernel height 
e=The convolution's step (stride) in the width dimension 
f=The convolution in the height dimension's step (stride) 
g=The input plane data have additional zeros added to them on either side of the 
width axis. 
h=The input plane data have additional zeros added on either side of the height axis. 

ReLU(a) If the input is less than 0, the output of a rectified linear unit (activation function) is 0, 
else the output is raw. Is it True or False? 

MaxPoolin
g 
(a,b,c,d) 

an AaB window-based max-pooling process that determines the maximum via ZaU 
stride length. 
a=The pooling filter's width 
b=The pooling filter height 
z=The pooling width step 
u=The height of the pooling stride 

FullyConne
cted (a,b) 

3*256*256 (3 color channels, 256 pixels high and 256 pixels wide) is an example of 
an input image size. b=Number of output classes smaller than the input image size. 

Loss (a, b) The predicted labels and the actual labels are input into the loss function, which then 
calculates a number to indicate how well the model performed. 
a=anticipated label 
b=real labels 

Output Analysis of patterns and classification (e.g. Image recognition) 
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Table 2. Software and hardware parameter 
 

Name  parameter  

PC-RAM   16GB  
Processor  AMD Ryzen 5 7535U with Radeon Graphics - 2.90 GHz 
Operating system  Windows 10 64 bits  
Environment  Jupyter notebook  
Language  Python  

 
2.2.2 Testing data 
 
The main role of a test dataset is to gauge how 
well a trained CNN can handle entirely new and 
unseen data. It serves as a simulation of real-
world scenarios, ensuring that the model isn't 
merely memorizing the training data, but can 
make accurate predictions on unfamiliar 
instances. This portion of the original dataset is 
reserved for testing (77 images) the trained 
model's hypotheses. Test datasets remain 
untapped until both the model and its 
hyperparameters are finalized. Subsequently, the 
trained model is evaluated against the test 
dataset to attain accurate metrics on its 
performance with real-world data. 
 

3. HOW CNN ALGORITHM PREDICTING 
SOIL TEXTURE  

 
In this research study, above mentioned image 
based soil texture prediction mechanism was 
developed using CNN algorithm. For training 
purposes, Images of soil texture were processed, 
features like color (RGB), and texture were 
extracted from all corners and edges of the 
images and the images were cropped and then 
augmented into multi-dimensions of more 
pictures. These processed images were given to 
the input neural layers for learning the intricate 
patterns of texture images, The initial layer 
captures the unimportant low-level features of 
the image but the maximum pooling of soil 
texture images reduces the spatial dimension of 
the input and focuses on the most important 
features of the region of soil texture image in 
order to retain the distinctive features of the 
image for soil texture prediction. These hidden 

layers of neurons process the soil textural 
images by learning the complex textural patterns 
and provide the results with reliable accuracy of 
prediction as the output layer. 
 

4. RESULTS AND DISCUSSION 
 
Stoke's law was employed to establish the 
connection between soil texture and the 
proportions of sand, silt, and clay. The 
categorization of the soil was carried out using 
the USDA soil taxonomy system [21]. The 
suggested real-time classification method for 
different soil types is based on the convolutional 
neural network. The deep-learning-based 
approach can quickly and accurately identify the 
different types of soil from soil photographs by 
automatically extracting their discriminative 
features. The impact of mineral color on the HSV 
parameters examined in this study is rooted in 
the observation that sand particles tend to exhibit 
a brighter appearance under LED illumination 
within the dark chamber, a phenomenon 
highlighted in previous research [22]. A total of 
20 soil samples from the three ecoregions 
surrounding the Agricultural College in Madurai 
were taken at random to account for site 
accessibility. These samples added up to more 
than 1100 pictures, which the model was then 
given. The Python IDLE software's creation and 
application of this model yielded the results 
shown below (Table 3). 
 
Epoch is a specific hyperparameter that dictates 
the frequency with which the learning algorithm 
assesses the complete training dataset. A single 
epoch signifies that the entire dataset has been 
processed through the learning process of the 

 
Table 3. Describes the process of epochs and calculation results of accuracy and loss 

 

Prediction of Sandy soil texture 

Epoch Loss Accuracy 

1 0.3965 0.8125 
2 0.4209 0.8438 
3 0.4308 0.8672 
4 0.4267 0.8687 
5 0.3844 0.8750 
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Fig. 4. The trend of predicted accuracy 
 
CNN model only once. Subsequently, the 
model's learning persists, contributing to the 
enhancement of its accuracy by gaining further 
insights from the dataset. Training is fixed with a 
sufficient number of epochs as 35 epochs. Model 
training was stopped early at 5 epochs because 
the performance of training started to degrade 
after epochs 5 or epoch 6 onwards (Table 3). 

 
Accuracy serves as an assessment of the 
model's overall effectiveness across various 
classes, proving valuable when each class holds 
equal significance. This metric is derived by 
dividing the total correct predictions by the total 
predictions made. Throughout each epoch, it is 
imperative for the model's accuracy to 
progressively increase. As the epoch increases, 
accuracy increases up to a certain number and 
then decreases due to the overfitting problem 
(Fig. 4). Data augmentation improves the 
accuracy by increasing the number of images for 
the learning process. Within each epoch, the 
learning model initially acquaints itself with the 
dataset using an algorithm. Subsequently, the 
acquired knowledge is employed within the same 
algorithm, enabling the model to refine its 
understanding of the dataset and thereby 
achieve heightened accuracy. The proposed 
CNN-based model predicted the sandy soil with 
the highest accuracy of 87.50% at the 5th epoch. 
The higher accuracy for predicting sandy texture 
is due to image-extracted features like color, 
particle, and texture [23] from Fig. 4. The higher 

accuracy of sand prediction is due to the HSV 
feature extraction of soil texture images [24]. The 
trend of accuracy in soil texture prediction 
increases up to a certain level of epoch 5 and 
then decreases may be due to an overfitting 
problem. The role of the loss function is to 
measure the disparity between the anticipated 
and predicted values. It assesses how well the 
neural network's representation of the training 
dataset aligns with reality. During the model 
training process, the objective is to minimize this 
divergence in loss between the predicted 
outcomes and the desired targets. The minimum 
loss was found to be 0.3844. The lowest 
accuracy of 81.25% was recorded at one epoch. 
The reason for the lower accuracy may be due to 
the lower number of samples [25]. The 
experiment results demonstrated that the 
approach had an 87.50% success rate in 
correctly classifying the soil picture. The 
improved performance of CNN arises from its 
capability to perceive the image on a deeper 
level, effectively interpreting it as a composition 
of diverse edges, lines, and corners. This 
enables the CNN to effectively capture the 
content within the image [26].  
 

5. CONCLUSION 
 
Soil is a highly heterogeneous natural resource 
that provides food and nutrition for the global 
population. Machine learning-based CNN models 
can learn complex features like soil texture and 
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predict it with reliable accuracy in a short time. 
Manual estimation of soil texture has poor 
accuracy and laboratory methods are time-
consuming as well as tedious process. In this 
study, we used the CNN approach to predict soil 
texture under a Python environment. The soil 
texture image consists of 1100 images and 77 
images for training and testing data sets used for 
soil texture prediction modeling. Based on these 
results, it was concluded that a CNN is a good 
soil texture predictive model and it predicts soil 
texture with a higher accuracy of 87.50% at low 
cost. More research is warranted to predict soil 
moisture along with texture using large data sets 
in real-time for precise prediction of soil texture 
for sustainable soil health and crop management 
[27]. 
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