
_____________________________________________________________________________________________________ 
 
++ 

PhD Scholar; 
*Corresponding author: E-mail: sangyasingh8183@gmail.com; 
 
Int. J. Plant Soil Sci., vol. 35, no. 18, pp. 1386-1394, 2023 

 
 

International Journal of Plant & Soil Science 
 
Volume 35, Issue 18, Page 1386-1394, 2023; Article no.IJPSS.104362 
ISSN: 2320-7035 

 
 

 

 

Geo-spatial Tools for Assessing Soil 
Fertilty: A Review 

 
Sangya Singh 

a++*
, Vishakha Rai 

a++
, Sunil Upadhyay 

a++
  

and Shubham Singh 
b++

 
 

a 
Jawaharlal Nehru Krishi Vishwa Krishi Vishwa Vidyalaya, Jabalpur, 482008, India. 

b 
Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, 474002, India. 

  
Authors’ contributions  

 
 This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 
 

Article Information 
 

DOI: 10.9734/IJPSS/2023/v35i183480 
 

Open Peer Review History: 
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  

peer review comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/104362 

 
 

Received: 26/05/2023 
Accepted: 01/08/2023 
Published: 02/08/2023 

 
 

ABSTRACT 
 

Soil, as a precious non-renewable resource, plays a pivotal role in agricultural productivity, making 
the improvement of soil fertility a paramount objective. To ensure soil health and optimize resource 
utilization for food production while mitigating negative environmental impacts in the face of climate 
change, it is crucial to gather geographical information on soil and its fertility levels. This is where 
remote sensing (RS) and Geographic Information System (GIS) technologies, particularly high-
resolution satellite data and geostatistical methods, have proven highly effective. 
Historically, most studies focused on evaluating a limited set of soil properties to gauge quality or 
fertility levels. However, it is now evident that adopting a holistic approach by integrating multiple 
soil indicators encompassing chemical, biological, and physical aspects is essential. Such a 
comprehensive assessment can offer valuable insights into specific land management techniques 
and environmental conditions, enabling better decision-making. 
In light of this necessity, the utilization of high-resolution remote sensing data in conjunction with 
ground observations has become pivotal in mapping and tracking soil fertility. RS and GIS 
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technologies provide detailed, spatially explicit information, facilitating large-scale soil assessments 
and identifying trends and patterns over time. This integration empowers researchers and land 
managers to implement sustainable agricultural practices and conservation efforts, ultimately 
maximizing food production while preserving the environment. 
By harnessing the power of RS and GIS technologies, researchers can gain a deeper 
understanding of soil health, facilitating the development of effective land management strategies 
and resource utilization practices. 
In conclusion, the amalgamation of high-resolution remote sensing data and ground observations is 
crucial for comprehensive soil fertility assessment. This approach contributes significantly to 
sustainable land management, ensuring food security, and safeguarding our invaluable soil 
resource amidst the challenges posed by climate change. 
 

 

Keywords: Remote sensing; GIS; soil fertility; soil properties; spectral reflectance. 
 

1. INTRODUCTION 
 

In order to meet the rising demand for food 
commodities, the increasing population growth 
necessitates agricultural expansion [1]. Crops 
must be produced in environments that are 
highly favorable for them in order to attain food 
security and enhanced food output. To use 
natural resources responsibly and increase their 
productivity, it is necessary to evaluate the 
spatiotemporal dynamics of soil quality and 
fertility. Crop residue management, nutrient 
management, soil tillage, and pest management 
are examples of agricultural practices that have 
an impact on ecosystem goods and services as 
well as soil quality and fertility [29,17]. 
 

In terms of environmental quality, soil quality 
refers to a soil's capacity to preserve ecosystem 
functions while also producing economic goods 
and services [38,36]. Both soil quality and fertility 
are influenced by a variety of soil factors, 
including pH, texture, soil structure, soil organic 
matter, and the amount of water and nutrients 
that are available to plants. These factors, in 
turn, are influenced by soil processes like 
erosion, leaching, aeration, nutrient cycles, and 
anaerobiosis. The biological, chemical, and 
physical characteristics of the soil, the soil 
process, and the environmental quality are all 
combined to form soil quality [54,36]. The 
foundation of input-based high agricultural 
production systems is the soil fertility state. The 
optimization and sustainability of agricultural 
ecosystems depend on the determination and 
assessment of soil fertility [5,64]. To formulate 
and carry out national agricultural policies, 
decision-makers need a precise measurement of 
the spatiotemporal variability of soil fertility and 
degradation. As a result, during the past few 
decades, remote sensing has emerged as a 
crucial tool in soil research due to its capacity to 
characterize soil heterogeneity in both the spatial 

and temporal domains and conduct 
nondestructive analyses of soil properties. The 
information gathered by the remote sensors is 
analyzed in relation to the characteristics of the 
soil. Soil spectral reflectance is crucial for 
obtaining information about various soil types 
and for use in soil mapping, land degradation 
mapping and monitoring, soil fertility 
management, and watershed management.  

 
The advantages of Remote Sensing (RS) are its 
extensiveness, non-invasiveness, speed, and 
adaptability. RS involves employing 
electromagnetic energy to assess attributes of 
targeted objects from a distance. Ecology, 
oceanography, climatology, geology, and 
agriculture are just a few of the environmental-
related fields to which it has already seen 
widespread application. The advances in the 
observatory systems such as remotely sensed 
data of fine-to-coarse spatiotemporal resolutions, 
and in the process-based and data-driven 
modelling techniques have facilitated the 
collection, storage, analysis, visualisation, and 
interpretation of non-spatial data for soil fertility 
index (SFI) [40,20,45,52,63,48]. 

 
Continuous soil mapping and monitoring is a 
possibility with remote sensing data. If the soils 
are exposed at the surface and the technologies 
are accurate enough to produce the information 
required, they can offer an effective and 
affordable method to determine the composition 
of the surface soil. Since the 1970s, when 
databases of mineral spectra were built in the lab 
[27,26] there has been interest in using non-
invasive sensing techniques, such as reflectance 
spectroscopy, to remotely determine the 
mineralogical composition of planetary surfaces.  

 
The information gathered by the remote sensors 
is analysed in relation to the characteristics of the 
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soil. Soil spectral reflectance is crucial for 
obtaining information about various soil types 
and for use in soil mapping, land degradation 
mapping and monitoring, soil fertility 
management, and watershed management. In 
terms of geographical, radiometric, temporal, and 
spectral resolutions, data interpretation 
techniques have recently undergone a profound 
transformation on par with satellite capabilities. 
 

2. REMOTE SENSING AND GEO-
STATISTICAL TECHNIQUES IN SOIL 
STUDIES 

 

According to Ravisankar and Sreenivas [51], 
remote sensing techniques are crucial for soil 
and land degradation mapping, monitoring of 
degraded lands, soil moisture evaluation, soil 
fertility, soil water conservation measures, and 
soil suitability investigations. Additionally, soil 
scientists personally examine less than one 
thousandth of the soil below the surface to 
precisely designate soil bodies on the landscape. 
They are able to do this because to the validity of 
the soil-landscape model, a potent paradigm that 
allows soil scientists to predict the soil 
properties with accuracy [25]. 
 
The study of events that change in space and/or 
time is known as geostatistics. It provides a 
method of employing conventional regression 
techniques to describe the spatial continuity of 
natural events.The geographical variability of soil 

nutrients is investigated using remote sensing 
and geostatistical approaches [65]. It focuses 
mostly on spatially autocorrelated data. 
 

3. SPECTRAL REFLECTANCE OF SOILS 
 

Many applications of remote sensing in soils 
depend on the spectral reflectance 
characteristics of soils. Data on soil reflectance 
can be collected in a lab, on the outside, and 
from the air or space. According to [9], the study 
of soil spectral reflectance has the potential to 
forecast soil physical, chemical, and biological 
parameters quickly and non-destructively. 
Additionally, different soil characteristics, such as 
water-holding capacity, eroded areas, and 
nutritional variations, can be inferred from the 
vegetation spectrum response.  
 
The majority of passive remote sensors may 
gather data on soil properties from reflectance 
spectra in the visible (0.40 to 0.70 m), near-
infrared (0.70 to 1.10 m), and short-wave infrared 
(1.10 to 2.50 m) areas of the electromagnetic 
spectrum. In addition, thermal infrared 
wavelengths between 3.0 and 5.0 m and 8.0 and 
12.0 m do offer diagnostic data on soils. The 
form and nature of the reflectance curve 
determine the physical and chemical 
characteristics of the soil, including its colour 
[49], texture, structure, moisture content [58], 
surface conditions, roughness, and iron oxide 
content [30], among others. 

 

Table 1. Spectral reflectance of different soil parameters that determine soil fertility  
 

SNo Soil Property Spectral reflectance 
band (µm) 

Characteristics Reference 

1 Soil color 0.45-0.70 RS sensors capable of sensing 
blue, green and red are very 
important 

[18] 

2 Soil texture 0.45-2.00 An increase in particle size 
causes a decrease in 
reflectance 

[7] 

3 Organic matter 1.70,2.18,2.31 An increase in Organic matter 
decreases reflectance  

[7,54] 

4 Iron oxides 0.40,0.43,0.45, 
0.51,0.55,0.70, 
0.87,0.90,1.0 

An increase in iron oxide 
decreases reflectance 

[59] 

5 Clay minerals 1.40-2.20 Respond by the presence of 
hydroxyl bands at these bands 

[35] 

6 Sulphates, 
carbonates, hydroxyl 
combinations 

1-2.50 Responds at these bands [28,13] 

7 Soil crusting 0.40-2.50 Spectral changes due to size 
distribution and mineralogical 
composition 

[8] 

(Source- [34]) 
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Spectral analysis can be used in laboratories to 
determine a variety of soil characteristics. 
However, atmospheric influences [21,53] 
structural effects, lower spectral and spatial 
resolution, geometric distortions, and the spectral 
mixture of features [33,53] complicate the 
measurement when using airborne or 
spaceborne spectroscopy. Lichens, non-
photosynthetic vegetation, and photosynthetic 
vegetation (PV, NPV), which can cover up to 
100% of the soil in highly vegetated areas, can 
also be a constraint for soil applications. Lichens 
and mosses can cover up to 70% of the surface 
in tundra and open woodland ecosystems 
[56,57]. 
 

4. SOIL QUALITY/ FERTILITY 
ASSESSMENT 

 
Designing sustainable agricultural practices 
(optimal agricultural usage) that can assist in 
bridging the current gap between food production 
and demand and addressing the issue of food 
security depends critically on the assessment of 
soil quality. New opportunities for 
measuring/evaluating soil quality at various 
spatial scales are made possible by the 
accessibility of RS datasets and GIS spatial 
modelling tools [46,60]. Digital soil maps were 
created by combining the physical, chemical, and 
biological characteristics of the soil with a digital 
elevation model and a Sentinel-2 satellite picture 
in order to create a spatially explicit soil quality 
model, according to [55].  
 
The application GIS-enabled web-based soil 
information system that offers a descriptive, 
quantitative, and geographic soil database via a 
straightforward interface is described by 
Abdelfattah [2]. The technique was used to 
evaluate the soil's capacity for managing and 
growing plants. Abdell A et al. [3] created a 
spatial model for the evaluation of soil quality 
using GIS and RS technologies. To map the soil 
quality index, his model used GIS conventional 
kriging spatial interpolation and four major soil 
quality indicators (soil fertility index, soil physical 
index, soil chemical index, and geomorphological 
characteristics Index). Applying these GIS-based 
models offers approaches to control soil quality 
that are supported by data. This would make it 
possible for decision-makers, those who create 
policies, planners of land use, and agriculturalists 
to effectively manage soil resources so that 
agricultural lands can be used sustainably and to 
the best of their ability [58,50,43]. In order to 
achieve food security and sustainable agricultural 

policies and practices, it is crucial to evaluate soil 
quality indicators. 

 
4.1 Chemical Aspect Affecting Soil 

Fertility 
 
In addition to other characteristics of soil fertility, 
RS can be used to analyse the levels of organic 
carbon, NPK, and micronutrients (Fe, Mn, Zn, 
and Cu). The ability of soil to hold onto chemical 
components or compounds that are damaging to 
the environment or plant growth is related to its 
chemical properties. For instance, [4] 
emphasises the significance of soil chemical 
characteristics in plant growth, particularly C and 
nitrogen N levels, which enhance plant growth, 
soil structure, and water penetration, boost soil 
biological activity, regulate erosion, and prevent 
surface sealing.  
 

One of the most important plant nutrients for 
optimising crop yields and farmer profits is 
nitrogen. The spatial variance in nitrogen content 
has been handled using crop vigour as a stand-in 
indicator and spatial interpolation of soil 
analytical data using RS data as the 
interpolation's guiding force [51]. It has been 
discovered that hyperspectral remote sensing is 
a crucial tool for identifying plant nutrient stress, 
which also serves as a measure of soil fertility. 
When comparing nitrogen and phosphorus levels 
at the leaf and canopy levels, Osborne et al. [47] 
demonstrated the value of hyperspectral data, 
although the connections were not constant 
across all stages of plant growth. Derivative 
analysis of spectrum reflectance spectra was 
shown to be a useful method for stress detection, 
and it produced spectral reflectance peaks. 
Utilising remote sensing and GIS to identify 
nutritional challenges enables us to implement 
site-specific nutrient management, which lowers 
cultivation costs and improves the effectiveness 
of fertiliser use for crops. 
 
The colour of the soil is one of the markers used 
in remote sensing to map soil organic carbon; 
darker soils often have more soil organic matter 
than lighter soils. According to Viscarra Rossel et 
al. [61], saturated organic matter, variations in 
the composition and amount of black humic acid, 
and soil moisture all contribute to the darker of 
soil with higher levels of organic carbon. This is 
why it's common practise to map SOC by soil 
colour using the visible portion of the spectrum. 
The correlations, however, are not strong enough 
to be applied practically in a wide range of soils 
[60]. 
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Soils that are degraded due to presesnce of salt 
content or by any other factor are also identified 
using Remote sensing techniques. In general, 
quantitative mapping of organic carbon, salt 
concentrations, clay minerals, and nutrients can 
be done using hyperspectral remote sensing 
data. The mapping of the salt-affected soils has 
made extensive use of the hyperspectral data. 
DAIS - 7915 hyper-spectral aerial sensor data 
were evaluated by BenDor et al. [10] for the 
quantification and production of maps of soil 
characteristics, including organic matter, soil 
moisture, and soil salinity. They used the Visible 
and Near Infrared Analysis (VNIRA) method, 
which produces an empirical model for 
forecasting soil properties. The hyper-spectral 
remote sensing (HSR) domain was utilised to 
determine its viability based on spectral 
laboratory data that demonstrate a considerable 
ability to anticipate the aforementioned soil 
attributes and populations utilising the VNIRA 
technique. Using the physical and chemical 
characteristics of the soil as well as image 
components (such as absorption-reflectivity 
profiles, band combinations, the greytones of the 
pictures under investigation, and the textures of 
the soil and vegetation covers as seen in 
images), soil salinity groups were constructed. 
Results from spectral measurements on salt-
affected soils were presented by [19], indicating 
spectral alterations in the soil for varying degrees 
of salt concentration. Relationships between 
different salinity levels, spectral features, and 
geophysical properties of salt-affected soils are 
demonstrated in laboratory experiments. 

 
4.2 Physical aspect affecting Soil Fertility 
 
In a wide variety of naturally occurring surface 
soils, Stoner and Baumgardner [58,7] discovered 
five distinctive soil spectral reflectance curve 
morphologies that they deemed typical of the 
diversity of soil reflectance. Curve shape, the 
presence or absence of absorption marks 
signifying different organic matter and iron 
content, as well as texture, were used to identify 
these curve forms. Many soil characteristics can 
be assessed by spectral analysis of soil samples 
under laboratory settings, it was shown a few 
decades later. Examples include soil organic 
matter [10,22,41], soil moisture, Fe2O3, SiO2, and 
Al2O3 [23,42,44], as well as sand, silt, and clay. 
 
In proximate sensing, partial least-squares 
regression or multiple linear regression are 
generally used to estimate soil texture. These 
models are mostly calibrated using sample data. 

The findings demonstrate that these techniques 
are effective for predicting soil texture, but 
because the models' calibration is dependent on 
the local environment, they are often inapplicable 
beyond the study locations [16,42]. 

 
The development of microwave remote sensing 
has made it possible to determine the amount of 
soil moisture present in a field.  Using data from 
remote sensing, it is possible to learn about crop 
water demand, water use, soil moisture 
conditions, and related crop growth at                    
various stages. For instance, Bandara [6] 
evaluated the effectiveness of three large 
irrigation projects in Sri Lanka using NOAA 
satellite data. In order to provide soil moisture 
and soil temperature at four soil depths and 
vegetation root zones at 1 km spatial resolution 
in near real-time (few hours' latency), Das et al. 
[14] developed a soil moisture and temperature 
map for India using the high-resolution land data 
assimilation system (HRLDAS) as a computing 
tool. 

 
Another important physical property affecting soil 
fertility is its surface roughness. The highest 
gradient of the water's surface slope (gradient) 
defines the surface roughness, which describes 
the surface's undulating condition. Increased 
surface roughness may reduce soil erosion and 
soil losses by up to 31%, according to earlier 
research [24,39]. As a result, it can enhance 
biological quality, soil structure, and fauna and 
flora development. Soil surface roughness is a 
crucial component of study on the soil erosion 
process that cannot be overlooked, as well as a 
crucial indicator of the degree of surface change 
and soil erosion [32]. One of the key elements 
affecting a soil's spectral properties is the surface 
roughness brought on by the presence of soil 
particles and aggregates [31]. Since the 
imperfections on the surface may create 
shadows, which might be identified and 
displayed by RS imageries, it is frequently a 
good predictor of soil degradation, especially for 
soil erosion [12,15]. According to numerous 
research [37,62], the effects of soil surface 
roughness are entirely similar to or even superior 
to those of moisture content. 

 
Individual RS platforms, whether optical or 
microwave, have just been found to be 
ineffective at separating the combined effects of 
soil roughness and moisture content [66]. 
Therefore, a novel approach to the inversions of 
soil surface roughness has been developed by 
merging these two various platforms. 
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4.3 Biological Aspect Affecting Soil 
Fertility 

 

Soil Biological Indicators (SBI) give information 
about the living component of the soil and are 
crucial to maintaining vital soil health processes 
like the breakdown of organic matter in the soil, 
nutrient cycling, pollutant degradation, and 
stability formation of the soil structure. One of the 
most prominent soil biological indicators is soil 
organic matter (SOM) [11]. Additionally, soil 
organic carbon is regarded as a crucial factor in 
determining soil quality since it typically 
correlates favourably with crop output and soil 
fertility, which in turn interacts with chemical, 
physical, and biological soil qualities. The 
majority of soil is made up of SOM, which is a 
complex mixture of organic chemicals produced 
by humification as well as by plants, living 
microbes, and their metabolism. 
 

Soil spectral reactions could be hidden in bare 
soil areas with a lot of residues left over from the 
previous crop. In order to evaluate the surface 
soil organic matter content, high spatial digital 
terrain models (DEM) created by remote 
microwave or laser techniques can help with 
understanding how soil forms and how surface 
moisture moves. Researchers have evaluated 
various spectral responses in distinct bands in 
terms of observable soil properties such as sand, 
silt, clay, iron oxides, magnesium oxides, and 
organic carbon to explore the precise impacts of 
organic carbon on soil reflectance. Separable 
bands from soils that have not been fractionated 
are compared to separable bands from inorganic 
fractions, in which extractable organic matter and 
humic acid have been eliminated.In the sets of 
bands in question, there is a direct correlation 
between soil organic carbon and reflectance: as 
soil organic carbon rises, reflectance falls. The 
physical cause causing spectral changes in this 
group of bands is the organic matter present in 
the soil [29]. Zhang, Ding, et al. [65] developed 
various methods for effectively assessing SOM 
by NIR spectroscopy while taking salt-affected 
soils into consideration. These innovative 
approaches offer fresh ways and trustworthy 
assistance for precisely estimating SOM. 
 

5. CONCLUSION 
 

High-resolution remote sensing data, in 
conjunction with ground observations, emerges 
as a crucial tool for mapping and monitoring soil 
fertility, especially at the village level. By 
combining remote sensing technologies, such as 
satellite imagery, with on-site measurements, 

researchers can obtain detailed spatial 
information that aids in understanding the 
variability of soil nutrients and other key 
parameters across large areas. Geostatistics, 
GIS, and remote sensing together form a 
powerful trio for comprehending the spatial 
variability of soil nutrients. These technologies 
enable researchers to analyze data in a spatial 
context, identifying patterns and trends that might 
be missed with traditional point-based 
measurements. This spatially explicit information 
is instrumental in making informed decisions 
about soil management strategies and resource 
allocation to maximize agricultural productivity 
while minimizing environmental impacts. 
 

Looking ahead, future research will likely focus 
on enhancing the integration of proximal (ground-
based) and remote sensing data. Scaling-based 
approaches will be employed to optimize the use 
of all available data sources, ensuring a more 
comprehensive understanding of soil fertility and 
its spatial distribution. By combining data from 
various sources, researchers can leverage the 
strengths of each technology, creating a more 
robust and reliable assessment of soil health. 
 

Overall, the integration of high-resolution remote 
sensing data, geostatistics, and GIS will play a 
pivotal role in advancing our understanding of 
soil fertility and quality. This integrated approach 
will contribute to more sustainable land 
management practices and resource utilization, 
ultimately leading to increased food production 
with reduced environmental impacts. By 
harnessing the power of these technologies, we 
can ensure the preservation and optimal use of 
one of our most valuable non-renewable 
resources - soil. 
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