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The dynamics of rotating objects is an area of classical mechanics that has many unsolved problems. Among these problems are the
gyroscopic effects manifested by the spinning objects of different forms. One of them is the Tippe top designed as the truncated
sphere which is fitted with a short, cylindrical rod for rotation. The unexplainable gyroscopic effect of the Tippe top is
manifested by its inversion towards the support surface. Researchers tried to describe this gyroscopic effect for two centuries,
but all modelings were on the level of assumptions. It is natural because the Tippe top has a more complex design than the
simple spinning disc, which gyroscopic effects did not have an analytical solution until recent time. The latest research, in the
area of gyroscopic effects, reveals the action of the system of several interrelated inertial torques on any spinning object. The
gyroscopic inertial torques are generated by their rotating mass. These inertial torques and the variable ratio of the angular
velocities of the spinning object around axes of rotations constitute the fundamental principles of gyroscope theory. These
physical principles of dynamics of rotating objects enable to description and compute of any gyroscopic effects and also the
Tippe top inversion.

1. Introduction

The dynamics of classical mechanics contains the section of
gyroscope theory that considers different types of spinning
objects [1–3]. One of them is well-known from ancient times
a spinning top and its modification the Tippe top. This top
is designed with a truncated sphere that is fitted by a short,
cylindrical rod for rotation. The Tippy top center mass is
located below its center of the sphere. The gyroscopic effect
of the spinning Tippe top is manifested when its spherical sur-
face contacts the support surface and by the following inver-
sion and spinning on the rod [4–6]. Following spinning of
the Tippe top is the same as a regular design of the top. This
gyroscopic effect of the spinning Tippe top manifests other
designs of the rotating objects as hardboiled eggs, an American
football, round smooth ovals, etc. [7–9]. All similar spinning
objects with the property of inversion attracted physicists
and mathematicians [10–12]. They have been studied exten-
sively the gyroscopic effect of Tippe top from the beginning
of the nineteenth century [13–15]. The inversion property of

the top served as an amusing toy for a population that was
more attractive than an ordinary disc-type top. The Tippe
top for the short time got popularity all over the world.

Nevertheless, the number of publications dedicated to the
physics of Tippe top is less than for a disc-type top. The com-
plexity of the Tippe top’s motions and the unexplainable
gyroscopic effect of inversion interested only persistent
researchers. Analysis of these publications and methods for
solutions demonstrate the application of the same mathe-
matical tools and more intuitive assumptions as for the spin-
ning top [16]. Their main principles for describing the Tippe
top inversion were the angular momentum, kinetic energy,
friction force, and its weight. In reality, the physics of gyro-
scopic effects are many times harder. This is the reason that
the Tippe top’s gyroscopic effect does not have the accepted
physics and recognized mathematical model.

In engineering, the visual example of the manifestation of
the spinning object inversions is presented at conditions of
the weightless at the orbital flight. This example and other non-
discovered ones are waiting for investigations of their physics.
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All similar examples with the spinning objects are formulating
by the defined principles for gyroscopic effects that can explain
and describe the physics of acting forces and inversion by the
rules of classical mechanics [17].

This work proposes the analytical circumscribing of the
physics for Tippe top’s inversion based on the latest defined
principles of gyroscope theory [17, 18].

2. Methodology

The mathematical model for motions of the Tippe top is for-
mulated by the defined principles for gyroscopic effects that
can explain and describe the physics of acting forces and
inversion by the rules of classical mechanics [17]. The system
of the inertial torques generated by the centrifugal, common
inertial, Coriolis forces, the change in the angular momen-
tum of the spinning object, and the ratio of the angular veloc-
ities of the top around axes are applied for the mathematical
model for its motions. For the analysis, the top axis is located
vertically at the movable system of 3D coordinates Σoxyz
which center disposes at the center mass of the Tippe top.
The location of the center massm of the top is below the cen-
ter of the truncated sphere on the distance r. The top is spin-
ning with the angular velocity ω in the counterclockwise
direction around axis oy that passed the center mass. The
combined action of external, inertial torques, forces, and
motions around three axes for the running inclined Tippe
top as the truncated sphere with the fitted rod is represented
in Figure 1.

At starting condition, the top spins on the spherical surface
of the radius R and contacts the support surface at the point P.
The spinning axis of the top passes the center mass m and dis-
poses perpendicular to the support surface. Any inclination of
the top on the angle β or the roughness of the contact surfaces
gives the shift of the point P of the top to the side. At this situ-
ation, the spinning axis passes the center mass and does not
pass the center of the sphere and the contact point P. The size
of the shift of the contact point P depends on the displacement
r of the center mass from the center of the sphere (Figure 1). At
this condition, the sphere slides on the support surface.

The point P moves by the circular line around the axis oz
of the top’s rotation. The sliding motion is fulfilled at the con-
dition of the action of the kinetic frictional force F =mgf (g
is the gravity acceleration; f is the coefficient of dry sliding
kinetic friction). The frictional force F acts around two axes
ox and oz and produces the frictional torque T f x =mgf h
cos β (h = R – r sin β is the distance from the center mass
to the support surface) and T f y =mgf r cos β, respectively.

The frictional torqueT f x turns the angularmomentum vec-
torH of the spinning top on the small-angle γx,Hx around axis
ox at the plane yoz in the counterclockwise direction (Figure 1).
The vector of the change in the angular momentum ΔHx pre-
sents the precession torque that turns the angular momentum
vector H of the spinning top on the small-angle γy around axis
oy at the plane xoz in the counterclockwise direction.

The action of the external torque on the spinning object
generates the system of interrelated inertial torques that
depends on the ratio of the angular velocities of its rotation

around axes and is well described in the publication [17,
18]. The dependency of angular velocities of the rotation
around axes of the spinning sphere is defined by the principle
of the kinetic energy conservation law [17]. Schematic of the
torques acting on the Tippe top (Figure 1) is used for the for-
mulation of the equation of the kinetic energy balance for the
inertial torques acting around axes of rotation. These inertial
torques express the equality of the kinetic energy of the spin-
ning objects (Chapter 4, Section 4.1.2, of [17]):

−
3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ
� �

Jωωx

−
3
8 π − 2ð Þ2π + 1

� �
Jωωy =

3
8 π − 2ð Þ2π + 1

� �
Jωωx

−
3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ
� �

Jωωy:

ð1Þ

Simplification of Equation (1) yields the dependency of
angular velocities of the rotation around axes for the spin-
ning sphere:

ωy = −
6 π − 2ð Þ2π + 3 π − 2ð Þ + 8

8 − 3 π − 2ð Þ

" #
ωx , ð2Þ

where the sign (-) shows the direction of the action of inertial
torques that can be omitted for the following considerations
(Figure 1).

The mathematical models for the expressions of the iner-
tial torques for the spinning sphere are described in the work
[18], and the dependency of angular velocities of the rotation
around axes (Equation (2)) is presented in Table 1.

J is the variable mass moment of inertia of the Tippe top
around the axis of rotation; Ti is the variable inertial torques
that depend on the geometry of the top and its axis inclination
on the angle β;ω is the angular velocity of the spinning top; and
ωi is the angular velocity of the rotation of the top around axis i.

The action of the inertial torques and the motions of the
spinning Tippe top around axes are presented by the follow-
ing components of gyroscopic effects (Figure 1):

(i) The frictional torque T f x which action is the counter-
clockwise direction around axis ox produces the resis-
tance torque Trx = −Tctx − Tcrx − Tiny − Tamy − Trlx,
where Trlx =mgf rR cos β is the rolling frictional tor-
que, and other torques are as specified in Table 1. The
resulting torque around axis ox is the sum of fric-
tional and resistance torques Tx = T f x − Trx turns
the spinning top with the angular velocity ωx

(ii) The torque Tx produces the resulting precession
torque around axis oy
Ty = Tinx + Tamx − Tcty − Tcry − Trly − Tmgy, where
Trly =mgf rR cos β is the rolling frictional torque,
Tmgy =mgr cos β is the torque produced by the
top weight due to the inclination of an axis on
the angle β, and other torques are as specified in
Table 1
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(iii) The inertial torques Tctx and Tinx at expressions of
Tx and Ty are self-compensated as far as there is
one expression and one sign (Table 1) (Chapter 4,
Section 4.1.2 of [17])

(iv) The action of the inertial torques on the spinning top
leads to its rotation around axes ox and oy with the
interrelated angular velocities ωx and ωy, respectively.
The following turn of the spinning top around two
axes brings to contact of its rod with a support sur-
face, inversion, and its vertical spinning on the rod.
The light model of the top with a big diameter of

the rod and high coefficient of sliding friction can
change in the direction of spinning. This condition
occurs at the time of the contact of the rod with the
support surface. The change in the direction of the
top spinning is explained by the principle of the
kinetic energy conservation law and by the principle
of the angular impulse and momentum

(v) The spinning top maintains its vertical rotation in so
far as the point P of its contact with the support sur-
face that is movable because the top rolls on the
spherical surface under the action of the inertial
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Figure 1: Schematic of the torques acting on the Tippe top spinning on the sphere and its motions.

Table 1: Equations of the inertial torques acting on the spinning Tippe top.

Type of the torque generated by Equation (kg·m2/s2)

Centrifugal forces
Tct = T in =

3
8 π − 2ð Þ2πJωωxInertial forces

Coriolis forces Tcr =
3
8 π − 2ð ÞJωωi

Change in angular momentum Tam = Jωωi

Resistance torque Tr = Tct + Tcr Tr =
3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ
� �

Jωωx

Precession torque Tp = T in + Tam Tp =
3
8 π − 2ð Þ2π + 1

� �
Jωωx

The dependency of angular velocities of the rotation around axes oy and ox, rad/s

ωy =
6 π − 2ð Þ2π + 3 π − 2ð Þ + 8

8 − 3 π − 2ð Þ

" #
ωx
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torques. This rolling leads to the turn of the top’s
axis and to change the mass moment of the inertia
of the Tippe top around axes of rotation. The top’s
moment inertia is different for its vertical and hori-
zontal location due to its nonsymmetrical design rel-
ative to its axis of spinning

(vi) The action of the inertial torques is interrelated and
looped by the ratio of the angular velocities of the
top around axes of rotation. The action of the fric-
tional force F activates all inertial torques generated
by the rotating mass of the top

This detailed presentation of the action of frictional
and inertial torques on the Tippe top enables us to
describe and explain the physics of its motions and inver-
sion. Analysis of the action of the inertial torques on the
spinning top demonstrates its inversion is the result of
the action of two precession torques around two axes. A
mathematical model for the Tippe top motions is formu-
lated by the equations of the inertial torques and the ratio
of the angular velocities of the top around of axes of rota-
tion (Table 1). The physics of inversion is considered for
two conditions of the Tippe top spinning, i.e., on the
spherical part and on the rod.

The mathematical models for the Tippe top motions
around two axes are expressed by the following Euler’s differ-
ential equations (Chapter 6, Section 6.2 of [17]):

Jx
dωx

dt
= T f y − Trlx − Tctx − Tcrx − Tam:yη, ð3Þ

Jy
dωy

dt
= Tinx + Tamx − Tmgy − Tcry − Trly , ð4Þ

ωy =
6 π − 2ð Þ2π + 3 π − 2ð Þ + 8

8 − 3 π − 2ð Þ

" #
ωx, ð5Þ

where ωx and ωz are the angular velocity of the top
around axes ox and oz, respectively; t is the time; Tctx,
Tcrx, Tcry, Tiny, Tamx, and Tamy are the variable inertial tor-
ques generated by the centrifugal, Coriolis, inertial forces
and the change in the angular momentum acting around

axes ox and oy, respectively (Table 1); η is the coefficient
of the change in the inertial torque due to the action of
the frictional torques on the top; Jy and Jx are the mass
moments of inertia of the top around axes oy and ox,
respectively; other components are as specified above.

The gyroscope parameters of Equations (3)–(5) and their
mathematical processing were described in the publication
(Chapter 6, Section 6.2 of [17]). The frictional torque acting
around axis oy on the spinning top (Figure 1) reduces the
value of the precession torques acting around axis ox that is
presented by the correction coefficient η. The coefficient η
is expressed by the ratio of the difference between the preces-
sion torques ðTinx + TamxÞ and the external torques Trly and
Tmgy of axis ox, to the precession torques. Substituting equa-
tions of Table 1 into the ratio of these torques and transfor-
mation yields the expression of the correction coefficient η.

η =
Tinx + Tamx − Trly − Tmgy

Tinx + Tamx
= 1 −

Trly + Tmgy

T in:x + Tam:x

= 1 − mgf rR +mgrð Þ cos β
3/8ð Þ π − 2ð Þ2π + 1

� �
Jωωx

,
ð6Þ

where J is the mass moment of inertia; f r is the rolling fric-
tional coefficient; β is the angle of the top inclination, ω is
the angular velocity of the spinning top, and other compo-
nents are as specified above.

For the solution of Equation (4), the precession torques
Tpx = T in:x + Tam:x (Table 1) should be expressed via the fric-
tional load torque T f y and the angular velocity ωx by ωx. The
value of the precession torque of Equation (4) should be cor-
rected by the principle of the conservation of the kinetic
energy. Since the angular velocity of the gyroscope around
axis oy is bigger than around axis ox (Equation (5)), then
the value of the precession torque should be proportionally
increased on the ratio of the angular velocities (Equation
(3)) and decreased on the ratio n of the precession and resis-
tance torques. This transformation expresses the interdepen-
dency of load and inertial torques acting around two axes of
the spinning object (Chapter 5, Section 5.2, of [17]). The
expression of ωx is replaced by ωy (Equation (5)) into the pre-
cession torque of Equation (4) and increased on the ratio of
the angular velocities; then, the ratio of the precession and
resistance torques is represented by the following:

n =
6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� �
3/8ð Þ π − 2ð Þ2π + 1

� �
Jωωy/ 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� �

3/8ð Þ π − 2ð ÞJωωy

= π − 2ð Þπ + 8
3 π − 2ð Þ :

ð7Þ
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The expression of the angular velocity ωx is defined from
the right side of Equation (1). Substituting defined parame-
ters (Table 1, Equation (6)) into the right side of Equation
(4)), and transformation yields the following:

mgf cos β R − r sin βð Þ − 3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ
� �

Jωωx

−
6 π − 2ð Þ2π + 3 π − 2ð Þ + 8

8 − 3 π − 2ð Þ

" #

� 1 − mgf rR +mgrð Þ cos β
3/8ð Þ π − 2ð Þ2π + 1

� �
Jωωx

" #
Jωωx = 0:

ð8Þ

Simplification of Equation (8) brings the following:

Then, the modified formula of the precession torque Tp:x is
presented by the following expression:

Substituting Equations (6) and (5) into Equation (3) and
Equations (7) and (10) into Equation (4) yields the following
equations:

where the components of the external resistance torques
Try =mgf rRcosβ +mgr cos β are removed from Equation
(12) as far as Equation (9) contains the correction factor η;
all other components are as specified above.

Simplifications and transformations of Equations (11)
and (12) bring the following:

ωx =
f cos β R − r sin βð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	

/ 3/8ð Þ π − 2ð Þ2 π + 1
� 	� �

f rR + rð Þ cos β
3/8ð Þ π − 2ð Þ2 π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ

( )
mg
Jω

: ð9Þ

Tp = 3/8ð Þ π − 2ð Þ2 π + 1
� 	

/ π − 2ð Þπ + 8/ 3 π − 2ð Þð Þð Þð Þ� �
Jω

f cos β R − r sin βð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� 	
/ 3/8ð Þ π − 2ð Þ2 π + 1
� 	� �

f rR + rð Þ cos β
3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ22π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

mg
Jω

= 3/8ð Þ π − 2ð Þ2π + 1
� �

f cos β R − r sin βð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� �
f rR + rð Þ cos β

π − 2ð Þπ + 8/ 3 π − 2ð Þð Þð Þ½ � 3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� 	� �
( )
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ð10Þ

Jx
dωx

dt
=mgf cos β R − r sin βð Þ − 3

8 π − 2ð Þ2π + 3
8 π − 2ð Þ

� �
Jωωx −mgf rR cos β −

6 π − 2ð Þ2π + 3 π − 2ð Þ + 8
8 − 3 π − 2ð Þ

" #
1 − mgf rR +mgrð Þ cos β

3/8ð Þ π − 2ð Þ2π + 1
� �

Jωωx

" #
Jωωx,

ð11Þ
Jy
dωy

dt
= 3/8ð Þ π − 2ð Þ2π + 1

� �
f cos β R − r sin βð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	

f rR + rð Þ cos β
π − 2ð Þπ + 8/ 3 π − 2ð Þð Þð Þ½ � 3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	� �

( )
mg −

3
8 π − 2ð ÞJωωy −mgf rR cos β −mgr cos β,

ð12Þ

Jx
dωx

dt
= f cos β R − r sin βð Þ + f rR + rð Þ cos β

3/8ð Þ π − 2ð Þ2π + 1
− f rR

" #
mg −

3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ + 6 π − 2ð Þ2π + 3 π − 2ð Þ + 8
8 − 3 π − 2ð Þ

" #
Jωωx , ð13Þ

Jy
dωy

dt
= 3/8ð Þ π − 2ð Þ2π + 1

� �
f cos β R − r sin βð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	

f rR + rð Þ cos β
π − 2ð Þπ + 8/ 3 π − 2ð Þð Þð Þ½ � 3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	� �

( )
mg −

3
8 π − 2ð ÞJωωy: ð14Þ
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Equations (13) and (14) are used for direct computing of
the angular velocities ωx and ωy of the Tippe top around axes
ox and oy, respectively. The value of the mass moments of
inertia J and Ji of the top around axes i of rotation is a vari-
able that depends on the angle β of the top inclination. The
action of the resulting torque around axis ox and oy turns
the top until the contact of the rod with the support surface.
The following turn of the top disconnects the spherical part
with the support surface and the top starts to rotate on the
rod. The top rotates around the center mass, and its rod
moves by the spiral trajectory on the support surface. The
action of the frictional torque F on the rod and following
inertial torques generated is almost the same as in Figure 1.
The rolling friction force does not consider due to the small
diameter of the tip of the rod. The torques acting on the
top spinning around the vertical axis oz and its motion are
presented in Figure 2.

The method and processing of the mathematical models
for the Tippe top rotation on the rod around axes are the
same as for Equations (3)–(5) and presented by the following
equations:

Jx
dωx

dt
=mgf lc cos β sin β −

3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ
� �

Jωωx

− Jωωyη,
ð15Þ

Jy
dωy

dt
= 3

8 π − 2ð Þ2π + 1
� �

Jωωx −
3
8 π − 2ð ÞJωωy

−mglc cos β,
ð16Þ

where the spinning of the top in the same direction, Ji, is
the top’s mass moment of inertia around the support3;
Tmgf =mglc cos β sin β is the frictional torque (for the top
rotating on the rod); Tmgy =mglc cos β is the torque gener-
ated by the action of the top weight; lc is the length of the
leg; other expressions are as specified in Equations (3) and (4).

The correction coefficient η is defined similarity as for
Equation (6) and presented by the following expression:

η = 1 − mglc cos β
3/8ð Þ π − 2ð Þ2π + 1

� �
Jωωx

: ð17Þ

The precession torques Tp:x = T in:x + Tam:x of Equation
(16) is expressed via the load torque T and the angular
velocity ωx by ωx. The solution is the same as presented
for Equation (4). The ratio of the precession and resistance
torques is represented by Equation (7). The expression of
the angular velocity ωx is defined from the right side of
Equation (15). Substituting defined parameters (Table 1,
Equation (17)) into the right side of Equation (15)) and
transformation yields the following:

mgf lc cos β sin β −
3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ
� �

Jωωx

−
6 π − 2ð Þ2π + 3 π − 2ð Þ + 8

8 − 3 π − 2ð Þ

" #

1 − mglc cos β
3/8ð Þ π − 2ð Þ2π + 1

� �
Jωωx

" #
Jωωx = 0:

ð18Þ

Simplification of Equation (18) brings the following:

ωx =
f lc cos β sin β + lc cos βð Þ/ 3/8ð Þ π − 2ð Þ2 π + 1

� 	� 	
3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	

" #
mg
Jω

:

ð19Þ

Then, the modified expression of the precession torque
ðTp:x = T in:x + Tam:xÞ is defined by the same method as for
Equation (10) and presented by the following expression:
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Figure 2: Schematic of the torques acting on the Tippe top spinning
on the rod and its motions.

Tp:x =
3/8ð Þ π − 2ð Þ2π + 1

� �
f sin β + 1ð Þlc cos β

π − 2ð Þπ + 8/ 3 π − 2ð Þð Þð Þ½ � 3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� 	� �
( )

mg:

ð20Þ
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Substituting Equation (19) and η into Equation (15) and
Equation (19) into Equation (16) and transformation yields
the following equations:

where all components are as specified above.
Equation (22) does not contain torques T f y =mglc cos β

as far as the precession torque modified with the correction
factor η contains this torque.

3. Case Study and Working Example

Analysis of the mathematical model for motions of the steel
Tippe top on the steel support surface with the action of
the frictional and inertial torques demonstrates the turn of
its rod’s axle from the vertical around axes ox and oy. This
top’s turn is considered for the two conditions. The first con-
dition is the top spins on its spherical part and turns until the
contact of the rod with the support surface. The second con-
dition is the rod of the spinning top contacts the support sur-

face, its spherical part disconnects from it, the top inverses,
and it turns to vertical. The technical data of the Tippe top
is presented in Table 2. The starting condition accepted the
vertical location of the top axle. The coefficients of the dry
kinetic sliding and rolling friction of the top and table sur-
faces are accepted at f = 0:42 and f r = 0:001, respectively
[19]. The angular velocity of the spinning top is accepted at
2000 rpm. The angle of the contact of the rod with the table
is defined from the geometry of the top that is βc =
53:130102° (Figure 1). For simplicity of computing accepted,
the mass moment of inertia for the sphere does not change
the property of the top for inversion.

3.1. The Numerical Solution of the Case Study. The axis of the
spinning of the Tippe top remains vertical, but the rod

Table 2: Technical data of the Tippe top.

Mass of Tippe top (kg) 0.070

Mass moment of inertia around the vertical axis (J kgm2)Mass of the rod (kg) 0.005

Angle βc (Figure 1) (degrees) 53.130102°

d

R

m

r b

aLinear dimensions (mm)

R = 20:00; a = 50:00; b = 30:00; r = 10:00; d = 5:00.

Vertical location of the rod

J = 2
3
� 	

msR
2 + 1

2
� 	

mr d
2
� 	2 = 1:734 × 10−5

m

k

lc

Linear dimensions (mm)

k = 10:00;
lc = 40:00.

Horizontal location of the rod
J = 2

3
� 	

msR
2 + 1

12
� 	

mra2 = 1:8 × 10−5

Jx
dωx

dt
= f lc cos β sin β + lc cos β

3/8ð Þ π − 2ð Þ2π + 1

" #
mg −

3
8 π − 2ð Þ2π + 3

8 π − 2ð Þ + 6 π − 2ð Þ2π + 3 π − 2ð Þ + 8
8 − 3 π − 2ð Þ

" #
Jωωx, ð21Þ

Jy
dωy

dt
= −

3/8ð Þ π − 2ð Þ2π + 1
� �

f sin β + 1ð Þlc cos β
π − 2ð Þπ + 8/3 π − 2ð Þð Þ½ � 3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8

� 	
/ 8 − 3 π − 2ð Þð Þ� 	� �

( )
mg −

3
8 π − 2ð ÞJωωy,

ð22Þ
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inclines then contacts the support surface, inverses, and then
rotates on the rod. The rotation of the top’s about horizontal
changes in the values of the mass moment of inertia J , Ji and
inertial torques Ti. For simplicity of the solution and to avoid
cumbersome computing, the values of J and Ji for the inter-
mediate inclination of the top on the angle β are accepted
nearest to the vertical or horizontal location. This simplifica-
tion does not bring a big difference in the results of comput-
ing because the values of J and Ji for vertical and horizontal
locations are almost the same (Table 2).

(1) The spinning Tippe top motions on the spherical sur-
face around vertical axis oy (Figure 1). The angular
velocity of the top around axes of rotation is com-
puted for the angle of the rod contact with the sup-
port surface. The turn of the top from vertical to the
angle of the contact of the rod with the surface is β
= 143:130102°. The top parameters defined above
and presented in Table 2 are substituted into Equa-
tions (13) and (14) that yield the following equations
of the top motion around axis oy and ox

Following simplification and transformation yield the
equations as follows:

1:734 × 10−5 dωx

dt
= 0:006465 − 0:035698ωx, ð24Þ

1:734 × 10−5
dωy

dt
= 7:688728 × 10−4 − 0:0015546ωy:

ð25Þ
Separating variables and transformation for these differ-

ential equations gives the following:

dωx

0:181102 − ωx
= 2058:7082dt, ð26Þ

dωy

0:494579 − ωy
= 89:653979dt: ð27Þ

Transformation and presentation of the obtained equations
by the integral form with defined limits yield the following:

ðωx

0

1
0:181102 − ωx

dωx = 2058:7082
ðt
0
dt, ð28Þ

ðωy

0

1
0:494579 − ωy − ωy

dωy = 89:653979
ðt
0
dt: ð29Þ

The left integral of equations is transformed and repre-
sented by the tabulated integral

Ð
dx/ða − xÞ = −ln ja − xj + C.

The right integral is simple, and integrals have the following
solution:

−ln dωx

0:181102 − ωx
− ωx











ωx

0
= 2058:7082 tjt0, ð30Þ

−ln 0:494579 − ωy − ωy



 

ωy

0 = 89:653979 tjt0, ð31Þ
that gave rise to the following:

1 − ωx

0:181102 = e−2058:7082t , ð32Þ

1 −
ωy

0:494579 − ωy
= e−89:653979t: ð33Þ

The right side of Equations (32) and (32) has the small value of
the high order that can be neglected. Solving these equations
yields the angular velocity for the top around axis oy and ox
as the result of the action of the frictional torque.

ωx = 0:181102 rad/s = 10:376413°/s, ð34Þ

ωy = 0:494579 − ωy rad/s = 28:337299°/s: ð35Þ
Analysis of the angular velocities of the top around axes ox

and oy demonstrates the turn down around axis oy faster than
around axis ox, and the rod contacts with the support surface.
Following the action of the inertial forces on the Tippe top lifts
up its center mass and disconnects the spherical part from the
support surface.

1:734 × 10−5 dωx

dt
=

0:42 cos −53:130102°ð Þ × 0:02 − 0:01 × sin −53:130102°ð Þf g −
0:001 × 0:02 −53, 130102°ð Þ +

0:001 × 0:02 + 0:01ð Þ −53, 130102°ð Þ
3/8ð Þ π − 2ð Þ2π + 1

2
66664

3
77775 × 0:07 × 9:81 − 3

8 π − 2ð Þ2π + 3
8 π − 2ð Þ + 6 π − 2ð Þ2π + 3 π − 2ð Þ + 8

8 − 3 π − 2ð Þ

" #
× 1:734 × 10−5 × 2000 × 2π

60

� �
× ωx ,

1:734 × 10−5
dωy

dt
=

3/8ð Þ π − 2ð Þ2π + 1
� �

× 0:42 × cos −53:130102°ð Þ × 0:02 − 0:01 × sin −53:130102°ð Þð +

6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� �
0:001 × 0:02 + 0:01ð Þ cos −53:130102°ð Þ

π − 2ð Þπ + 8/ 3 π − 2ð Þð Þð Þ½ � 3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� 	� �
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

× 0:05 × 9:81 − 3
8 π − 2ð Þ × 1:734 × 10−5 × 2000 × 2π

60

� �
× ωy:

ð23Þ
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(2) The spinning Tippe top motions on the rod around
vertical axes ox and oy (Figure 2). The top parameters
defined above and in Table 2 are substituted into

Equations (21) and (22) that yield the following
equations:

Following simplification and transformation is the same as
presented above, and all comments for mathematical pro-
cessing are omitted:

1:734 × 10−5 dωx

dt
= 0:012037 − 0:035698ωx, ð37Þ

1:734 × 10−5
dωy

dt
= 9:589250 × 10−4 − 0:0015546ωy , ð38Þ

dωx

0:337184 − ωx
= 2058:7082dt, ð39Þ

dωy

0:616830 − ωy
= 89:653979 dt, ð40Þ

ðωx

0

1
0:337184 − ωx

dωx = 2058:7082
ðt
0
dt, ð41Þ

ðωy

0

1
0:616830 − ωy

dωy = 89:653979
ðt
0
dt, ð42Þ

−ln 0:337184 − ωxj jωx
0 = 2058:7082t t

0


 , ð43Þ

−ln 0:616830 − ωy



 

ωy

0 = 89:653979t t
0


 , ð44Þ

1 − ωx

0:337184 = e−2058:7082t , ð45Þ

1 −
ωy

0:616830 = e−89:653979t, ð46Þ

ωx = 0:337184 rad/s = 19:319220°/s, ð47Þ
ωy = 0:616830 rad/s = 35:341755°/s: ð48Þ

Equations (34), (35), (47), and (48) demonstrate the top
rotates faster around axis oy. At the time of the contact and
disconnecting of the rod with the support surface, the angu-
lar velocities are different that are ωy = 28:337299°/s (Equa-
tion (35)) and ωy = 35:341755°/s (Equation (48)),
respectively. This difference is explained by the change in
the radius of the frictional torque that is l = R + r sin β and
l = ðR + k + rÞ sin β and by the removing of the rolling fric-
tional torque, respectively. The increase of the radius
increases the value of the frictional torque and hence
increases the angular velocities of the top rotation around

axes. The Tippe top turns in the counterclockwise direction
around axes ox and oy (Equations (34), (35), (47), and
(48)). The action of the inertial forces on the spinning Tippe
top that has the only contact of the rod with the support sur-
face lifts up its center mass and the top goes to the vertical.
Following spinning of the Tippe top on the rod is the same
as for ordinary top.

The time of the spinning Tippe top inversion is com-
puted for two conditions, i.e., for the turn from vertical to
the angle of the contact of the rod with the support surface
and for the following turn on the rod to vertical. Equations
(35) and (48) demonstrate the angular velocities of the Tippe
top rotation are changed by the cosine law. For solution is
formulated the functional dependency of the variable angular
velocity from the angle of the to turn that is as follows: ωi
= ai cos βwhere ai is coefficient that defined for the two con-
ditions, i.e., for the contact of the rod of the support surface
and after disconnecting the spherical surface of the top of
the support surface.

28:337299°/s = ac cos ð−53:130102Þ where ac =
47:228831°/s and for 90°ωx = 0.

35:341755°/s = ad cos ð−53:130102Þ where ad =
58:902925°/s and for ð−90°Þωx = 0.The time of the turn of
the top on the angle β can be computed by the equation: t
= βi/ωi,where βi is the fixed angle of the top turn down that
is βd = 143:130102° and for the turn up βu = 90° −
53:130102° = 36:869898°.The first derivative of variable
angular velocity yields the following:

dωi = −ai sin βdβ: ð49Þ

Integral presentation of Equation (49) brings the following:

ðωi

0
dωi = −ai

ðe
s
sin βdβ, ð50Þ

where the limits of the integral s are the start angle and e is
the end angle of the turn of the top.

Solution of the integral Equation (50) is presented by the
following expression:

ωi
e
sj = ai cos β e

sj , ð51Þ

where all parameters are as specified above

1:734 × 10−5 dωx

dt
= 0:42 × 0:04 cos −53:130102°ð Þ × sin 53:130102° + 0:04 cos −53:130102°ð Þ

3/8ð Þ π − 2ð Þ2π + 1

" #
× 0:07 × 9:81 − 3

8 π − 2ð Þ2π + 3
8 π − 2ð Þ + 6 π − 2ð Þ2π + 3 π − 2ð Þ + 8

8 − 3 π − 2ð Þ

" #
× 1:734 × 10−5 × 2000 × 2π

60

� �
× ωx ,

1:734 × 10−5
dωy

dt
= 3/8ð Þ π − 2ð Þ2π + 1

� �
0:42 × sin − 53:130102° + 1ð Þ × 0:04 cos −53:130102°ð Þ

π − 2ð Þπ + 8/ 3 π − 2ð Þð Þð Þ½ � 3/8ð Þ π − 2ð Þ2π + 3/8ð Þ π − 2ð Þ + 6 π − 2ð Þ2 π + 3 π − 2ð Þ + 8
� 	

/ 8 − 3 π − 2ð Þð Þ� 	� �
( )

× 0:07 × 9:81 − 3
8 π − 2ð Þ × 1:734 × 10−5 × 2000 × 2π

60

� �
× ωy:

ð36Þ
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Substituting the initial data presented above for the top
turn down and up, and solution yields the following results:

ωdjωd
0 = 47:228831° cos βj−53:130102°90° and ωujωd

0 =
58:902925° cos βj−90°−53:130102° that gave rise to the integrated
angular velocities:

ωd = 47:228831 cos −53:130102°ð Þ − cos 90°½ � = 28:337299°/s,
ð52Þ

ωu = 58:902925° cos −90°ð Þ − cos −53:130102°ð Þ½ � = 35:341755°/s:
ð53Þ

The time of the to turn down and up is defined by the
expression ti = βi/ωi.

td =
143:130102
28:337299 = 5:050s,

tu =
36:869898
35:341755 = 1:043s:

ð54Þ

The total time of the Tippe top inversion is as follows:

t = td + tu = 5:050 + 1:043 = 6:093s: ð55Þ

4. Results and Discussion

The mathematical model for the motions of the Tippe top is
derived on the principles of the theory of gyroscopic effects
for rotating objects [17]. The inversion process of the Tippe
top is the result of the action of the system of interrelated
inertial torques generated by the rotating mass. The intuitive
statement of the researchers that that frictional force acting
on the Tippe top resulting in its inversion is not correct [5–
16]. The frictional force acting on the spinning top activates
the inertial torques of the Tippe top. The Tippe top manifests
two precession rotations around two axes which are mani-
fested by its inversion. The mathematical models for the
Tippe top motions were used for computing the time of
inversion from vertical to the upside-down vertical location.
Practical observation of the similar Tippe top designs con-
firms the obtained results. The time of inversion will be less
for the inclined axis of the Tippe top at the starting condition
and for the rational size of the center mass displacement.
This solution is analytical validation of the physics of the
spinning Tippe top inversion.

5. Conclusion

Mathematical modeling of gyroscopic effects was problem-
atic until the latest analytical solutions for the inertial torques
acting on the spinning object of different designs. These iner-
tial torques and motions of the spinning objects, which are
known as gyroscopic effects, are the manifestations of the
causal dependencies of the inertial torques and kinetic ener-
gies. These properties of the spinning objects constitute the
fundamental principles of gyroscope theory. The application
of these principles is demonstrated on the Tippe top inver-
sion which presents the action of its precession torques. All

unexplainable gyroscopic motions are solved by the contem-
porary principles of classical mechanics, and the Tippe top
inversion is a good example of this one.

Nomenclature

a, b, c, d, h, k, r, lc, R: Geometrical sizes of the top
components

m: Mass of the top
g: Gravity acceleration
f : Kinetic coefficient of sliding friction
f r : Coefficient of rolling friction
i: Index for axis ox or oy
J : Mass moment of inertia of the top
J i: Mass moment of inertia of the top

around axis i
Ti: Torque i
Tam:i: Torque of the change in the angular

momentum acting around axis i
Tcti, Tcr:i, T in:i: Torque generated by centrifugal, Cor-

iolis, and common inertial forces,
respectively, and acting around axis i

Tp:i: Precession torque acting around axis i
Tr:i : Resistance torque acting around axis i
t: Time
β: Angle of inclination of the rotor’s axle
γ: Angle of minor inclination of the

rotor’s axle
ω: Angular velocity of the rotor
ωi: Angular velocity of precession around

axis i.

Data Availability

The equation of inertial torque data used to support the find-
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