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Utilizing of illustrative scheming programming, the study inspects the careful voyaging wave engagements from the nonlinear time
fractional modified Kawahara equation (mKE) by employing the advanced exp ð−φðξÞÞ-expansion policy in terms of
trigonometric, hyperbolic, and rational function through some treasured fractional order derivative and free parameters. The
undercurrents of nonlinear wave answer are scrutinized and confirmed by MATLAB in 3D and 2D plots, and density plot by
specific values of the convoluted parameters is designed. Our preferred advanced exp ð−φðξÞÞ-expansion technique which is
parallel to (G′/G) expansion technique is trustworthy dealing for searching significant nonlinear waves that progress a
modification of dynamic depictions that ascend in mathematical physics and engineering grounds.

1. Introduction

Nowadays, nonlinear fractional partial differential equations
(FPDEs) are lengthily utilized to delimit several prodigies and
dynamic procedure in numerous features of mathematical sci-
ence and scheming, particularly in magnetohydrodynamics,
neuralmaterial science liquidmechanics, dissemination process,
numerical science, plasma material science, geo-optical fila-
ments, strong statematerial science, and substance energy [1–3].

Frequent investigators arranged through nonlinear evo-
lution equations (NEEs) to form voyaging wave arrangement
by executing a few arrangements. The approaches that are
engrained in continuing writing are as follows: the double
subequation approach [4], multiple exp-function algorithm
[5], improved subequation scheme [6, 7], modified simple
equation technique [8], tanh-coth scheme [9], sine-cosine
strategy [10], first integral approach [11], ðG′/G, 1/GÞ
-expansion scheme [12], fractional reduced differential trans-

form method [13], extended Kudryashov scheme [14], mod-
ified simple equation scheme [15], new extended (G′/G)
expansion scheme [16, 17], functional variable method [18],
trial solution scheme [19], scheme exp-function approach
[20], multiple simplest equation scheme [21], exp ð−ϕðξÞÞ
-expansion scheme [22–26], pseudoparabolic model [27–29],
sine-Gordon expansion scheme [30], modified extended
tanh-function scheme [31], modified auxiliary expansion
scheme [32], method of line [33], Bernoulli subequation func-
tion technique [34, 35], modified exponential function scheme
[36], improved Bernoulli subequation function scheme [37],
and the finite difference scheme [38].

The prime goal of this article is to inspect the approached
solutions of the nonlinear time fractional modified Kawahara
equation in the form

Ωδ
t u + u2ux +Φuxx +Ψuxxx = 0, t > 0, x ∈ℝ, ð1Þ
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where δ denotes a parameter recitation fractional order of the
time derivative constant and 0 < δ ≤ 1. Our preferredmodified
Kawahara equation (MKE) was previously measured by vari-
ous investigators; for instance, Atangana et al. [39] planned
the exact numerical solutions of time fractional mKE exhaust-
ing homotopy decomposition and the Sumudu transform
strategy. Guner and Atik determined our stated time fractional
MKE employing lengthy exp ð−φðξÞÞ-expansion approach
[40]. Kadkhoda and Jafari [41] explained the time fractional
MKE by various analytical schemes, namely, fractional exp-
function system and tenable particular exact soliton answers.
Bhatter et al. [42] solved the time fractional modified nonlin-
ear Kawahara equation using the Mittag-Leffler law and
secured some exact soliton solutions that are very important
to describe the nonlinear physical phenomena with the sense
of Caputo. Recently, Shahen et al. [43] explored the exact solu-
tions of ð2 + 1Þ dimensional AKNS condition with the virtue
of our mentioned advanced exp ð−ϕðξÞÞ-expansion scheme.
He received this method as a particular creation of generalized
exp ð−ϕðξÞÞ-expansion scheme. The ultimate intension of this
study is to smear the advanced exp ð−ϕðξÞÞ-expansion strat-
egy [43] to shape the detailed voyaging wave answers for non-
linear progression environments in scientific substantial
science by means of the time fractional nonlinear mKE. The
advanced exp ð−ϕðξÞÞ-expansion system is more regimented
and steadfast system as compared to G′/G-expansion system.
Our favored method is a parallel technique ofG′/G-expansion
process. The answers enlarged by the specified practice can be
articulated in the form of hyperbolic, trigonometric, and ratio-
nal functions. These events of the clarifications are appropriate
for learning certain nonlinear physical dealing. The target of
this article is to apply the advanced exp ð−ϕðξÞÞ-expansion
strategy [43] to build the precise voyaging wave answers for
nonlinear advancement conditions in scientific material
science by means of the time fractional nonlinear modified
Kawahara equations.

In contrast with the attained solutions [43], to the finest
of our knowledge, antibright kink, bright kink, rogue wave,
and bright and dark bell solution shapes are new in the case
of our advanced exp ð−ϕðξÞÞ-expansion scheme, which are
not testified in previously published studies [22–26]. It is
important to know that the maximum of the examined solu-
tions in this study has varied structures over the solutions
accessible in the fiction in the wave proliferation; the per-
formed approaches are entirely new for this studied mKE
equation. Therefore, the developed exact answers may irradi-
ate the authors for advance studies to clarify pragmatic phe-
nomena in the field of shallow water wave and mathematical
physics. This article affords evidence that our mentioned
MKE equation is suitable in the sense of conformable deriva-
tive for obtaining the new traveling soliton structures in any
kind of physical system without any obliqueness condition.

The study is set up as follows. In Section 2, the portrayal
of the conformable derivative and scheme is deliberated. In
Section 3, the advanced exp ð−ϕðξÞÞ-expansion approach
has been described. In Section 4, we utilized this plan to
the nonlinear modified Kawahara equations. In Section 5,
results and discussion are presented. In Section 6, ends
are given.

2. Preliminaries and Approaches

2.1. Meaning and Some Topographies of Conformable
Derivative. Recently, Khalil et al. [44] showed the basic of
conformable derivative with the idea of a limit.

Definition 1. f : ð0,∞Þ⟶ℝ; then, the conformable deriva-
tive of f order δ is well-defined as

Ωδ
t f tð Þ = lim

ε⟶

f t + εt1−δ
� �

− f tð Þ
ε

 !
, for all t > 0, 0 < δ ≤ 1:

ð2Þ

Nearly, a famous researcher Abdeljawad [45] has also
discovered exponential functions, chain rule, definite and
indefinite integration by parts, Gronwall’s inequality, Laplace
transform, and Taylor power series expansions for conform-
able derivative in the process of fractional order. The defini-
tion of a conformable order derivative can naturally stun the
difficulty of exiting the modified Riemann Liouville deriva-
tive definition [46] and the Caputo derivative [47].

Theorem 1. Let δ ∈ ð0, 1� and f = f ðtÞ, g = gðtÞ be δ-con-
formable differentiable at a point t > 0, then

(i) Ωδ
t ðcf + dgÞ = cΩδ

t f + dΩδ
t g, for all c, d ∈ℝ

(ii) Ωδ
t ðtγÞ = γtγ−δ, for all γ ∈ℝ

(iii) Ωδ
t ð f gÞ = gΩδ

t ð f Þ + fΩδ
t ðgÞ

(iv) Ωδ
t ð f /gÞ = ðgΩδ

t ð f Þ − fΩδ
t ðgÞÞ/g2

Furthermore, if f is differentiable, thenΩδ
t ð f ðtÞÞ = t1−δ

ðdf /dtÞ.

Theorem 2. Let f : ð0, δÞ⟶ R be a real function such as f is
differentiable and δ-conformable differentiable. Also, let g be
a differentiable function well defined in the range of f . Then,

Ωδ
t f ogð Þ tð Þ = t1−δg tð Þδ−1g′ tð ÞΩδ

t f tð Þð Þt=g tð Þ, ð3Þ

where prime means the conventional derivatives with
respect to t.

In this research, we have mainly taken the preferred
equation with the sense of conformable derivative. In
condition of general theory of calculus, there are numerous
functions that do not have Taylor power arrangement repre-
sentations on particular point whereas in the theory of
conformable derivative they do have. The conformable deriv-
ative does well in the chain rule and product rule while
involved plans appear in case of usual fractional calculus.
The conformable derivative of a constant function is corre-
spondent to zero where it is not the issue for Riemann
fractional calculus.
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3. Enlargement of Advanced exp ð−ϕðξÞÞ
-Expansion Method

In this part, we have deliberated our mentioned
advanced exp ð−ϕðξÞÞ-expansion scheme stepwise in details.
Assume a nonlinear time-fractional NPD equation in the
following form:

R Π,Πx, Tθ
tΠ,Πxx , T2θ

tt Π,Πxxx,⋯⋯
� �

= 0, ð4Þ

where Π =Πðx, tÞ is an anonymous function and R is the
polynomial function ofΠ, it is a distinct kind of partial deriv-
atives, in which the nonlinear terms and the highest order of
derivatives are intricate.

Step 1. Now, we assume a wave transformation variable with
a view to nondimensionality. We transform all self-
governing variable into one variable, as follows

Π x, tð Þ = u ξð Þ, ξ = k
xη

η
±V

tθ

θ
: ð5Þ

By utilizing this variable, Equation (5) permits us reduc-
ing Equation (4) in an ODE for Πðx, tÞ = uðξÞ into the form

P :⋯u″, u′, u,
� �

= 0: ð6Þ

Step 2. Let us assume that a polynomial can start the solution
of O.D. Equation (6) in exp ð−ϕðξÞÞ as

u = 〠
N

i=0
Ai exp −ϕ ξð Þð Þi, AN ≠ 0, ð7Þ

where N is the positive integer, which can be acquired by
harmonizing the uppermost order of derivatives to the
uppermost order nonlinear terms, seen in Equation (6).

And the derivative of ϕðξÞ gratifies the ODE in the subse-
quent form

ϕ′ ξð Þ − λ exp ϕ ξð Þð Þ − μ exp −ϕ ξð Þð Þ = 0: ð8Þ

Then, the solutions of O.D. Equation (6) are as follows.

Case 1. Hyperbolic type of function solutions (when λμ < 0):

φ ξð Þ = ln
ffiffiffiffiffiffi
λ

−μ

s
tanh

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � !
,

φ ξð Þ = ln
ffiffiffiffiffiffi
λ

−μ

s
coth

ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � !
:

ð9Þ

Case 2. Trigonometric function solution (when λμ > 0):

φ ξð Þ = ln
ffiffiffi
λ

μ

s
tan

ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� � !
,

φ ξð Þ = ln −

ffiffiffi
λ

μ

s
cot

ffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� � !
:

ð10Þ

Case 3. When μ > 0 and λ = 0:

φ ξð Þ = ln 1
−μ ξ + Cð Þ
� �

: ð11Þ

Case 4. When μ = 0 and λ ∈R:

φ ξð Þ = ln λ ξ + Cð Þð Þ, ð12Þ

where C is a constant λμ < 0orλμ > 0 is contingent on the
sign of μ.

Step 3. By plugging Equation (7) in Equation (6) and
consuming Equation (4), gathering all like the order of exp
ð−mϕðξÞÞ, m = 0, ±1,±2,±3,⋯ organized, then we accom-
plish a polynomial form exp ð−mϕðξÞÞ, and associating each
coefficient of this obtained polynomial equivalent to zero
yields a set of a system of algebraic equations (SAE).

Step 4. Let the constants’ determination be obtained as one or
more solutions by deciding the mathematical circumstances
in phase 3. Plugging the constant calculations along with
the arrangements for Equation (5), from the nonlinear eval-
uation eq., we can obtain modern and far-reaching detailed
moving wave preparations (4).

4. Solicitation of the Preferred Method

In this subclass, we imposed our proposed advanced exp
ð−ϕðξÞÞ-expansion technique in Equation (1) and hence-
forth used the following transformation:

u x, tð Þ = u ξð Þ,  ξ = kx −
Λtδ

δ
: ð13Þ

where k and Λ are nonzero constants. We find the ODE
from Equation (1)

−Λu′ + ku2u′ +Φk2u′′ +Ψk3u′′′ = 0: ð14Þ

Now,we integrate Equation (14)with respect to ξ andweget

−Λu + k
3 u

3 +Φk2u′ +Ψk3u′′ = 0, ð15Þ

where prime signifies the derivative with regard to ξ.
Now, we calculate the equilibrium number of Equation

(15) between the linear term u′′ and the nonlinear term u3

which is m equal to 1 so the solution Equation (15) takes
the form
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u ξð Þ = A0 + A1 exp −φ ξð Þð Þ: ð16Þ

Differential Equation (16) with respect to ξ and substitut-
ing the value of u, u′, u′′ into Equation (15) and connecting
the coefficients of eiφðξÞ correspondent to zero, where i = 0,
±1,±2,⋯.

Resolving those SAE, we achieve one set of solutions as
follows.

Set 1.

k = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1/36λμð Þp

Φ

Ψ
,

Λ = ∓
2
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1/36λμð Þp

Φ3

Ψ2 ,

A0 = ∓Φ
ffiffiffiffiffiffiffiffiffiffi
−

1
6Ψ

r
,

A1 = ± 16
Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1/6Ψð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1/36λμð Þp

μ
:

ð17Þ

Case 1: when λμ < 0, we get following solutions of hyper-
bolic type.

Segment 1

u 1,2ð Þ x, tð Þ = Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
± Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ/μð Þp

tanh
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � ,

u 3,4ð Þ x, tð Þ = Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
± Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ/μð Þp

coth
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � :
ð18Þ

Segment 2

u 5,6ð Þ x, tð Þ = −
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
∓
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ/μð Þp

tanh
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � ,

u 7,8ð Þ x, tð Þ = −
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
∓
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ/μð Þp

coth
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � ,
ð19Þ

where k = ±ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1/36λμÞp

ΦÞ/Ψ, Λ = ∓2/9ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1/36λμÞp

Φ3/
Ψ2Þ, and ξ = ±ðð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ð1/36λμÞp
ΦÞ/ΨÞ x ± ðð2/9Þð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ð1/36λμÞp
Φ3/Ψ2Þtδ/δÞ .

Case 2: when λμ > 0, we get the following solutions of
trigonometric type.

Segment 3

u 9,10ð Þ x, tð Þ = Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
± Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffi
λ/μð Þp

tan
ffiffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� � ,

u 11,12ð Þ x, tð Þ = Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
∓
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffi
λ/μð Þp

cot
ffiffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� � :
ð20Þ

Segment 4

u 13,14ð Þ x, tð Þ = −
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
∓
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffi
λ/μð Þp

tan
ffiffiffiffiffiffiffi
λμ

p
ξ + Cð Þ

� � ,

u 15,16ð Þ x, tð Þ = −
Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
± Φ

6

ffiffiffiffiffiffiffiffi
−
6
Ψ

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− 1/λμð Þp
μ
ffiffiffiffiffiffiffiffiffiffiffiffi
λ/μð Þp

cot
ffiffiffiffiffiffiffiffiffi
−λμ

p
ξ + Cð Þ

� � ,
ð21Þ

where k = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1/36λμÞp

Φ/Ψ, Λ = ∓ð2/9Þðð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1/36λμÞp

Φ3Þ/Ψ2Þ, and ξ = ±ðð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1/36λμÞp

ΦÞ/ΨÞ x ± ðð2/9Þðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1/36λμÞp

Φ3/Ψ2Þtδ/δÞ .
Case 3 and Case 4: when λ = 0, the implementing value of

A1 is unspecified. So the solution cannot be obtained. For this
reason, this case can be excluded.

Likewise, when μ = 0, the executing value of A1 is unde-
fined. So the solution cannot be obtained. So this case can
also be excluded.

5. Results and Discussions

In this segment, we have discussed the theoretical discussion
and its dynamical variations on obtained wave solutions. For
our convenience, we have only showed the significant wave
solutions. Figure 1 represents the soliton solutions of u7ðx, tÞ
for the parameters Φ = 2:5,Ψ = 1, λ = 3, C = 1, μ = −1 within
−10 ≤ x ≤ 10 and −10 ≤ t ≤ 10. It is noteworthy that we have
chosen the fractional order derivative δ = 0:5, 0.75, and 1
respectively. In every set of figures, a, b, c illustrate the 3D
chart; a1, b1, c1 illustrate the 2D chart; and the right side verti-
cal figure illustrates the density plot for the value of δ = 0:5,
0.75, and 1 respectively. Figure 2 illustrates the antibright kink
solutions of u7ðx, tÞ for Φ = −2:5,Ψ = 1, λ = 3, C = 1, μ = −1
within −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10. Figure 3 illustrates the
bright kink shape of u13ðx, tÞ for Φ = 2:5,Ψ = 2, λ = 4, C = 1,
μ = 2within−10 ≤ x ≤ 10 and−10 ≤ t ≤ 10. Figure 4 illustrates
the solitonic shape solution of u13ðx, tÞ for Φ = −2:5,Ψ = 2,
λ = 4, C = 1, μ = 2 within −10 ≤ x ≤ 10 and −10 ≤ t ≤ 10.
Figure 5 shows the kink solution shape of u5ðx, tÞ for Φ =
2:9,Ψ = 0:9, λ = 3, C = 1, μ = −1 within −10 ≤ x ≤ 10 and −
10 ≤ t ≤ 10. Figure 6 shows the rogue wave solution shape of
u14 for Φ = 2:5,Ψ = 2, C = 1, λ = 4, μ = 2 within −10 ≤ x ≤ 10
and −10 ≤ t ≤ 10.

5.1. Graphical Explanation. This section signifies the graphi-
cal depiction of the time fractional MKE. By utilizing mathe-
matical software tool MATLAB density plot, 3D and 2D plots
of some attained wave solutions have been exposed in
Figures 1–6 to envision the important tool of the main equa-
tions. In the concept of mathematical physics, a soliton or
solitary wave is defined as a self-reinforcing wave packet that
upholds its shape while it propagates at a constant amplitude
and velocity. Solitons are the solutions of a widespread class
of weakly nonlinear dispersive partial differential equations
describing physical systems.
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Figure 1: Graph of soliton solutions of u7ðx, tÞ. (a–c) 3D plots. (a1–c1) 2D plots. The right side vertical figure shows the density plot for the
value of δ = 0:5, 0.75, and 1, respectively.
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Figure 2: Graph of antibright kink solutions of u7ðx, tÞ. (a–c) 3D plots. (a1–c1) 2D plots. The right side vertical figure shows the density plot
for the value of δ = 0:5, 0.75, and 1, respectively.
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Figure 3: Graph of bright kink shape of u13ðx, tÞ. (a–c) 3D plots. (a1–c1) 2D plots. The right side vertical figure shows the density plot for the
value of δ = 0:5, 0.75, and 1, respectively.
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Figure 4: Graph of solitonic shape solution of u13ðx, tÞ. (a–c) 3D plots. (a1–c1) 2D plots. The right side vertical figure shows the density plot
for the value of δ = 0:5, 0.75, and 1, respectively.
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6. Conclusions

In this section, we have experiential learning that double
wandering wave preparations as far as trigonometric, hyper-
bolic, and measurements for the time fractional mKE are effi-
ciently imposed by applying the advanced exp ð−ϕðξÞÞ
-expansion technique. From our obtained outcomes from
this article, the advanced exp ð−ϕðξÞÞ-expansion technique
approach is straight, incredible, helpful, and powerful. The

demonstration of this system is trustworthy and simple and
provides frequent new measures. As an outcome, the
advanced extension method illustrates an important tech-
nique to determine novel voyaging wave arrangements. The
obtained arrangements in this paper uncover that the tech-
nique is a powerful and effective material of defining more
definite voyaging wave arrangements than other strategies
for the nonlinear advancement conditions emerging in
numerical physical science.
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