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ABSTRACT

Identification of protein-protein interaction (PPI) sites is one of the most challenging tasks
in bioinformatics and many computational methods based on support vector machines
have been developed. However, current methods often fail to predict PPI sites mainly
because of the severe imbalance between the numbers of interface and non-interface
residues. In this study, we propose a novel over-sampling method that relaxes the
class-imbalance problem based on local density distributions. We applied the proposed
method to a PPI dataset that includes 2,829 interface and 24,616 non-interface
residues. The experimental result showed a significant improvement in predictive
performance comparing with the other state-of-the-art methods according to the six
evaluation measures.
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1. INTRODUCTION

Protein-protein interactions, known as physical contacts among proteins, are essential
molecular processes for living organisms to maintain their lives. They play a central role in
various biological functions such as regulation of metabolic and signaling pathways, DNA
replication, protein synthesis, immunological recognition, and so forth. Especially, physical
interface between two interacting proteins is a key to understand enzymatic activities of
proteins. Therefore, one important task in bioinformatics is to develop computational
methods to find binding interfaces between two interacting proteins accurately.

However, a naive approach based on support vector machines, one of the most standard
classifiers, often fail to predict binding interfaces among interacting proteins with high
specificity since the number of non-interaction residues is much larger than the number of
interaction residues. This is so-called the class-imbalance problem. A dataset is imbalanced
if the number of samples in some classes is significantly larger than in other classes. In the
serious cases, the ratio of minority class to majority class can be as large as 1:100,000 [1].
Use of traditional machine learning techniques for these datasets often lead to undesirable
results that only majority class is correctly predicted. This is a common problem in
bioinformatics such as prediction and classification for miRNAs [2], beta-turns [3,4],
microRNAs [5,6], breast cancer, lung cancer [7] and so on.

Many methods to deal with the class-imbalance problem have been developed. One
important class of such methods is resampling-based techniques such as over-sampling and
under-sampling methods, which have been reported to improve classification accuracy
significantly [1].

In this study, we propose a novel oversampling approach in order to relax class-imbalance
for the dataset of PPI sites. Instead of dealing with all minority class samples equivalently,
we intentionally increase the number of minority samples according to their local distribution.
Furthermore, predicted shape strings, which have been utilized in many researches in recent
years [3,8,9,10], are used to enrich the feature groups. We present numerical experiments
compared with state-of-the-art methods such as Anand et al. [6].

2. MATERIALS AND METHODS

2.1 Dataset

In this study, we used two datasets. The first one (that was named D1050) was the same
with Chen and Jeong [11]. For predicting interface residues and non-interface residues,
Chen and Jeong used the information of physicochemical features, evolutionary
conservation score, amino acid distances, and position specific score matrix (PSSM) to
extract features for 99 polypeptide chains of 54 hetero complexes [11]. By using a sliding
window with size 21, the central residue of a partial peptide was assigned as interface
residue if its relative solvent accessible surface area (RASA) was greater than 25% and the
difference of accessible surface areas (ASAs) between its unbound state and bound state
was greater than 1Å2. As a result, each residue was represented as a 1,050 features. The
dataset contained 2,829 interface residues (positive class) and 24,616 non-interface
residues (negative class). The ratio of positive class samples to negative class samples was
1:8.7. That is, this dataset was highly imbalanced.
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The second dataset (was named D1239) was prepared by adding information of predicted
shape strings to the original dataset. The shape string of a protein is a sequence of symbols
categorized according to the phi-psi torsion angles. There are eight shape symbols
representing for eight categories (S,R,U,V,K,A,T,G). DSP program [8] was used to predict
the shape strings. Each residue was predicted as one of these eight states or state N as the
undefined phi-psi angle pair. Each sample in this dataset includes 1, 239 features.

2.2 Methods

2.2.1 Resampling techniques

As presented in [1], resampling techniques such as over-sampling methods, under-sampling
methods, and under-over-sampling combination methods effectively improve classification
accuracy for imbalanced datasets. Under-sampling methods balance the imbalanced dataset
by removing samples in the majority class until the dataset becomes balanced. An important
disadvantage of under-sampling methods is that this removal of majority samples leads to a
significant information loss for the majority group. On the contrary, over-sampling methods
increase the number of samples in the minority class. The synthetic samples are generated
by various methods. The most naive technique is random over-sampling, which arbitrarily
chooses some minority samples and replicates them (one or many times). One of the other
common methods is SMOTE [12], which synthesizes the new samples locating between
each minority class sample and its randomly chosen nearest neighbors. While random over-
sampling techniques often lead to the over-fitting, SMOTE may result in the overlapping
between classes [1]. Especially when the number of minority samples is small and they are
distributed sparsely among the majority samples, the problem becomes more serious
because most of the synthetic samples will be located among the majority class samples.
Prati et al. [13] showed that the decrease in classification performance is caused by not only
class-imbalance but also data-overlapping. Borderline-SMOTE [14] addresses this drawback
by generating new samples for minority samples if they are located near the borderline,
while the samples, which are surrounded by majority samples or have enough minority
nearest neighbors are not considered. Though Borderline-SMOTE successfully improved
predictive accuracy for imbalanced datasets, the overlapping problem is not carefully
avoided.

In order to alleviate the problem of overlapping and over-fitting simultaneously, we propose a
novel over-sampling algorithm, which we call Over-Sampling based on local Density (OSD).
Instead of generating the same number of synthetic samples for each minority sample as
SMOTE, OSD algorithm focuses on only minority samples located where the local density of
minority samples is small in comparison with that of majority samples. As the local minority
density is smaller, OSD increases the number of minority samples more strongly by
synthesizing artificial minority samples. Here we define local density for each sample as
follows:

Definition 1. Suppose m and n are the numbers of samples with the same and different
class labels for sample x, respectively. Local density of x with radius r is the proportion
m/(m+n).

2.2.2 OSD- a novel over-sampling approach

A key idea of the OSD algorithm is to increase the number of minority samples located
where the local density of minority samples is small in comparison with majority samples.
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For each minority class sample x, first of all, OSD finds neighbors of x and divides into two
groups, majority and minority neighbors, according to their class labels (line 2). Note that the
terms “majority” and “minority” are used in the global context. Here, neighbors of x are
defined as samples in hyper-sphere with radius r. The number of synthetic samples for each
x depends on its local distribution with parameter d (lines 6-9):

 If x doesn’t have neighbor (i.e. m + n = 0), or local density of x is 0 (i.e. m = 0), x
locates far from the other minority samples and OSD generates the maximum
number of synthetic samples with the same class labels as x in order to avoid the
class imbalance problem and diminish boundary variance derived from local sparsity,
simultaneously. Hence, d new samples will be synthesized.

 If local density of x is greater than 0, d*(1-m/(m+n)) new synthetic samples are
created.

 If sample x has no different class label neighbor, OSD does not adjust the local
density of x.

Then, OSD generates the samples by function New_sample_generation (line 10). The
synthesized samples are generated so that their distances to x are always less than r_min
and they tend to be located closer to x as follows: (1) OSD randomly generates a number r’
which follow the density ( ) = / (0<r<1) where c=r_min / / with k is the number of
features. (2) adds it to the element of feature vector (lines 14-15). The pseudo-code for OSD
algorithm is as follows:

OSD algorithm

Input:  Minority dataset M; Majority dataset N; ratio of generation d; radius r.
Output:  Set of synthetic samples.
Begin
1. For each xM
2. calculate the local minority neighbors m & local majority neighbors n for x;
3. calculate the distance r_min from x to its local majority nearest neighbor;
4. if (r_min>r)
5. r_min = r;
6. if (m+n = 0)
7. number_of_new_samples = d;
8. else
9. number_of_new_samples = d*(1-m/(m+n));
10. New_samples_generation(x,r_min, number_of_new_samples);
11. End_for
End

Function New_sample_generation(x, r_min, d)
Input:  Sample x = (x1,x2,…,xk,class_label); number of new samples d; radius r_min.
Output:  Set of synthetic samples new_samples_array of x.

Begin
12. For i = 1:d
13. new_sample_class_label = class_label;
14. for j = 1:k
15. new_samplej= xj+ r’;
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16. end_for
17. push(new_samples_array,new_sample);
18. end_for
End

2.2.3 KSVM-THR

We note that OSD generally does not balance imbalanced datasets entirely. To address this
issue, we combine OSD and KSVM-THR, SVM with adjustment of the decision parameter,
proposed by Lin and Chen [7]. The decision threshold θ of KSVM-THR is defined as

θ = −1 + 2 ∗ ( + )/( + + 2 ∗ )
where p and n are the numbers of minority and majority class samples, respectively. The
constant  is the tuning parameter and in the experiments below, it was optimized by grid
search. If a data set is balanced,  becomes zero. In this study, we utilize this technique to
compose OSD-THR and RU-OSD-THR that combine KSVM-THR with OSD and RUS-OSD
(Random Under-Sampling –OSD).

2.2.4 Experimental design

SVM with Gaussian RBF kernel was utilized to create a basic classifier. We conducted 10-
fold cross validation. All the features of the datasets were normalized. Noise samples in the
datasets were filtered out before over-sampling, where we defined samples that have the
same feature vector and that belongs to different classes as noise samples. The overall
predicting process is shown in Fig. 1. To determine the radius r for algorithm OSD, we
calculated the distance between each pair of samples in the training set, sorted them in
ascending order, saved in array D, set k = dim(D)*0.1% (k = dim(D)*0.01% for the D1239)
where dim(D) was the size of D and assigned r as value of element kth of D.

Fig. 1. Schematic representation of our method
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Since the ratio of positive class to negative class of this dataset is 1:8.7, overall accuracy is
not suitable for evaluating the performance of classifier. If the class-imbalance problem is
severe, a naive approach that assigns all samples to the majority class makes overall
accuracy high though no sample was assigned to the minority class [1]. Thus, as measures
of performance evaluation, we use overall accuracy, sensitivity, specificity, G-mean and
Matthews correlation coefficient, which are defined as follows:

Overall accuracy = ( + )/( + + + )
Sensitivity = /( + )
Specificity = /( + )
G-mean (Balanced accuracy) = ( × ) /
Matthews correlation coefficient (MCC) = × ×( )×( )×( )×( ) /
Where TP and TN are the numbers of interface residues and non-interface residues that are
correctly predicted; FP and FN are the numbers of non-interface residues and interface
residues that are predicted as different from what they really are. Sensitivity and specificity
have been commonly used in medical community [6]. G-mean is the combination of both
sensitivity and specificity [15]. Matthews correlation coefficient measures how good the
correlation of the predicted class labels and the actual class labels is. It lies in [-1,+1], where
-1,1, and 0 represents the worst, the best and the random predictor, respectively.

3. RESULTS AND DISCUSSIONS

3.1 Evaluation on the D1050 Dataset

Using D1050 dataset, we evaluated the performance of OSD algorithm. It was compared
with pure KSVM (KSVM without resampling), Random Under-Sampling (RUS), KSVM-THR,
weighted SVM, SMOTE, the method of Chen and Jeong, and the under-sampling method
introduced by Anand et al. [6]. The results of all these methods are shown in Table 1. In
addition, Table 2 shows the results of experiments with the different decision thresholds of
the methods.

Since non-interface residues approximately nine times outnumbered interface residues,
KSVM could not perform well, whereas weighted-SVM, which assigns different costs of
misclassification to minority and majority classes, could predict more positive samples than
KSVM. Also, KSVM-THR achieved better performance by decreasing the decision threshold.

RUS removed many negative samples to balance the dataset (the new ratio of negative:
positive samples was 1.1:1) so it improved the prediction results in comparison with KSVM
and weighted-SVM but the best previous method (Anand et al.). However, RUS-THR was
worse than RUS: since RUS itself balanced the dataset, the decrease in decision threshold
resulted in a more high sensitivity and low specificity. Meanwhile, RUS-OSD achieved better
sensitivity, specificity, and G-mean than the corresponding results of Anand et al. by
eliminating a part of majority class samples and then using OSD to increase the minority
class samples.
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Two of our over-sampling methods, OSD and OSD-THR, outperformed the method of Anand
et al. (Table 1). For example, over all accuracy, specificity, and G-mean of OSD were
10.70%, 12.30%, and 3.36% higher than the competing method while sensitivity was 3.18%
lower. The latter approach, OSD-THR, was better than the best previous method at all
evaluation metrics.

Since MCC was not reported in [6], we could not directly compare with their method, under
various conditions. However, at least under the condition that sensitivity equals to 70%, the
MCC values of the method in [11] and our method were 0.32 and 0.48, respectively. Fig. 2
describes the correspondence between MCC and sensitivity of KSVM and OSD.

Fig. 3 demonstrates the ROC curves of OSD and the other methods. ROC curve of Cheng
and Jeong was taken from [11]. It shows that while RUS decreased the performance of
KSVM, the combination of RUS and OSD achieved a better result.

Table 1. Performance measures comparison of different methods on the dataset
D1050 in terms of best G-mean

Method Overall accuracy
(%)

Sensitivity
(%)

Specificity
(%)

G-
mean

KSVM 90.11 4.66 99.93 21.59
OSD 88.23 67.86 90.57 78.40
RUS (1.1:1) 76.17 70.59 76.81 73.63
RUS-OSD 75.31 80.73 74.69 77.65
KSVM-THR 90.66 11.48 99.76 33.85
OSD-THR 83.36 77.73 84.01 80.80
RUS-THR(1.1:1) 65.71 82.11 83.82 72.39
RUS-OSD-THR 64.94 88.51 62.24 74.22
Weighted-SVM* 91.57 55.87 95.56 73.08
SMOTE* 92.96 51.74 97.69 71.07
Chen and Jeong (2009)* 71.90 71.20 71.98 71.59
Anand et al. (2010)* 77.53 71.04 78.27 74.54

*: Result was taken from the paper of Anand et al.
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Table 2. Performance of KSVM-THR, OSD-THR, RUS-THR and RUS-OSD-THR with different decision threshold values on
the dataset D1050

Method KSVM-THR OSD-THR RUS-THR RUS-OSD-THR
Thr ACC SN SP G ACC SN SP G ACC SN SP G ACC SN SP G
0.96 89.69 0.07 1.00 2.65 91.93 31.07 98.93 55.44 90.34 21.63 98.24 46.10 90.66 31.28 97.49 55.22
1.73 89.69 0.00 1.00 0.00 89.68 0.00 99.99 0.00 89.71 0.42 99.97 6.51 89.72 0.42 99.98 6.51
8.52 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00
-2.92 10.30 1.00 0.00 0.00 10.31 1.00 0.00 0.00 10.31 1.00 0.00 0.00 10.30 1.00 0.00 0.00
-1.24 17.60 99.71 8.16 28.54 35.80 98.23 28.63 53.03 20.02 99.46 10.89 32.91 21.19 99.78 12.16 34.83
-0.85 90.23 58.71 93.85 74.23 62.94 91.69 59.64 73.94 38.16 96.50 31.45 55.09 39.08 97.84 32.32 56.24
-0.79 91.52 49.80 96.32 69.26 65.90 90.70 63.05 75.62 41.35 95.72 35.10 57.97 41.97 97.13 35.63 58.83
-0.73 92.03 43.51 97.61 65.17 68.36 89.74 65.90 76.90 43.90 94.76 38.06 60.05 44.43 96.42 38.45 60.89
-0.58 91.91 29.26 99.11 53.85 74.74 86.63 73.37 79.73 51.83 91.19 47.31 65.68 51.82 94.23 46.94 66.51
-0.45 91.34 20.25 99.51 44.89 78.72 83.28 78.20 80.70 57.81 87.84 54.35 69.10 57.28 92.08 53.28 70.04
-0.37 91.01 15.69 99.67 39.55 81.14 80.98 81.16 81.07 61.57 85.25 58.85 70.83 60.83 90.77 57.39 72.18
-0.32 90.81 13.22 99.73 36.31 82.47 79.28 82.84 81.04 63.92 83.42 61.67 71.73 63.14 89.46 60.11 73.33
-0.28 90.66 11.48 99.76 33.85 83.36 77.73 84.01 80.80 65.71 82.11 63.82 72.39 64.94 88.51 62.24 74.22

*Thr = Decision threshold; *ACC = accuracy (%); *SN = sensitivity (%); *SP = specificity (%); *G = G-mean (%)
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Fig. 2. MCC vs. sensitivity of the two methods KSVM and OSD on the D1050 dataset

Fig. 3. ROC curves of the competing methods on the D1050 dataset
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3.2 Evaluation on the D1239 Dataset

We conducted experiments on the D1239 dataset and compared with the results of the
D1050 to evaluate the effect of shape strings and the new over-sampling algorithm on the
PPI sites prediction problem.

In addition to the evaluation criteria above, F-measure and Area Under Precision/Recall
Curve(AUC-PR) [16] were used. F-measure is defined as follows:

F-measure = (2 ∗ ∗ )/( + )
where:

precision = /( + )
recall= /( + )
These metrics show the ability of classifier for detecting rare positive samples in the
imbalanced dataset. Table 3 shows the results of experiments on the dataset D1239 with the
different decision thresholds of the methods. Table 4 shows the improvements using our
algorithm and new decision threshold in the comparison of the naïve classifier. In Table 4,
OSD and OSD-THR outperformed the others and the best previous result in G-mean. It
indicates that our over-sampling algorithm based on the local density can relieve the class-
imbalance problem in this dataset. On the other hand, KSVM and KSVM-THR on the dataset
D1239 achieved higher accuracy, sensitivity, G-mean than on the D1050. It demonstrated
that shape string is an informative feature for discriminating interface and non-interface
residues. Fig. 4 and 5 show that performance curves on D1239 are similar to the ones on
D1050.

Fig. 4.  MCC vs. sensitivity of KSVM and OSD on the D1239 dataset
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Fig. 5. ROC curves of the competing methods on the D1239 dataset

Table 5 displays the comparative results on the datasets D1050 and D1239. Though
sensitivity of OSD and OSD-THR decreased 4.73% and 3.29% (from 67.86% to 63.13% and
from 77.73% to 74.44%), respectively, precision increased 4.45% and 3.42%. All the
experiments on D1239 achieved higher F-measure than the corresponding one on the
D1050. In addition, F-measure of OSD and OSD-THR on the both datasets are higher than
that one of Chen and Jeong (49%) [17]. Furthermore, AUC-PR of KSVM and OSD on D1050
and D1239 were 0.56, 0.55, 0.58, and 0.57, respectively. In Fig. 6, it can be seen that the
performance of KSMV on D1239 is apparently better than the one on D1050 in the area of
recall lower than 0.3 and precision higher than 0.8. It means that shape string is effective for
performance improvement in this area.
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Fig. 6. PR curves for the datasets with shape string (D1239) and without shape string
(D1050) prediction with KSVM as basic classifier
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Table 3. Performance of KSVM-THR, OSD-THR, RUS-THR and RUS-OSD-THR with different decision threshold values on the
dataset D1239

Method KSVM-THR OSD-THR RUS-THR RUS-OSD-THR
Thr ACC SN SP G ACC SN SP G ACC SN SP G ACC SN SP G
0.96 89.70 0.14 1.00 3.76 90.66 12.44 99.65 35.21 90.30 20.29 98.35 44.67 91.00 32.91 97.68 56.70
1.73 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.67 0.18 99.96 4.20 89.69 0.49 99.94 7.03
8.52 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00 89.69 0.00 1.00 0.00
-2.92 10.30 1.00 0.00 0.00 10.30 1.00 0.00 0.00 10.31 1.00 0.00 0.00 10.31 1.00 0.00 0.00
-1.24 17.85 99.61 8.46 29.03 34.74 98.30 27.44 51.93 19.73 99.26 10.59 32.43 20.99 99.61 11.96 34.51
-0.85 90.11 59.31 93.65 74.53 64.88 92.08 61.75 75.41 37.76 96.36 31.02 54.67 39.13 97.63 32.40 56.24
-0.79 91.60 50.83 96.29 69.96 68.02 90.27 65.46 76.88 41.01 95.40 34.76 57.59 42.02 97.24 35.68 58.90
-0.73 91.99 44.50 97.45 65.85 70.54 89.14 68.40 78.09 43.69 94.56 37.85 59.82 44.65 96.50 38.69 61.10
-0.58 91.97 29.97 99.10 54.50 76.93 84.72 76.04 80.26 51.66 91.34 47.10 65.59 52.28 94.49 47.43 66.95
-0.45 91.57 22.23 99.54 47.04 80.92 80.38 80.98 80.68 57.61 87.45 54.18 68.83 58.00 92.19 54.07 70.60
-0.37 91.32 18.55 99.68 43.01 83.21 77.80 83.83 80.76 61.33 84.66 58.65 70.46 61.50 90.31 58.19 72.49
-0.32 91.17 16.54 99.74 40.62 84.56 75.82 85.57 80.54 63.76 82.40 61.62 71.26 63.95 88.55 61.12 73.57
-0.28 91.07 15.30 99.78 39.08 85.49 74.44 86.76 80.36 65.54 80.88 63.78 71.82 65.72 87.56 63.21 74.39

*Thr = Decision threshold; *ACC = accuracy (%); *SN = sensitivity (%); *SP = specificity (%); *G = G-mean (%)
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Table 4. Performance measures comparison of different methods on the dataset
D1239

Method Overall accuracy
(%)

Sensitivity
(%)

Specificity
(%)

G-mean

KSVM 90.45 8.02 99.92 28.31
OSD 89.61 63.13 92.66 76.48
KSVM-THR 91.07 15.30 99.78 34.79
OSD-THR 85.49 74.44 86.76 80.36

Table 5. Performance measures comparison on the datasets D1239 and D1050

Data set Method Precision (%) Recall (%) F-measure (%)
D1050 KSVM 89.18 4.66 8.86

OSD 45.27 67.86 54.31
KSVM-THR 85.07 11.48 20.24
OSD-THR 35.84 77.73 49.06

D1239 KSVM 92.65 8.02 14.76
OSD 49.72 63.13 55.63
KSVM-THR 89.09 15.30 26.12
OSD-THR 39.26 74.44 51.40

4. CONCLUSION

In this study, we aimed at the identification of protein-protein interaction sites. The PPI
datasets used in this study were highly class-imbalanced, which often decrease
classification performance of SVMs. To avoid this issue, we proposed a novel over-sampling
technique that effectively utilizes local density of minority samples. We also proposed
several methods combined with KSVM-THR and random under-sampling methods to
reinforce the tolerance for the class imbalance problem. Experimental results showed that
the combination of our OSD algorithm and new feature group led to higher sensitivity, G-
mean, precision, MCC, F-measure, and AUC-PR, at least comparable performance with the
state-of-the-art methods. In addition, we found that the information of predicted shape strings
increase the performance for predicting whether interface or non-interface residues. Further
extensions can be considered, for example, combining our algorithm with other heuristic
under-sampling method, or feature selection methods.
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