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Abstract: We investigate the impact that disparities in regional vaccine coverage have on the risk of infection
for an unvaccinated individual. To address this issue, we develop an agent-based computational model of epi-
demics with two features: 1) a population divided among multiple regions with heterogeneous vaccine cover-
age; 2) contact networks for individuals that allow for both intra-regional interactions and inter-regional inter-
actions. The benchmark version of the model is specified using county-level flu vaccination claims rates from
California. We isolate the effects of heterogeneity by holding overall vaccination levels constant, while changing
the variance in the distribution of regional vaccine coverage. We find that an increase in spatial heterogeneity
leads to larger epidemics on average. This effect is magnified when more inter-regional connections exist in the
contact structure of the networks. The central result in the paper is that there is a non-monotonic relationship
between the infection risk and the geographic resolution of vaccination rate measurement. Infection risk of an
unvaccinated individual decreases in both the global rate of vaccinations and the rate of vaccination of the in-
dividual’s specific contacts. Surprisingly, we find that the vaccination rate in an individual’s home region does
not have a significant impact on an individual’s infection risk in our model. This has significant implications
for an individual’s vaccine choices. Global and local (network specific) vaccination rates are highly correlated
with infection risk and thus should be prioritized as information sources for rational decision-making. Using
the region-specific information, however, is likely to lead to non-optimal decisions.

Keywords: Infectious Disease, Epidemic, Contact Networks, Risk of Infection, Agent-Based Computational
Model

Introduction

1.1 In recent years, there is growing concern over the spatial heterogeneity of vaccine coverage. The concern grew
when recent measles outbreaks in the United States and Europe were traced to pockets of unvaccinated chil-
dren (CDC 2023). The uneven distribution of the COVID-19 vaccine in developing countries as well as across
geographic locations in the United States and Europe has made the issue even more important in both aca-
demic and policy discussions.

1.2 In particular, the issue of the anti-vaccine movement has sparked a wide spread discussion in academics (Poland
& Jacobson 2001; Buttenheim et al. 2012) and the general press (Ingraham 2015; Oster & Kocks 2018). Some of
these discussions focus on rates of vaccination refusal in particular locations and the correlation with epidemic
size within these locations (Feikin et al. 2000; Atwell et al. 2013). Many other studies examine the demographic
correlates of vaccine refusal and try to identify factors that lead to anti-vaccine sentiment or refusal (Atwell et al.
2013; Gust et al. 2004; Sugarman et al. 2010; Birnbaum et al. 2013; McNutt et al. 2016).
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1.3 Despite the publicity received by this movement, overall levels of vaccination rates have not changed signif-
icantly in the years leading up to the COVID-19 pandemic. For example, the US vaccination rate for Measles
Mumps and Rubella (MMR) has been relatively stable for two decades. Rates of MMR vaccination for children
19-35 months old have been between 89.7% and 93.0% from 1995 until 2017. Since 2000 the rates are in an
even narrower range between 90.0% and 92.1% (with the low in 2009 and the high in 2008.) (CDC 2018). More
recently, the CDC estimate of the MMR vaccination rate for entering kindergarten students in the 2021-2022
school year sits at 93.0% (Seither et al. 2023). However, while overall rate of vaccine coverage has not changed
dramatically in recent years, there exists an interesting and less discussed feature of vaccine coverage: spatial
heterogeneity with vaccine refusal being especially high in particular localized areas (May & Silverman 2003;
Carrel & Bitterman 2015; Lieu et al. 2015). As a macro-level example, the MMR coverage data discussed above
has a wide variety of vaccine coverage at the state level. In 2017, the state with the lowest MMR coverage was
Missouri with just under 86% coverage; Massachusetts, the state with the highest level of coverage, had over
98% coverage.

1.4 The wide variation in vaccine coverage across geographic space is not just limited to MMR. A case in point is the
influenza vaccine coverage in US. For 2018-19 season, the mean coverage rate for the US was 49.2% with the
minimum and the maximum at the state level being 37.8% (Nevada) and 60.4% (Rhode Island), respectively.
Table 1 provides the historical data for the period of 2010-2019 as reported by Center for Disease Control (CDC).
It is clear that the wide variation in vaccine coverage has persisted over time.

Season US % CI Min state Max state
2018-19 49.2 (±0.3) 37.8 60.4
2017-18 41.7 (±0.3) 35.3 50.1
2016-17 46.8 (±0.5) 36.1 55.4
2015-16 45.6 (±0.4) 36.8 56.6
2014-15 47.1 (±0.3) 39.2 59.6
2013-14 46.2 (±0.4) 36.4 57.4
2012-13 45.0 (±0.4) 34.1 57.5
2011-12 41.8 (±0.4) 32.6 51.1
2010-11 43.0 (±0.4) 36.5 55.6

Table 1: Influenza vaccine coverage estimates (%) at state level for persons 6 months or older, 2010-2019*. *CI =
95% confidence interval; % = weighted percent of population vaccinated (percentages are weighted to the U.S.
population). Source: https://www.cdc.gov/flu/fluvaxview/reportshtml/trends/index.html

1.5 Another case in point, though at a much larger scale, are the current COVID-19 vaccine rates. The prevailing
scientific view is that the wide disparities between countries in vaccine availability and its distribution as well
as vaccine refusal are among the major determinants of the evolving rates of disease at both national and global
levels (Aschwanden 2021). Figure 1 plots the share of the population fully vaccinated against COVID-19 as of July
28, 2021 for a select group of countries. The wide disparities in vaccine distribution even in this limited sample
are quite striking as we observe the percentage shares ranging from 7.1% for India to 69.7% for United Arab
Emirates with the global average (WORLD) being only around 14.2% - largely driven by low vaccine rates in very
populated countries such as India.
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Figure 1: Share of the Population Fully Vaccinated against COVID-19 July 28, 2021 (World in Data: https//our
worldindata.org/covid-vaccinations.)

1.6 All of these observations lead us to the following question: Does spatial heterogeneity in vaccine coverage,
independent of the overall level, affect the dynamic and the ultimate severity of the epidemic? If so, what are
the implications for the assessment of an unvaccinated individual’s risk of infection as measured at different
levels of information aggregation such as global, regional, or individual network-specific infection rates?

1.7 These questions can be partially answered using the standard analytical models that exist in the epidemiol-
ogy literature such as the SIR model. However, the inherent complexities in the structure of the web of contact
networks through which an infectious disease may propagate present a substantial barrier to gaining further
insights strictly within an analytical framework. In this paper, we propose to explore the issues identified above
by developing an agent-based computational model of an epidemic process in a population distributed across
geographic regions, in which individuals interact through their intra- and inter-regional contact networks. The
benchmark model specifies the distribution of the regional vaccine coverage using the county-level flu vacci-
nation claims rates from California. In order to isolate the effect of only spatial heterogeneity we change the
variance in the distribution of vaccination coverage across regions while holding the population level vaccina-
tion rate constant. By isolating the variance apart from overall vaccination coverage, we can better understand
how regions with low levels of vaccination coverage affect the overall epidemic process and how vaccine refusal
by a collection of individuals in the same location affects regional and network based neighbors.

1.8 We find that spatial heterogeneity by itself increases epidemic size on average. The effect is larger when there
are more inter-regional connections in the contact network. We also examine the infection risk of an individual
(the likelihood that an unvaccinated individual is infected) as a function of global and regional rates of vacci-
nation. Not surprisingly, we find that increases in global vaccination rates decrease both epidemic size and
individual infection risk. Surprisingly, we find that the vaccination rate of a region is uncorrelated with the in-
fection risk of individuals in the region, even though regions with low vaccination rates have larger epidemics
on average. However, infection risk of an individual is negatively correlated with the number of unvaccinated
direct network contacts. Thus, in our model, there exists a non-monotonic relationship in the resolution of vac-
cine coverage and individual infection risk. Macro level and individual level measures of vaccine coverage are
good predictors of individual infection risk. But vaccination coverage at an intermediate (regional) resolution
may not be closely tied to likelihood of infection. This result has important policy considerations. Individuals
who use regional (e.g., school district, neighborhood, or community) levels of vaccinations are unlikely to make
accurate predictions of their infection risk. Thus, they are not likely to make optimal decisions with regard to
vaccine usage. 1

1.9 Network based computational and mathematical models of disease transmission, similar to the one imple-
mented in this paper, are frequently used to understand epidemic processes (Eubank et al. 2004; Epstein 2009).
These models are used in a variety of ways. In some instances, computational models are used to predict epi-
demic outcomes as they progress (Tizzoni et al. 2012). The majority aim to investigate epidemic outcomes as a
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function of complex network variables and behavioral or interaction based assumptions of agents within these
models (see, for example, Smith et al. 1999; Bansal et al. 2006; Germann et al. 2006; Stroud et al. 2007; Bar-
rat et al. 2010; Gersovitz 2013; Del Valle et al. 2013; Vardavas & Marcum 2013; Tassier et al. 2017). The unique
contribution of our paper is proposing a model that explicitly separates the effect of changes in spatial vaccine
coverage heterogeneity from changes in population level vaccination coverage.

Standard SIR Model of Infectious Disease

2.1 One of the simplest mathematical models of disease spread is the SIR model. It belongs to a class of models
referred to as compartmental models. In these models, the population is assigned to compartments repre-
senting specific states such as S (susceptible), I (infectious), or R (recovered). Individuals can move between
compartments as their state changes. The name of the model typically indicates the order of flow between
compartments. For example, the SIR model implies a typical individual moves from susceptible state, S, to
infectious state, I , and then to recovered state, R. In most applications, the SIR model is constructed to cap-
ture the disease spread for a single population in a perfectly closed region. In section 2.1, we provide a brief
description of such a standard single-regionSIR model. Given our interest in this paper of studying the spread
of disease in a multi-regional framework, we then provide, in section 2.2, a limited extension of the SIR model
in which the population is distributed between two regions. While this simple extension gives us a clear view
of the specific ways in which the added region may influence the epidemic dynamics, the complex interaction
across even more regions undermines analytical tractability and severely limits the scale and scope of our in-
vestigation. The agent-based model proposed in this paper is meant to surmount the difficulty of analyzing a
many region model by agentizing the standard SIR model in a general multi-regional setting and performing
a computational analysis of the epidemic dynamics.

2.2 It should be noted that the SIR model described in this section is the simplest possible analytical model of
infectious disease, and our intention here is to show that even within this simple setup the consideration of
multi-regional infection spread can significantly raise the level of analytical complexity. Once the number of
regions rises above two, the analytical tractability is difficult to sustain and a computational modeling approach
becomes the only viable option. As such, the purpose of the discussions in this section are to “motivate” and
“justify” the use of our agent-based modeling approach rather than to engage in a direct comparative analysis
of the two approaches.

Single-region SIR model

2.3 The discrete time version of the usual SIR model for a single isolated population takes the following form:

S(t+ 1) = S(t)− CTS(t)
I(t)

N
(1)

I(t+ 1) = I(t) + CTS(t)
I(t)

N
− (

1

D
)I(t) (2)

R(t+ 1) = R(t) + (
1

D
)I(t) (3)

where N is the population size, S(t) is the number of susceptible individuals, I(t) is the number of infected
individuals, and R(t) is the number of recovered individuals. The parameters, C, T , and D are respectively the
contact rate, transmission rate, and the duration of infection. In Figure 2, we plot the time paths of these three
numbers for a population of 10,000 individuals with C = 0.9, T = 0.3, and D = 7, where I(0) = 10.
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Figure 2: Time Paths under Standard SIR Model.

2.4 The most important measure in the standard SIR model is the basic reproduction number, R0, which is the
average number of people a typical infected person can infect when the entire population is susceptible. In our
framework, this implies:

R0 = CTD (4)

2.5 A related concept is the "effective reproduction number," R, which is defined as the average number of people
a typical infected person can infect in a given period t when there are a fraction S(t)

N of susceptible people in
the population:

R = R0
S(t)

N
(5)

2.6 Another notable measure is the "herd immunity threshold,"h(t), which is the proportion of the population that
need to be immune in order to prevent an infectious disease outbreak within a region. Note that this level is
attained when each case of infection leads to exactly one (or fewer) new case in the standard model such that
R = 1. Or, R = R0

S(t)
N = 1. Since the fraction of susceptible individuals is then S(t)

N = 1
R0

, the herd immunity
threshold takes the following form:

h(t) = 1− 1

R0
(6)

Two-Region SIR Model

2.7 Suppose now that the population of N individuals is divided into two spatially distinct regions, 1 and 2, such
that each individual belongs to only one of the two regions. Hence, we have N = N1 + N2, where Ni is the
number of individuals belonging to region i (i = 1, 2).

2.8 An individual mainly interacts with other individuals in his/her own home region, but there is always some
possibility that he/she may be exposed to someone from the foreign region. To be specific, let us denote by β
the probability that an individual is in contact with another individual from the home region; hence, the same
individual can come into contact with another person from the foreign region with a probability 1− β.

2.9 The original SIR model can be extended to describe the epidemic process in the two-region case. Using the
subscripts to denote the two regions, we may write the two-region version of the SIR model as follows:

Sk(t+ 1) = Sk(t)− CTSk(t)[β
Ik(t)

Nk
+ (1− β)

Ik(t)

Nk

] (7)

Ik(t+ 1) = (1− 1

D
)Ik(t) + CTSk(t)[β

Ik(t)

Nk
+ (1− β)

Ik(t)

Nk

] (8)

Rk(t+ 1) = Rk(t) + (
1

D
)Ik(t) (9)
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for k, k = 1, 2(k ̸= k). Clearly, the equations capturing the discrete dynamics of the epidemic have become
more complex due to the inclusion of the second region. Nevertheless, the intuition underlying these equations
is straightforward. Take, for instance, the number of infected individuals in region 1, I1(t+ 1). If β = 1 so that
there exists no interaction between the populations of the two regions, then the number of infected individuals
in t+1 depends only on the infected individuals in the home region in t: Hence Equation 8 becomes equivalent
to Equation 2 for the population in region 1. However, as the cross-border interactions are allowed between
the regions so that β < 1, the number of infected individuals in one region becomes dependent on the number
of infected individuals in t from both the home region (region 1) and the foreign region (region 2).

2.10 For expositional and analytical simplicity, we may rewrite the above equations in terms of the regional rates
(instead of numbers) of susceptibility, infection, and recovery (for regions 1 and 2) such that:

sk(t+ 1) = sk(t)− CTsk(t)[βik(t) + (1− β)ik(t)] (10)

ik(t+ 1) = (1− 1

D
)ik(t) + CTsk(t)[βik(t) + (1− β)ik(t)] (11)

rk(t+ 1) = rk(t) + (
1

D
)ik(t) (12)

where sk(t) ≡ Sk(t)
Nk

, ik(t) ≡ Ik(t)
Nk

, and rk(t) ≡ Rk(t)
Nk

, k = 1, 2.
2.11 The first property we can identify from the two-region SIR model is that the impact of β on the infection rate

of a given region depends on its current rate of infection relative to that of its neighbor:

ik(t+ 1)|β<1 ⋛ ik(t+ 1)|β=1 (13)

if and only if ik(t) ⋚ ik(t).
2.12 Hence, cross-regional contacts adversely affects a region if its regional rate of infection is lower than that of the

neighboring region, and vice versa. Furthermore, once the cross-regional contact is allowed so that β < 1, the
size of β similarly affects the regional rate of infection:

∂ik(t+ 1)

∂β
⋛ 0 (14)

if and only if ik(t) ⋚ ik(t).
2.13 The main insight here is that the cross-regional contact affects the more infected region favorably and the less

infected region adversely. Hence, we may view the cross-regional spillover as a negative externality for the
currently safer region and as a positive externality for the less safe region.

2.14 We have, thus far, focused on the epidemic implications for each individual region. A bigger question is how
cross-regional contacts may affect the spread of the infectious disease at the global level. In other words, how
does β affect i(t+ 1), where i(t+ 1) = I1(t+1)+I2(t+1)

N ? The answer to this question is not straightforward, as
multi-regional contacts create a positive externality for one region, while they simultaneously create a negative
externality for the other region. If these countervailing effects are equal in magnitudes, they may neutralize
each other and have no consequence for the global epidemic. But there is no reason to assume that the effects
are equally strong. As such, we specifically look at the global infection rate next.

2.15 For expositional ease, we express the division of the global population between the two regions using a pro-
portion α such that N1 = αN and N2 = (1 − α)N . The global rate of infection may be written as i(t + 1) =
αi1(t+ 1) + (1− α)i2(t+ 1) such that:

i(t+ 1) = (1− 1

D
)i(t) + CT [i1(t){αβs1(t) + (1− α)(1− β)s2(t)}+

i2(t){(1− α)βs2(t) + α(1− β)s1(t)}]
(15)

2.16 When there is no cross-regional contact such that β = 1, the equation simplifies to:

i(t+ 1)|β=1 = (1− 1

D
)i(t) + CT{αi1(t)s1(t) + (1− α)i2(t)s2(t)} (16)

2.17 We observe the following property when comparing the global infection rate with and without the cross-regional
contacts:

i(t+ 1)|β<1 ⋛ i(t+ 1)|β=1 (17)
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if and only if [i1(t)− i2(t)][αs1(t)− (1− α)s2(t)] ⋚ 0.
2.18 This property indicates that the impact of the cross-regional contacts on the global rate of infection depends

both on the ratio of the regional infection rate, i1(t)
i2(t)

, and the ratio of the regional susceptibility rates, s1(t)
s2(t)

. The
exact nature of the dependence may be stated as follows:

• Cross-regional contact raises the global infection rate if { i1(t)
i2(t)

< 1 and s1(t)
s2(t)

> 1−α
α } or { i1(t)

i2(t)
>

1 and s1(t)
s2(t)

< 1−α
α }

• Cross-regional contact reduces the global infection rate if { i1(t)
i2(t)

> 1 and s1(t)
s2(t)

> 1−α
α } or { i1(t)

i2(t)
<

1 and s1(t)
s2(t)

< 1−α
α }

• Cross-regional contact has no impact on the global infection rate if i1(t)
i2(t)

= 1 or s1(t)
s2(t)

= 1−α
α

Figure 3: Impact of Cross-Regional Contact on Global Infection Rate in Two-Region SIR Model.

2.19 It is instructive to consider a special case where the two regions are of equal size so that α = 1
2 . In this case,

the above property can be visualized as in Figure 3, where the space of the two ratios is divided into four areas
with the corresponding property for each area. We can summarize the results as follows:

• The cross-regional contacts raise global infection if a given region has a higher (lower) infection rate but
a lower (higher) susceptibility rate;

• The cross-regional contacts reduce global infection if one of the two regions has both a higher rate of
infection and a higher rate of susceptibility;
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• The cross-regional contacts have no impact on global infection if either the infection rates or the suscep-
tibility rates are equal between the two regions.

2.20 Intuitively, the condition for the first case allows cross-regional infection to take place easily from the highly
infected region to the highly susceptible region. In contrast, the condition for the second case implies that both
infection and susceptibility are concentrated in one region; hence, the cross-regional contacts, by promoting
interaction of the individuals from the region with higher infection to the other region with more immune pop-
ulation, result in reducing the global rate of infection.

Agentizing the model of epidemics

2.21 There have been many extensions pursued in the analytical tradition so as to treat different types of infectious
diseases – e.g., SEIR model, SIS model, etc. However, as shown above, a simple extension of the standard
SIR model to include a second region already introduces a substantial degree of complexity to the analysis,
significantly limiting the range of questions that can be asked. 2 Retaining sufficient analytical tractability typi-
cally requires making strong assumptions on the nature of interactions between individuals that influence the
contact and transmission rates as well as the state of vaccination in specific regions – e.g., uniform contact
probabilities with respect to the rest of the population and homogeneous vaccination across all regions. When
the research questions of interest involve spatially defined interactions that require differentiating between the
contacts in terms of their proximity or of the nature of their relationships to the given individual, the assump-
tions needed for tractability become untenable.

2.22 In order to circumvent this obstacle without compromising the integrity of our research objective, we propose
in this paper an agent-based model of infection spread, which is rooted in the standard SIR model but is also
capable of capturing the complex interactions between individuals from the bottom up. We accomplish this by
foregoing the purely analytical methodology and pursuing in its stead a computational model and analysis of
the changes in the states of individuals over time. This trade-off is worthwhile in view of the expanded scope
of investigation thus achieved. In the next section, we present the agent-based model of epidemics and show
how such a formulation expands the space of parameters that we can examine for richer analysis.

2.23 A significantly simplified version of our agent-based model was presented in Chang & Tassier (2021) as the first
step toward agentizing the multi-regional infection dynamics. In that paper, the authors made a simplifying
assumption that all regions are separated into two groups based on two fixed vaccination rates – high vaccina-
tion regions (with the vaccination rate fixed at a high level) and low vaccination regions (with the vaccination
rate fixed at a low level). It was, hence, a two-region model in essence. This simplification allowed them to
focus on the precise details of how the positive externality and the negative externality arise from the inter-
regional contacts between the two types of regions as infection spreads across regions. In contrast, our model
in the current paper is a “generalized” version of the multi-region model where the regional vaccination rates
are specified using a beta distribution across all regions (100 regions in our experiments). The use of a beta
distribution is motivated by and specified on the basis of the empirical data on the county-level flu vaccination
claims rates from California. This refinement allows us to gain insights of sufficient generality into the relation-
ship between the rates of vaccination and the risk of infection at the individual network level, regional level,
and the global level.

Agent-Based Model

3.1 The agent-based model presented here is a bottom-up version of the standard SEIR model, where an individ-
ual moves between four states of susceptible (S), exposed (E), infectious (I), and recovered (R).3 A substantially
simplified two-region version of this model was presented in Chang & Tassier (2021). The model presented in
this paper is a generalized version, which allows the number of regions to be more realistically large. We com-
bine this model with data from the US Department of Health and Human Services (HSS) on Medicare fee for ser-
vice beneficiaries. We then run a series of computational simulations over the parameter space of the model.
4

3.2 A brief description of the model is presented in Appendix A in a format that follows the ODD protocol as proposed
by Grimm et al. (2006), Grimm et al. (2010) and Grimm et al. (2020). The following discussion in the remaining
part of this section offers a full description of the model.
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3.3 The infection dynamics modelled in this paper are loosely based on the seasonal influenza virus. In our model
an infectious disease propagates over a complex web of interconnected contact networks. We assign agents in
the model to one of a set of non-overlapping regions. The regions may be thought of as geographic areas where
most person-to-person interactions take place within the area. Each agent is connected to a subset of other
agents in the population. Most of the contacts come from the agent’s own region (local contacts) but a small
percentage come from outside the agent’s region (global contacts). A region in our model is, hence, defined by
the characteristics of the individual contact networks, where the individuals within a given region have higher
probability of physical interaction with one another than with those outside of the region. Examples would
include school districts with the children having higher rates of contact with other children in the same school
district or local communities within which people reside and maintain social interactions through churches,
workplaces, and local social gathering places. 5

3.4 In this paper, agents are assigned a vaccination status exogenously based on the rate of vaccine coverage in their
region. We then allow an epidemic process to propagate across the network. By holding the mean vaccination
level across the population constant but changing the distribution of vaccine coverage across the regions, we
can analyze the effect of spatial heterogeneity in vaccine coverage.

Agents and contact networks

3.5 We specify a fixed population of 10,000 agents, Z ≡ {1, . . . , 10000}, distributed in a physical space. Each agent
belongs to a single region; there are 100 non-overlapping regions. Denote by h(i) the home region for agent i
such that the group of agents belonging to a region k ∈ {1, . . . , 1000} is denoted by Γk, where Γk ≡ {∀i ∈
Z|h(i) = k}. Because each agent belongs to only one region, we have ∪100

k=1Γk = Z and
∑100

k=1|Γk| = 10000.
3.6 Our contact network model is a variant of the well-known stochastic block models (Abbe 2018). Each agent i

has a contact network, C(i), which consists of those individuals that it regularly interacts with such that trans-
mission of the disease can occur. These networks are, on average, of a size c. In this paper we set c = 20. We
create the network for each individual by randomly matching agents, in a sequential manner, until the average
size of the networks in the population reaches 20. We mix local and global contacts in individual networks in a
manner similar to the canonical models of Watts & Strogatz (1998). We create a parameterϕ, which controls the
"local specificity" of contact networks. Specifically, ϕ share of agent i’s contacts come from Γh(i) − {i}, while
the remaining share (1-ϕ) of i’s contacts come from Z − Γh(i). Higher values of ϕ imply more local, or regional,
contact networks. Lower values of ϕ imply a larger percentage of global contacts in the networks. The contacts
within an agent’s network are long lasting; once created, the agent maintains the same contact network for the
duration of a replication of the model.

Vaccination rates

3.7 We introduce spatial heterogeneity in vaccination rates in our model by allowing the vaccination rates to vary
across regions. Such heterogeneity can be due to various socio-demographic factors – e.g., age, education lev-
els, income levels, etc. – which may contribute to spatial/regional differences in vaccine rates, but it may also
arise from conscious vaccine refusals by individuals and/or disparities among regions (or countries) in their
technological capacity to produce and distribute the vaccine. In this model, we do not address how specific
factors can lead to differential vaccine rates, but instead we take the existence of heterogeneity as exogenously
given (from data) and examine its implications on the severity of epidemics and the risk of infection for individ-
uals.

3.8 To control the degree of spatial heterogeneity systematically, we assume a base distribution for the regional
vaccination rates and then specify the fraction of the vaccinated individuals in each region based on that distri-
bution. The vaccination status of an individual at the start of a season is assigned probabilistically according to
the specified vaccine coverage rate of his home region. The infection and transmission of the disease then take
place, given the underlying vaccination state of the regional population for the season.

3.9 Specifically, each region k has a fixed rate of vaccination coverage, πv
k , such that πv

k × |Γk| agents in that region
are vaccinated in the given season on average, where k ∈ {1, 2, 3, . . . , 100}. For the experiments performed in
this paper, we hold πv

k fixed for all periods within a given season. Furthermore, πv
k is specific to each region and

can be heterogeneous across regions. How πv
k is specified across regions is central to our investigation.

3.10 We perform a set of computational experiments associated with the vaccination rates. We first establish a
benchmark for our analysis by considering the case of perfectly homogeneous vaccine coverage: Each region
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of the population has the same rate of vaccination, πv
k = πv for all k. We then compare the benchmark case

to a set of cases of heterogeneous vaccine coverage where we draw the vaccination rate for each region from a
data-driven distribution.

3.11 In order to provide an empirical basis for the distribution, we use the county-level flu vaccination claims rates
from California, made publicly available by the U.S. Department of Health and Human Services (HHS) athttps:
//www.hhs.gov/. HHS tracks the weekly geographic trends in flu vaccination rates among Medicare fee-for-
service beneficiaries for every state, county, and zip code in the United State. The data we use is for the state
of California, where the total number of beneficiaries per county as well as the number of flu vaccine claims
relative to the number of beneficiaries are reported for all counties for the flu season of 2016-2017. The dataset
used in the paper is provided in its entirety in Appendix B. The mean (µ̂) and variance (υ̂) of the vaccination rates
are, respectively, µ̂ = 0.41329 and υ̂ = 0.00812873.

3.12 For our comparative analysis, we assume that the county-level vaccination rate is a random variable distributed
according to Beta distribution. The Beta distribution gives us the flexibility to easily isolate the effects of changes
in variance apart from changes in mean. The distribution is specified with two shape parameters, (ρ1, ρ2), where
the mean of the random variable is ρ1

ρ1+ρ2
and the variance is ρ1ρ2

(ρ1+ρ2)2(ρ1+ρ2+1) We can solve for the values of
ρ1 and ρ2 which give us the distribution having the same mean and variance as the California vaccination rates,
µ̂ and υ̂, by simply setting µ̂ = ρ1

ρ1+ρ2
and υ̂ = ρ1ρ2

(ρ1+ρ2)2(ρ1+ρ2+1) , and solving for ρ1 and ρ2. The corresponding
values are: ρ1 = 11.9152 and ρ2 = 16.9149. We will use these values (and the corresponding Beta distribution)
as the baseline for our analysis. In Figure 4, we plot the probability density function given the above values for
the two shape parameters (dotted curve) as well as the kernel density estimates of the actual California data
(solid curve) for visual comparison. Obviously, the Beta density has the same mean and variance as the original
California data.

Figure 4: Probability Density Function of the Beta Distribution Having the Same Mean and Variance as the Cali-
fornia Vaccination Data.

3.13 Given the baseline values for (ρ1, ρ2), it is straightforward to manipulate the Beta distribution function, chang-
ing the variance of the distribution while keeping the mean fixed by scaling the two shape parameters. We define
a scale parameter κ such that ρ̂1 = κρ1 and ρ̂2 = κρ2. The mean of the Beta distribution is then independent
of κ, while the variance is negatively related to κ. For our experiments, we consider four different values of κ
such that κ ∈ {0.25, 0.5, 1.5}. The values of (ρ̂1, ρ̂2) as well as the mean and variance of the corresponding
Beta distribution are provided for each value of κ in Table 2.

ρ̂1 ρ̂2 E[X] V ar[X]
κ = 0.25 2.9788 4.22874 0.41329 0.0295437
κ = 0.5 5.9576 8.45747 0.41329 0.0157301
κ = 1.0 11.9152 16.9149 0.41329 0.00812873
κ = 5.0 59.576 84.5747 0.41329 0.00167055

Table 2: Scaling the Beta distribution.

JASSS, 26(3) 3, 2023 http://jasss.soc.surrey.ac.uk/26/3/3.html Doi: 10.18564/jasss.5095

https://www.hhs.gov/
https://www.hhs.gov/


3.14 We show in Figure 5 the probability density functions (PDF) and the cumulative distribution functions (CDF) of
the Beta distribution for the chosen values of κ, where the variance is greater (smaller) for lower (higher) values
of κ while the mean stays fixed at µ̂(= 0.41329). Note that κ = 1 corresponds to the baseline Beta distribution
that generates the same mean and variance as the California vaccination data. Using these Beta distributions,
we can generate the random variates that will give us the vaccination rates for each region in our computational
model. For each season, we take each region within the model and draw a vaccination coverage variable from
the Beta distribution. Each region has an independent draw of vaccination coverage. Then we randomly vacci-
nate each individual agent within each region with a probability equal to the draw for that particular region.

Figure 5: PDFs and CDFs of the Beta Distribution with a Fixed Mean and Varying Variances.

Spatial infection dynamics

3.15 Each computational experiment performed for a given set of parameter values consists of multiple seasons,
where each season is indexed by s. These seasons are independent in that we assume each season starts with
a new strain of virus, which spreads in the population through the contact networks of individual agents as
described in Section 3.1.

3.16 The underlying mechanism for the infection dynamics is theSEIR (Susceptible-Exposed-Infectious-Recovered)
epidemic process, which is an extended version of the standard SIR model. In this framework, when a suscep-
tible (unvaccinated) agent comes in contact with an infectious agent, the susceptible agent moves into the ex-
posed state with a fixed probability, ω. The agent in the exposed state then moves into the infectious state and
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then to the recovered state after a fixed number of periods. An agent thus recovered stays immune to future
infection for the current season. A vaccinated agent immediately moves into the recovered state, becoming
immune for the rest of the season.

3.17 Specifically, at t = 0 of each season we assign the vaccination status – i.e., vaccinated (V ) or unvaccinated
(NV ) – to all agents, using the regional vaccination rates as described in Section 3.2. The vaccination status,
once specified in t = 0, remains fixed for the remainder of the season.

3.18 At each time period, t ≥ 1, of a given season, s, the state of an agent, i, is defined by his vaccination status,
vi(s) ∈ {V,NV }, and his infection status, f t

i (s), where, f t
i (s), can take one of the following four states: 1)

susceptible (S); 2) exposed (E) – infected but not yet infectious; 3) infected and infectious (I); 4) recovered and
immune (R). We initiate the contagion dynamic in each season by seeding the population with a small number
of infected agents at the beginning of the season. These seed agents, chosen randomly with uniform distri-
bution from the unvaccinated population, have their state set to (NV , E) at t = 1. In all our computational
experiments, we set the number of seed agents at 10, sufficiently low to guarantee that the epidemic dynam-
ics are driven by the interactions of agents in the model. All other unvaccinated agents in the population are
specified to be susceptible at t = 1.

3.19 The spread of the disease over time is then captured by how the members of the population, given their vaccina-
tion status and infection status in t = 1, update their infection state over time, as they interact with one another
through their contact networks each period. The interactions with the close contacts take place simultaneously
for all agents in the population and we update their infection states simultaneously at the end of each period.
Specifically, a susceptible (unvaccinated) agent (i) can get infected through contact with an infectious agent in
his network, C(i). Let nt

i(s) be the number of ‘infectious’ agents in C(i) in period t of a given season, s. The
transmission of the virus between individuals is probabilistic in that a susceptible agent, when he comes into
contact with an infectious agent, gets infected with a fixed probability ω. Hence, given nt

i(s) infectious agents
in C(i), the likelihood of a susceptible agent i getting infected is q(nt

i(s)) where:

q(nt
i(s)) = 1− (1− ω)n

t
i(s) (18)

3.20 Hence, a susceptible agent i becomes exposed (E) in t + 1 with probabilityq(nt
i(s)). Denote by t̂i(s) the first

period agent i’s infection state became E. The state transition rules for an individual agent from t to t+ 1 of a
typical season may then be summarized as:

• Those agents who were vaccinated in t = 0 become immune (R) to the virus and remain protected for
the entire season.

• An unvaccinated agent who is susceptible (S) gets infected and enters the exposed state (E) with a prob-
ability, q(nt

i(s)), where nt
i(s) is the number of agents in C(i) who are infectious in t. With probability

1− q(nt
i(s)), the agent avoids infection and stays susceptible.

• An agent who is infected but not yet infectious (E) remains in that state for τE periods after the date of
infection, t̂i(s). Once past the τE periods, he becomes infectious (I) himself.

• An agent who was infected at t̂i(s) gets infectious (I) starting t̂i(s) + τE + 1. The state of I lasts for τ I
periods – i.e., from t̂i(s) + τE + 1 to t̂i(s) + τE + τ I – at the end of which the infected agent recovers
and becomes immune (R) to the virus for the remainder of the season.

• A recovered agent remains in that state (R) for the remainder of the season.

• The seasonal epidemic ends when there is no infected agent in the population – i.e., no one is in the state
of (NV ,E) or (NV , I). This is an absorbing state for the population, since, once it reaches this state, there
is no one who can pass on the infection to others either in the current period or in the future periods.

Note that this model produces results as a theoretical exercise and it is not intended to specifically mimic an
observed real-world outcome. Thus, we do not “validate” our model in comparison to existing data as is some-
times done with agent-based models. We do perform a wide range of sensitivity analysis across many model
parameters as described below. We also emphasize that the underlying distribution used to set the heteroge-
neous regional vaccination coverage comes from existing data as described above.
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Design of Computational Experiments

4.1 We simulate a sequence of 100 ‘epidemic seasons’ (replications) for each parameter set considered and report
averages and other statistics over these replications. For each season, we exogenously assign each agent in
the population a vaccination status in t = 0 as described above. This gives us vi(s) for all i ∈ Z in the given
season s. All agents who are vaccinated, vi(s) = V , gain immunity such that f1

i (s) = R. Those agents who
are unvaccinated, vi(s) = NV , become susceptible such that f1

i (s) = S. We randomly pick ten (10) of these
unvaccinated agents as seed agents. For each seed agent, k, we specify (vk(s), f

1
k (s)) = (NV,E), setting

t̂k(s) = 1 (the date of infection for the seed agent k).
4.2 Given (vi(s), f

1
i (s)) for all i ∈ Z, we follow the previously specified state transition dynamic from t = 1 and on,

keeping track of (vi(s), f t
i (s)) for all agents each period. Figure 6 provides a visualization of the state transition

rule for an individual agent from t to t+ 1 as described in Section 3.3.

Figure 6: State Transition Rule for Agent i.

4.3 The epidemic continues as long as there are individual agents who are infected. The epidemic ends when no
one in the population is in the state of exposed (E) or infectious (I) such that the population contains only
susceptible (S) and/or immune (R) individuals. Denote by T̂ (s) the earliest period that we observe no infected
individual in the population. Once the population reaches T̂ (s), there is no possibility of further contagion.
A new season, s + 1, starts where the population goes through the same sequence of events until it reaches
T̂ (s+ 1).

4.4 For each season, the epidemic is the chain of infections by the individuals in the population. We indicate the
“size” of an epidemic with the total number of people who were infected over the course of the epidemic. The
simulation outputs on the epidemic sizes are collected for all 100 seasons. We analyze how the relevant param-
eters affect the distribution of these outputs.

4.5 Recall that we construct the contact networks of all individuals in a structured way such that each agent has ϕ
fraction of his network composed of individuals from his own region and 1−ϕ fraction from outside the region.
We carry out a comparative dynamics analysis with respect to the network structure by considering multiple
values for ϕ, where ϕ ∈ {0.99, 0.975, 0.95, 0.9, 0.8}.

4.6 For the infection dynamic, we assume that an infected person remains in an exposed (latent) state for two pe-
riods (days) before becoming infectious, hence, τE = 2. Once an agent becomes infectious, he remains in that
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state for seven periods (days) before recovering such thatτ I = 7. The probability that the virus is transmitted
from an agent to anther agent is set to be ω = 0.02.

Results

Preliminary results

5.1 Prior to carrying out the planned experiments, we verify the consistency in the behavior of epidemic dynamics
in our agent based model with that of the standard SIR model. In particular, we track the time series output
of the numbers of people in the four states (S,E,I ,R) as the infection spreads in a population. For comparison
with the standard SIR model as described previously, we assume no vaccination in the population for this
exercise – i.e.,πv

k = 0 for allk. Figure 7 shows the time paths for susceptible, exposed, infectious, and recovered
individuals in a typical season when the population consists of 10,000 individuals. As shown, the results are fully
consistent with those capturing the same variables in the standard model as previously shown in Figure 2.

Figure 7: Time Paths under Agent-Based Model with No Vaccination.

5.2 Having checked the consistency of our model with the standard model, we proceed to first consider a simple
experiment in which the entire population has the uniform rate of vaccination such that πv

k = πv ≥ 0 for all
100 regions. Hence, there are no regional differences in the percentage of individuals who are vaccinated. The
main purpose of this experiment is to demonstrate that the base model produces results that are qualitatively
consistent with our expectation and to provide a benchmark for our main experiments involving heterogeneous
vaccine coverage. It should be noted that the benchmark experiment was first reported in Chang & Tassier
(2021). We review it here for the purpose of providing a proper context for our main experiment.

5.3 A comprehensive set of values are considered for πv in the benchmark case, where πv ∈ {0, 0.1, 0.2, . . . , 0.9}.
In t=0 of each season, (πv × 10000) agents are randomly selected from the population and vaccinated. Of the
remaining population of unvaccinated agents, ten are randomly selected as the seed agents and artificially
infected in t = 1 to start the epidemic process.

5.4 The results on the size of the epidemics (averaged over the 100 seasons) are visualized in Figure 8 for all πv ∈
{0, 0.1, 0.2, . . . , 0.9} and ϕ ∈ {0.99, 0.975, 0.95, 0.9, 0.8}. The impacts of πv and ϕ on global epidemics are
captured as: (a) surface plot and (b) contour plot. We make the following observations: 1) The mean size of the
epidemics decreases with πv in all five cases; and 2) a decline in the local specificity of the contact networks –
i.e., an increase in the share of inter-regional linkages – raises the mean size of the epidemics, when the rate of
vaccination is low enough to induce epidemics of significant size. These results are intuitive and as expected: A
higher rate of vaccination reduces the size of the epidemics, while more globally connected contact networks
tend to further increase the size of the epidemic when the rate of vaccination is relatively low – when the rate of
vaccination is high, the sizes of the epidemics are too small for the resulting comparisons to have any statistical
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significance. 6 The central property can then be summarized as: When vaccination rates are uniform across all
regions, the average size of an epidemic increases with the share of the inter-regional linkages.

Figure 8: Impact of ϕ and πv on the Mean Epidemic Size.

5.5 The obvious implication of this property is the increasing importance of vaccinating the population as the con-
tact networks become more inter-regional. If the globalization in the social and economic activities leads to
a general increase in the interactions between people of distant regions, an outbreak in one region is likely to
have severe and far-reaching consequences; a significant increase in the vaccination effort will be required to
keep the epidemic under control. The recent COVID-19 experience offers a clear view of this inherent property
where an epidemic involves multiple regions (countries) with cross-regional contacts by the members of the
population.
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When vaccination rates are spatially heterogeneous

5.6 We now introduce spatial heterogeneity in vaccination rates in our model by allowing the regional vaccination
rates to vary across regions. This is done by assuming a base distribution for the regional vaccination rates
and then specifying the fraction of the vaccinated individuals in each region based on that distribution. The
vaccination status of an individual in t = 0 can be assigned probabilistically according to the specified rate of
his home region. The infection and transmission process follow the dynamic as described in Section 3.3, given
the vaccination state of the population.

5.7 The first step in the process is to specify the base distribution for the regional vaccination rates. This is done
according to the procedures described in Section 3.2.

Size of the global epidemics

5.8 We first establish the relationship between the variability in the regional vaccination rates (as captured by κ)
and the characteristics of the resulting epidemics. We further examine how this relationship is influenced by
the structure of the contact networks, ϕ. In characterizing an epidemic, we focus on the mean size of epidemic
in a given season, which is simply the number of individuals in the global population who were infected and
recovered over the course of the epidemic.

5.9 We simulate 100 independent epidemics for each pair of κ and ϕ, where κ ∈ {0.25, 0.5, 1, 5} and ϕ ∈
{0.99, 0.975, 0.95, 0.9}. The mean and the standard deviation of the epidemic sizes from the 100 independent
seasons are reported in Table 3. It is clear that a reduction in the variance of the vaccination rates (higher value
of κ) reduces the size of an epidemic, while a higher share of the inter-regional linkages (lower value of ϕ) in
individual contact networks raises the size of an epidemic. This result confirms and generalizes the property
identified in the case of the two-region model of Chang & Tassier (2021).

κ
0.25 0.5 1 5

ϕ

0.99 643.10 (306.76) 486.69 (211.03) 398.13 (165.11) 331.29 (138.57)
0.975 1839.64 (686.39) 1422.86 (559.10) 1158.13 (542.11) 877.08 (451.13)
0.95 3207.16 (355.45) 2960.41 (344.47) 2686.81 (404.92) 2561.93 (422.48)
0.9 3606.50 (309.88) 3459.54 (268.41) 3335.28 (248.75) 3241.72 (202.28)

Table 3: Mean epidemic size.

Assessing the risk of infection by a susceptible individual

5.10 While the "size" of an epidemic gives us the most straightforward indication of the impact vaccination has on
the infection dynamic, another impact is measured by the rate of infection, which is defined as the proportion
of those at risk – i.e., unvaccinated – who get infected over the course of the epidemic season:

rate of infection =
number of infected individuals

number of unvaccinated individuals
(19)

5.11 This rate of infection may be viewed as the risk that an agent would face if he remains unvaccinated. This risk,
however, may be measured at different levels, depending on which group of the population one is looking at. 7

First, it may be measured using global information such as the fraction of infected agents of those unvaccinated
in the entire population. We will call this the "global" rate of infection. Second, we may focus on the vaccination
and infection data at the regional level – the fraction of infected agents of those unvaccinated in the agent’s
home region. We shall call this the "regional" rate of infection. Finally, we can measure the infection risk at
the individual agent level – the fraction of infected agents of those unvaccinated in the agent’s specific contact
network. This is the "network-specific" rate of infection. Considering the infection risk at these distinct levels is
important when we consider the actual decision mechanism that may form the basis for the vaccination rates
assumed exogenously in the current model. Although we do not endogenize the vaccination decisions in this
paper, we take a preliminary step in this direction by exploring the implications of assessing the risk of infection
using these different measures, each of which may play a role in real-life vaccination decisions.
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Global rate of infection

5.12 The mean and standard deviation of the global rate of infection are reported in Table 4 for all values of κ and ϕ.
We find that the global risk of infection increases when there is a greater variability in the regional vaccination
rates (κ decreases) and a greater share of cross-regional linkages in the contact networks (ϕ decreases).

κ
0.25 0.5 1 5

ϕ

0.99 0.109 (0.051) 0.083 (0.035) 0.068 (0.028) 0.056 (0.024)
0.975 0.313 (0.113) 0.242 (0.094) 0.197 (0.091) 0.149 (0.076)
0.95 0.544 (0.049) 0.503 (0.051) 0.457 (0.065) 0.436 (0.070)
0.9 0.613 (0.036) 0.589 (0.034) 0.568 (0.034) 0.553 (0.031)

Table 4: Global rate of infection.

5.13 Property 1: The global rate of infection is positively related to the variability in the regional vaccination rates
and negatively related to the local specificity of the contact networks: (a) The more variable the regional vacci-
nation rates, the higher is the global rate of infection; (b) the larger the share of the cross-regional linkages in
the contact networks, the higher is the global rate of infection.

5.14 For each pair of values for κ and ϕ, we have 100 independent replications (seasons). In Table 5, we provide
the correlations between the realized global rates of vaccination and the global rates of infection from those
replications for the complete set of values for κ and ϕ. In all cases, we see negative and large correlations. The
correlation increases in magnitude when the vaccination rates become more variable (κ decreases) and the
contact networks more cross-regional (ϕ decreases).

κ
0.25 0.5 1 5

ϕ

0.99 -0.250947 -0.238528 0.028857 -0.0852782
0.975 -0.419644 -0.393557 -0.322155 -0.289305
0.95 -0.698763 -0.623428 -0.530409 -0.410916
0.9 -0.767432 -0.729904 -0.752709 -0.445848

Table 5: Correlation between the global rate of vaccination and the global rate of infection.

Regional rate of infection

5.15 The next step is to get a finer-grained perspective by zooming in on the relationships between the regional
vaccination rates and the regional infection rates. Recall that the population in our model is distributed among
100 regions, each region having 100 agents. For a given season (replication), there are then 100 observations of
regional vaccination rates and infection rates. Since we run 100 independent replications, this gives us a total
of 10, 000 (= 100 × 100) observations of the two rates for any given set of parameter values. A macro-level
view of the relationship between vaccination and infection can be obtained by simply plotting these 10,000
observations of the vaccination and infection rates against each other. In Figure 5 we offer for each value of κ a
scatter plot of all observed rates of vaccination and infection on the left and the histogram of the infection rates
on the right; for all these replications the local specificity of the networks was held fixed at the baseline level of
ϕ = 0.95.

JASSS, 26(3) 3, 2023 http://jasss.soc.surrey.ac.uk/26/3/3.html Doi: 10.18564/jasss.5095



Figure 9: Vaccination Rates and Infection Rates for All Regions (ϕ = 0.95).

5.16 The most striking aspect of these plots is the bimodality in the histograms of the infection rates: there is a cluster
of cases near zero infections and another cluster of cases around a positive and substantial rate of infection (≈
0.8). The bimodality result implies a rather significant gap in the local infection rates that could exist between
neighboring regions – i.e., in some regions, the unvaccinated individuals may be infected at a high rate, while a
similar group in their neighboring regions may remain free of the epidemic.

5.17 The scatter plots (for all values of κ) also show that there is no significant correlation between the regional vac-
cination rates and the regional infection rates. Whether or not an unvaccinated agent gets infected depends
more on the randomness in the location of the initial source of the outbreak as well as the random realiza-
tion of the transmission linkages (via contact networks), rather than the vaccination rate of the home region.
It should be noted that this absence of correlation is with respect to the regional infection rate, and not the
regional epidemic size. The regional epidemic size, which is the absolute number of the infected individuals
in the region, is negatively correlated with the regional vaccination rate, as expected, such that those regions
with high vaccination rates will experience a smaller number of infected individuals on average. The regional
epidemic size, however, is only one measure of the impact that vaccination has on the infection process, as the
number of infected individuals is directly influenced by the number of vaccinated individuals; the higher the
rate of vaccination, the lower is the number of unvaccinated individuals, which also implies a lower number of
infected individuals.

5.18 Figure 10 gives us similar relationship between the regional rates of vaccination and infection for various values
ofϕ, given κ = 1. Whenϕ = 0.99, the regions are relatively segregated. The outbreaks tend to be local and lim-
ited to those regions randomly seeded with the initial infection at t = 0; many regions remain free of infection.
As ϕ is lowered from 0.99 to 0.975, we notice that those regions without the seed infection may experience an
outbreak if some of their members are connected to the infected individuals in the seeded regions – we start
observing the previously mentioned bimodality in the distribution of infection rates. Asϕ is further lowered, an
increasing number of regions experience significant outbreaks – all regions are vulnerable by the time we get
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to ϕ = 0.9. We then observe from Figure 10 the general movement of the points from the cluster representing
the low rate of infection to that representing the high rate of infection, as the value of ϕ goes down.

Figure 10: Impact of Local Specificity of Contract Networks on the Vaccination and Infection Rates (κ = 1).

5.19 As observed in Figure 9 for various values of κ, there is again a lack of correlation between the regional rates
of vaccination and the regional rates of infection. This property is shown to hold more generally in Table 6: We
detect no significant correlation between the two rates for all pairs of κ and ϕ considered in this paper.

κ
0.25 0.5 1 5

ϕ

0.99 -0.0150282 -0.0297019 -0.0100962 0.0185661
0.975 -0.066773 -0.0276384 -0.0103178 -0.00127095
0.95 -0.076256 -0.0691128 -0.0376693 -0.029411
0.9 -0.0498369 -0.0491849 -0.0534663 -0.0260599

Table 6: Correlation between the regional rate of vaccination and the regional rate of infection.

5.20 Property 2: There is no relationship between the regional rate of vaccination and the regional rate of infection.

Network-specific rate of infection

5.21 The last measure of the infection risk is that which is assessed at the level of the individual agent’s contact
network. We saw from the previous section that the regional rate of vaccination gives us no indication of the risk
of infection within that region. The question we ask now is whether the rate of vaccination within an individual
agent’s contact network is an indicator of the risk of infection for the agent.

5.22 For each season, we have a population of 10,000 agents. Given the vaccination rates specified for the season,
some of these agents are vaccinated, while others are unvaccinated and are susceptible to infection. Because
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vaccination is perfect in our model, the risk of infection is a relevant issue only for the unvaccinated popula-
tion. As such, our focus will be strictly on the unvaccinated agents in the population for this measure of the
infection risk. For each unvaccinated agent, k, such that vk(s) = NV , let us examine their contact networks,
C(k), and count the number of contacts who are also unvaccinated. Define G(k) as the set of unvaccinated
agents in the population who have exactlyK number of unvaccinated contacts in their networks. Further define
g(K) ⊆ G(K) as the set of those in G(k) who ended up being infected during the season. The likelihood of an
unvaccinated agent with K unvaccinated contacts getting infected may then be expressed as: γ(K) ≡ |g(K)|

|G(K)| .
γ(K) is, hence, the fraction of the susceptible agents withK unvaccinated contacts who are eventually infected
during the season. It is a measure of how likely it is for an unvaccinated agent having K unvaccinated contacts
to become infected. In Figure 11 we plot γ(K) for the baseline case of ϕ = 0.95.

Figure 11: Impact of κ on the Agent’s Network Infection Risk (ϕ = 0.95).

5.23 The main insight here is that for all values of K such that there are sufficient numbers of unvaccinated agents,
γ(k) is positively related toK: Those unvaccinated individuals with a greater number of unvaccinated contacts
are more likely to be infected. Furthermore, the network-specific risk of infection tends to be higher for lower
values of κ. Note that the plots are quite noisy for high values of K (above 27). This is due to the fact that
there are few contact networks with such high numbers of unvaccinated contacts; hence the results are not
statistically significant for this range of values of K.

5.24 In Figure 12, we plot γ(K) for ϕ ∈ {0.99, 0.975, 0.9} and confirm that the above result is robust to varying the
structure of the networks.
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Figure 12: Impact of ϕ on the Network-Specific Infection Risk.

5.25 Property 3: Individuals with a larger number of unvaccinated contacts are more likely to be infected and the
risk of infection is higher when the vaccination rates are more variable across regions.

5.26 Properties 1-3, taken together, suggest non-monotonicity in the relationship between local vaccine informa-
tion and rate of infection at varying levels of aggregation. Rate of infection is highly correlated with the global
rate of unvaccinated individuals and the number of direct contacts who are unvaccinated. However, the rate
of vaccination in one’s own region is not significantly correlated with rate of infection. This gives clues as to
what information would be useful to agents’ decision making with respect to vaccination. Very precise contact
level information or global vaccination information is likely to lead to an accurate assessment of infection risk.
However, intermediate level information about one’s region does not in our model.

5.27 Finally, our result on regional rate of infection (Property 2) is of particular interest when we consider its impli-
cations in the context of the on-going COVID-19 pandemic. As is observed on a daily basis, the national media
in various countries often focus on reporting their own internal rates of vaccination and infection without a
comparable coverage over the state of pandemic in neighboring countries and the potential for cross-border
interactions. The implicit signal here is that the causal relationship exists only between the internal rate of vac-
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cination and internal rate of infection. Clearly, our findings suggest that the vaccine policy based on this belief
is likely to be inadequate. The vaccine strategy at the national level requires a coordination with those of other
countries through extensive sharing and dissemination of information.

Conclusion

"No man is an island entire of itself; every man is a piece of the continent, a part of the main."
MEDITATION XVII, Devotions upon Emergent Occasions, John Donne

6.1 In this paper we investigate the impact that heterogeneity in regional vaccine coverage have on global epi-
demics. Addressing this issue requires a model with two essential features: 1) population divided among mul-
tiple regions with heterogeneous vaccine coverage; 2) interconnected contact networks that allow individuals
to have both intra-regional interactions and inter-regional interactions. These two features call for an approach
which has the capacity to go beyond what is allowed by the standard compartmental models. In order to add
these essential features without losing analytical tractability, we develop an agent-based computational model
of infectious disease with spatial heterogeneity in vaccine coverage. The model isolates the effects of hetero-
geneity by holding overall vaccination coverage rates constant. We find that spatial heterogeneity by itself has
significant implications for understanding epidemic dynamics. Specifically, an increase in spatial heterogene-
ity leads to larger epidemics on average. This effect is magnified when more interregional connections exist in
the contact structure of the model.

6.2 In the model we find non-monotonic relationships in infection risk of unvaccinated individuals. Infection risk
of an unvaccinated individual decreases in both the global rate of vaccinations and the rate of vaccination of
the individual’s specific contacts. But, surprisingly, we find that the vaccination rate in an individual’s home
region does not have a significant impact on an individual’s infection risk in our model. This has significant
implications for an individual’s vaccine choices. Global and local (network specific) vaccination rates are highly
correlated with infection risk and thus should be prioritized as information sources for an agent’s rational deci-
sion making. Using regional (e.g., school or neighborhood) specific information is likely to lead to non-optimal
decisions unless those regional vaccination rates are highly correlated to global vaccine coverage (as in the
uniform vaccine coverage example) or if the vaccination rates of individual level contacts match regional rates.

6.3 The cross-regional/cross-border contact networks in our model may be viewed as arising endogenously from
the more general and larger system of complex and interconnected networks that characterize the global trans-
port network, supply chains, and the financial systems. While acknowledging the substantial social and eco-
nomic benefits from the rapid diffusion of knowledge and the flexible migration of resources over these un-
derlying networks, we must also recognize the potential systemic risks in the form of catastrophic damages
to ecological, environmental, and public health state of the population at the global scale. The agent-based
computational approach as proposed in this paper represents a step toward understanding the risks inherent
in such complex interconnected systems and developing an effective coordination mechanism for reducing the
potential damage.
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Appendix A

Overview(O) 1. Purpose and Patterns To trace the infection status of the multi-regional
population given spatially heterogeneous vacci-
nation rates

2. Entities, State Variables and
Scales

A population of 10,000 autonomous agents,
spread among 100 separate regions;
State variables include the vaccination state and
the infection state of the individual agents.

3. Process Overview & Scheduling A sequence of 100 epidemic seasons;
Each season starts with artificial introduction of
infectious virus into a population of agents;
The infection spreads through SEIR process;
A season ends only when there is no infected in-
dividual in the population;
The total number of people who were infected is
recorded for each season.

Design(D) 4. Design Concepts The individual agents are connected through
their contact networks, where each agent’s con-
tact network contains 20 other agents;
The regionality of the population depends on the
proportion of the individuals in an agent’s con-
tact network who are from his/her own region.

Details(D)

5. Initialization Vaccination rates in each season are exogenous;
Each region is given a mean vaccination rate
which is a draw from a beta distribution based
on the County-level flu vaccination claims rates
for California from 2016-2017 (the data in the Ap-
pendix B);
In each season, the infection process starts with
10 seed agents who get artificially infected;
The probability that the virus is transmitted from
one agent to another is set to be 0.02.

6. Input Data Beta distribution fitted to the county-level flu
vaccination claims rates for California from 2016-
2017 (see Appendix B).

7. Submodels Contact networks;
SEIR process of infection spread.

Table 7: Outline of the Agent-Based Model under the ODD protocol (Grimm et al. 2020)

Appendix B

• Beneficiaries: The total number of Medicare fee-for-service beneficiaries for the county

• Vaccination Claims Rate: The number of flu vaccine claims relative to the number of beneficiaries

• Source: https://www.hhs.gov/nvpo/about/resources/interactive-mapping-tool-trackin
g-flu-vaccinations/index.html (last accessed: 1/10/2018)
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County Beneficiaries Rate County Beneficiaries Rate
Alameda 88,457 46.63 Orange 173,864 49.71

Alpine 187 20.86 Placer 31,501 52.95
Amador 7,096 49.86 Plumas 4,288 21.60

Butte 40,306 40.34 Riverside 102,217 40.94
Calaveras 9,211 40.50 Sacramento 81,305 47.16

Colusa 2,696 40.99 San Benito 5,860 50.17
Contra Costa 66,924 48.12 San Bernardino 72,573 32.36

Del Norte 4,685 38.14 San Diego 179,490 43.49
El Dorado 21,179 49.45 San Francisco 59,899 44.32

Fresno 67,823 46.50 San Joaquin 47,402 45.23
Glenn 4,584 35.93 San Luis Obispo 42,374 49.79

Humboldt 22,099 40.52 San Mateo 46,165 52.17
Imperial 20,948 33.53 Santa Barbara 49,909 49.25

Inyo 3,824 43.51 Santa Clara 100,846 53.08
Kern 52,954 37.75 Santa Cruz 34,663 51.29
Kings 11,225 36.97 Shasta 39,276 43.04
Lake 13,613 28.54 Sierra 701 20.11

Lassen 4,270 30.47 Siskiyou 10,182 30.96
Los Angeles 501,496 41.86 Solano 30,236 37.76

Madera 12,200 39.79 Sonoma 43,086 48.11
Marin 25,920 51.93 Stanislaus 34,454 44.36

Mariposa 3,546 31.02 Sutter 13,418 51.33
Mendocino 17,039 27.97 Tehama 10,667 42.22

Merced 25,393 42.72 Trinity 2,880 30.24
Modoc 1,856 16.86 Tulare 41,070 43.65
Mono 1,210 31.82 Tuolumne 12,202 46.75

Monterey 47,314 45.13 Ventura 75,213 48.11
Napa 14,057 45.52 Yolo 12,617 52.58

Nevada 19,143 49.46 Yuba 9,030 41.66

Table 8: County-level Flu Vaccination Claims Rates for California (2016-2017).

Notes

1Although not reported in this paper, these results are confirmed for the comparable county-level data from
three other representative states as well as the zip code-level data from a selected group of metropolitan cities,
hence, demonstrating their robustness across different scales of spatial interactivity.

2For some recent analytical attempts in this direction, see Chen et al. (2014) and Brugnano et al. (2021).
3This model adds an extra state ofE (exposed) to the originalSIRmodel. An individual in the exposed state

is infected but not yet infectious. This is in contrast to an individual in the infectious state (I) who is infected
and also fully infectious.

4The source code for the main experiments reported here was written in Wolfram Mathematica Version 10.4.
The original source codes in Mathematica notebook format (.nb) as well as in PDF format are available at: http
s://myongchang.github.io/research/SourceCodes.html.

5Abbe (2018) provides a survey of recent developments in mathematical models of networks that enable
detection of such inter-linked communities. Our model of multi-regional contact networks falls in the category
of “stochastic block models” in this literature.

6it is not until πv is sufficiently low that the typical epidemic takes off and proceeds in a manner governed
by the complexities of the contact network structure.

7The empirical relevance of the spatial resolution is suggested by a recent study, Baltrusaitis et al. (2018),
which examines the impact of the spatial resolution on the correlations between different influenza surveillance
systems. Comparing the data at the national, northeast regional, Massachusetts, and the greater Boston levels,
they find that an increase in the spatial resolution tends to decrease the correlation values between the different
systems.

JASSS, 26(3) 3, 2023 http://jasss.soc.surrey.ac.uk/26/3/3.html Doi: 10.18564/jasss.5095

https://myongchang.github.io/research/SourceCodes.html
https://myongchang.github.io/research/SourceCodes.html


References

Abbe, E. (2018). Community detection and stochastic block models: Recent developments. Journal of Machine
Learning Research, 18, 1–86

Aschwanden, C. (2021). Five reasons why COVID herd immunity is probably impossible. Nature. Available at:
https://www.nature.com/articles/d41586-021-00728-2

Atwell, J. E., van Otterloo, J., Zipprich, J., Winter, K., Harriman, K., Salmon, D. A., Halsey, N. A. & Omer, S. B.
(2013). Nonmedical vaccine exemptions and pertussis in California, 2010. Pediatrics, 132(4), 624–630

Baltrusaitis, K., Brownstein, J., Scarpino, S., Bakota, E., Crawley, A., Conidi, G., Gunn, J., Gray, J., Zink, A. &
Santillana, M. (2018). Comparison of crowd-sourced, electronic health records based, and traditional health-
care based influenza-tracking systems at multiple spatial resolutions in the United States of America. BMC
Infectious Diseases, 18, 403

Bansal, S., Pourbohloul, B. & Meyers, L. A. (2006). A comparative analysis of influenza vaccination programs.
PLoS Medicine, 3(10), e387

Barrat, A., Berthelemy, M. & Vespignani, A. (2010). Dynamical Processes on Complex Network. Cambridge: Cam-
bridge University Press

Birnbaum, M. S., Jacobs, E. T., Ralston-King, J. & Ernst, K. C. (2013). Correlates of high vaccination exemption
rates among kindergartens. Vaccine, 31(5), 750–756

Brugnano, L., Iavernaro, F. & Zanzottera, P. (2021). A multiregional extension of the SIR model, with application
to the COVID-19 spread in Italy. Mathematical Methods in the Applied Sciences, 44, 4414–4427

Buttenheim, A., Jones, M. & Baras, Y. (2012). Exposure of California kindergartners to students with personal
belief exemptions from mandatory school entry vaccinations. American Journal of Public Health, 102(8), e59–
e67

Carrel, M. & Bitterman, P. (2015). Personal belief exemptions to vaccination in California: A spatial analysis.
Pediatrics, 135(1), 80–88

CDC (2018). 1995 through 2017 childhood measles, mumps, and rubella (MMR) vaccination coverage trend
report. Available at: https://www.cdc.gov/vaccines/imz-managers/coverage/childvaxview/data
-reports/mmr/trend/

CDC (2023). Measles cases and outbreaks. Available at: https://www.cdc.gov/measles/cases-outbreaks
.html

Chang, M.-H. & Tassier, T. (2021). Spatially heterogeneous vaccine coverage and externalities in a computational
model of epidemics. Computational Economics, 58, 27–55

Chen, Y., Yan, M. & Xiang, Z. (2014). Transmission dynamics of a two-city SIR epidemic model with transport-
related infections. Journal of Applied Mathematics, 2014, 1–12

Del Valle, S. Y., Mniszewski, S. M. & Hyman, J. M. (2013). Modeling the impact of behavior changes on the spread
of pandemic influenza. In P. Manfredi & A. D’Onofrio (Eds.), Modeling the Interplay Between Human Behavior
and the Spread of Infectious Diseases. Berlin Heidelberg: Springer

Epstein, J. M. (2009). Modelling to contain epidemics. Nature, 460(6), 687

Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z. & Wang, N. (2004). Modelling
disease outbreaks in realistic urban social networks. Nature, 429, 180–184

Feikin, D. R., Lezotte, D. C., Hamman, R. F., Salmon, D. A., Chen, R. T. & Hoffman, R. E. (2000). Individual and
community risks of measles and pertussis associated with personal exemptions to immunization. Journal of
the American Medical Association, 284(24), 3145–3150

Germann, T., Kadau, K., Longini, I. M. & Macken, C. A. (2006). Mitigation strategies for pandemic influenza in the
United States. Proceedings of the National Academy of Sciences, 103(15), 5935–5940

JASSS, 26(3) 3, 2023 http://jasss.soc.surrey.ac.uk/26/3/3.html Doi: 10.18564/jasss.5095

https://www.nature.com/articles/d41586-021-00728-2
https://www.cdc.gov/vaccines/imz-managers/coverage/childvaxview/data-reports/mmr/trend/
https://www.cdc.gov/vaccines/imz-managers/coverage/childvaxview/data-reports/mmr/trend/
https://www.cdc.gov/measles/cases-outbreaks.html
https://www.cdc.gov/measles/cases-outbreaks.html


Gersovitz, M. (2013). Mathematical epidemiology and welfare economics. In P. Manfredi & A. D’Onofrio (Eds.),
Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Berlin Heidelberg:
Springer

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K.,
Huse, G., Huth, A., Jepsen, J. U., Jø rgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F.,
Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser,
U. & DeAngelis, D. L. (2006). A standard protocol for describing individual-based and agent-based models.
Ecological Modelling, 198(1–2), 115–126

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J. & Railsback, S. F. (2010). The ODD protocol: A review
and first update. Ecological Modelling, 221(23), 2760–2768

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L., Edmonds, B., Ge, J., Giske,
J., Groeneveld, J., Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M. S.,
Stillman, R. A., Thiele, J. C. & Ayllón, D. (2020). The ODD protocol for describing agent-based and other sim-
ulation models: A second update to improve clarity, replication, and structural realism. Journal of Artificial
Societies and Social Simulation, 23(2), 7

Gust, D. A., Strine, T. W., Maurice, E., Smith, P., Yusuf, J., Wilkinson, M., Battaglia, M., Wright, R. & Schwartz,
B. (2004). Underimmunization among children: Effects of vaccine safety concerns on immunization status.
Pediatrics, 114(1), e16–e22

Ingraham, C. (2015). The devastating impact of vaccine deniers, in one measles chart. Washington Post. Avail-
able at: https://www.washingtonpost.com/news/wonk/wp/2015/01/22/the-devastating-impac
t-of-vaccine-deniers-in-one-measles-chart/

Lieu, T. A., Ray, G. T., Klein, N. P., Chung, C. & Kulldorff, M. (2015). Geographic clusters in underimmunization
and vaccine refusal. Pediatrics, 135(2), 280–289

May, T. & Silverman, R. D. (2003). Clustering of exemptions as a collective action threat to herd immunity. Vac-
cine, 21(11–12), 1048–1051

McNutt, L.-A., Desemone, C., DeNicola, E., El Chebib, H., Nadeau, J. A., Bednarczyk, R. A. & Shaw, J. (2016). Af-
fluence as a predictor of vaccine refusal and underimmunization in California private kindergartens. Vaccine,
34(14), 1733–1738

Oster, E. & Kocks, G. (2018). After a debacle, how California became a role model on measles. New York Times.
Available at: https://www.nytimes.com/2018/01/16/upshot/measles-vaccination-california-s
tudents.html#:~:text=In%20the%20end%2C%20the%20effect,disease%20outbreaks%20has%20go
ne%20down.&text=Under%2Dvaccination%20is%20a%20significant,diseases%20that%20vaccine
s%20can%20prevent

Poland, G. A. & Jacobson, R. M. (2001). Understanding those who do not understand: A brief review of the
anti-vaccine movement. Vaccine, 19(17–19), 2440–2445

Seither, R., Calhoun, K., Yusuf, O. B., Dramann, D., Mugerwa-Kasujja, A., Knighton, C. L. & Black, C. L. (2023).
Vaccination coverage with selected vaccines and exemption rates among children in kindergarten - United
States, 2021–22 school year. Morbidity and Mortality Weekly Report (MMWR). Available at: https://www.cd
c.gov/mmwr/volumes/72/wr/mm7202a2.htm?s_cid=mm7202a2_w

Smith, D. J., Forrest, S., Ackley, D. H. & Perelson, A. S. (1999). Variable efficacy of repeated annual influenza
vaccination. Proceedings of the National Academy of Sciences, 96(24), 140001–140006

Stroud, P., Del Valle, S., Sydoriak, S., Riese, J. & Mniszewski, S. (2007). Spatial dynamics of pandemic influenza
in a massive artificial society. Journal of Artificial Societies and Social Simulation, 10(4), 9

Sugarman, D. E., Barskey, A. E., Delea, M. G., Ortega-Sanchez, I. R., Bi, D., Ralston, K. J., Rota, P. A., Waters-
Montijo, K. & Lebaron, C. W. (2010). Measles outbreak in a highly vaccinated population, san diego, 2008:
Role of the intentionally undervaccinated. Pediatrics, 125(4), 747–755

Tassier, T., Polgreen, P. & Segre, A. (2017). Network position and healthcare worker infections. Journal of Eco-
nomic Interaction and Coordination, 12, 277–307

JASSS, 26(3) 3, 2023 http://jasss.soc.surrey.ac.uk/26/3/3.html Doi: 10.18564/jasss.5095

https://www.washingtonpost.com/news/wonk/wp/2015/01/22/the-devastating-impact-of-vaccine-deniers-in-one-measles-chart/
https://www.washingtonpost.com/news/wonk/wp/2015/01/22/the-devastating-impact-of-vaccine-deniers-in-one-measles-chart/
https://www.nytimes.com/2018/01/16/upshot/measles-vaccination-california-students.html#:~:text=In%20the%20end%2C%20the%20effect,disease%20outbreaks%20has%20gone%20down.&text=Under%2Dvaccination%20is%20a%20significant,diseases%20that%20vaccines%20can%20prevent
https://www.nytimes.com/2018/01/16/upshot/measles-vaccination-california-students.html#:~:text=In%20the%20end%2C%20the%20effect,disease%20outbreaks%20has%20gone%20down.&text=Under%2Dvaccination%20is%20a%20significant,diseases%20that%20vaccines%20can%20prevent
https://www.nytimes.com/2018/01/16/upshot/measles-vaccination-california-students.html#:~:text=In%20the%20end%2C%20the%20effect,disease%20outbreaks%20has%20gone%20down.&text=Under%2Dvaccination%20is%20a%20significant,diseases%20that%20vaccines%20can%20prevent
https://www.nytimes.com/2018/01/16/upshot/measles-vaccination-california-students.html#:~:text=In%20the%20end%2C%20the%20effect,disease%20outbreaks%20has%20gone%20down.&text=Under%2Dvaccination%20is%20a%20significant,diseases%20that%20vaccines%20can%20prevent
https://www.cdc.gov/mmwr/volumes/72/wr/mm7202a2.htm?s_cid=mm7202a2_w
https://www.cdc.gov/mmwr/volumes/72/wr/mm7202a2.htm?s_cid=mm7202a2_w


Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J. J., Balcan, D., Gonçalves, B., Perra, N., Colizza, V. & Vespignani,
A. (2012). Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm. BMC
Medicine, 165, 2012

Vardavas, R. & Marcum, C. S. (2013). Modelling influenza vaccination behavior via inductive reasoning games. In
P. Manfredi & A. D’Onofrio (Eds.), Modeling the Interplay Between Human Behavior and the Spread of Infectious
Diseases. Berlin Heidelberg: Springer

Watts, D. J. & Strogatz, S. H. (1998). Collectives dynamics of small-world networks. Nature, 393, 440–442

JASSS, 26(3) 3, 2023 http://jasss.soc.surrey.ac.uk/26/3/3.html Doi: 10.18564/jasss.5095


	Introduction
	Standard SIR Model of Infectious Disease
	Single-region SIR model
	Two-Region SIR Model
	Agentizing the model of epidemics

	Agent-Based Model
	Agents and contact networks
	Vaccination rates
	Spatial infection dynamics

	Design of Computational Experiments
	Results
	Preliminary results
	When vaccination rates are spatially heterogeneous
	Size of the global epidemics
	Assessing the risk of infection by a susceptible individual
	Global rate of infection
	Regional rate of infection
	Network-specific rate of infection


	Conclusion
	Appendix A
	Appendix B

