
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Magnetohydrodynamics with physics informed
neural operators
To cite this article: Shawn G Rosofsky and E A Huerta 2023 Mach. Learn.: Sci. Technol. 4 035002

 

View the article online for updates and enhancements.

You may also like
Automatic Calibration of Electrode Arrays
for Dexterous Neuroprostheses: a review
Narrendar RaviChandran, K C Aw and
Andrew McDaid

-

Effect of charged dust grains on the
electrojet instabilities
Sanjib Sarkar, Jyoti Kumar Atul,
Modhuchandra Laishram et al.

-

A minimum assumption approach to MEG
sensor array design
Andrey Zhdanov, Jussi Nurminen, Joonas
Iivanainen et al.

-

This content was downloaded from IP address 122.163.64.247 on 11/07/2023 at 13:47

https://doi.org/10.1088/2632-2153/ace30a
/article/10.1088/2057-1976/ace3c5
/article/10.1088/2057-1976/ace3c5
/article/10.1088/1402-4896/acda65
/article/10.1088/1402-4896/acda65
/article/10.1088/1361-6560/ace306
/article/10.1088/1361-6560/ace306


Mach. Learn.: Sci. Technol. 4 (2023) 035002 https://doi.org/10.1088/2632-2153/ace30a

OPEN ACCESS

RECEIVED

21 February 2023

REVISED

15 June 2023

ACCEPTED FOR PUBLICATION

29 June 2023

PUBLISHED

6 July 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Magnetohydrodynamics with physics informed neural operators
Shawn G Rosofsky1,2,3 and E A Huerta1,2,4,∗
1 Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, United States of America
2 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
3 NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
4 Department of Computer Science, The University of Chicago, Chicago, IL 60637, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: elihu@anl.gov

Keywords:magnetohydrodynamics, scientific machine learning, physics informed AI, high performance computing

Abstract
The modeling of multi-scale and multi-physics complex systems typically involves the use of
scientific software that can optimally leverage extreme scale computing. Despite major
developments in recent years, these simulations continue to be computationally intensive and time
consuming. Here we explore the use of AI to accelerate the modeling of complex systems at a
fraction of the computational cost of classical methods, and present the first application of physics
informed neural operators (NOs) (PINOs) to model 2D incompressible magnetohydrodynamics
(MHD) simulations. Our AI models incorporate tensor Fourier NOs as their backbone, which we
implemented with the TensorLY package. Our results indicate that PINOs can accurately capture
the physics of MHD simulations that describe laminar flows with Reynolds numbers Re⩽ 250. We
also explore the applicability of our AI surrogates for turbulent flows, and discuss a variety of
methodologies that may be incorporated in future work to create AI models that provide a
computationally efficient and high fidelity description of MHD simulations for a broad range of
Reynolds numbers. The scientific software developed in this project is released with this
manuscript.

1. Introduction

Turbulence emerges from laminar flow due to instabilities, has many degrees of freedom, and is commonly
found in fluids with low viscosity. Its time-dependent and stochastic nature make it an ideal sandbox to
explore whether AI methodologies are capable of learning and describing nonlinear phenomena that
manifests from small to large scales. While the Navier–Stokes equations may be used to study flows of
non-conductive fluids, flows of ionized plasmas present in astrophysical phenomena may be considered
perfectly conducting. These flows may be described by magnetohydrodynamics (MHD) equations,
i.e. equations with currents, magnetic fields and the Lorentz force.

Theoretical and numerical modeling of MHD turbulence is critical to understand a variety of natural
phenomena, encompassing astrophysical systems [1], plasma physics [2], and geophysics [3]. Some areas of
interest in which MHD turbulence plays a crucial role are binary neutron star mergers [4], black hole
accretion, and supernova explosions [1]. The inherent complexity of MHD turbulence makes the modeling
of these systems extremely difficult.

One of aspects of MHD turbulence responsible for such difficulty is the MHD dynamo, which amplifies
the magnetic fields by converting kinetic energy into magnetic energy, starting at the smallest scales [1, 5–7].
In some cases, the MHD dynamo can produce amplification several orders of magnitude greater than that of
the original fields [1, 4]. To resolve this magnetic field amplification, one must run simulations at the
smallest of scales, where the MHD dynamo is most efficient [5]. This scale is set by the Reynolds number, Re,
of the flow. The higher the Re, the smaller the scale of the most efficient MHD dynamo amplification.
However, astrophysical simulations in particular are at such high Reynolds numbers that it would be
unfeasible to fully resolve such turbulence [7]. Therefore, we must look to alternative ways to resolve such

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ace30a
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ace30a&domain=pdf&date_stamp=2023-7-6
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3319-576X
https://orcid.org/0000-0002-9682-3604
mailto:elihu@anl.gov


Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

turbulent effects. One method is to approach MHD like a large eddy simulation (LES). In LES, one ensures
they possess sufficient resolution to resolve the largest eddies and employs a subgrid-scale (SGS) models to
resolve turbulence at smaller scales. Some recent works [8–19] have adopted traditional LES style SGS
models for MHD simulations. Other works [20, 21] have examined the use of deep learning models as the
LES model in MHD simulations. These deep learning models can use data to learn MHD turbulence
properties not present in the traditional LES models, but are still in their early stages of development.

Another approach consists of accelerating scientific software used to model multi-scale and multi-physics
simulations with AI surrogates. Neural operators (NOs) are a very promising class of deep learning models
that can accurately describe complex simulations at a fraction of the time and computational cost of
traditional large scale simulations [22]. Recent studies have employed NOs to model turbulence in
hydrodynamic simulations [23–25]. In one study, the NOs were compared to traditional LES style SGS
models and were found to outperform the LES models in both accuracy and speed [25].

Physics informed NOs (PINOs) incorporate physical and mathematical principles into the design,
training and optimization of NOs [26]. It has been reported in the literature that this approach accelerates
the convergence and training of AI models, and in some cases enables zero-shot learning [27]. Several studies
have illustrated the ability of PINOs to numerically solve partial differential equations (PDEs) that describe
many complex problems [26, 27].

To further advance this line of research, in this paper we introduce AI surrogates to model multi-scale
and multi-physics complex systems that are described by MHD equations. To this end, we produced 2D
incompressible MHD simulations spanning a broad range of Reynolds numbers. We then trained PINOs
with this data and evaluated them on a subset of simulations not observed in training. Specifically, we
compared the PINO predictions and the simulation values as well as their kinetic and magnetic energy
spectra. To the best of our knowledge, this is the first study seeking to reproduce entire MHD simulations with AI
models. As such, we focused our efforts on finding the strengths and weaknesses of this approach rather than
optimizing our models as much as possible. In doing so, this work provides a foundation of AI surrogates for
MHD that future researchers will improve upon.

We organize this work as follows. In section 2 we introduce the incompressible MHD equations, and
describe the numerical methods used to generate MHD simulation data. Then, we describe PINOs, and how
we used them to solve MHD equations in section 3. Section 4 details the methods we followed to create our
PINOs, including generation of random initial data, model architecture, training procedure, evaluation
criteria, and a description of our computational resources. We present the results in section 5. Final remarks
and future directions of work are presented in section 6.

2. Simulating incompressible MHD

2.1. Equations
The goal of this work is to reproduce the incompressible MHD equations with PINOs. The incompressible
MHD equations represent an incompressible fluid in the presence of a magnetic field B. These equations are
given by

∂tu+u ·∇u=−∇
(
p+

B2

2

)
/ρ0 +B ·∇B+ ν∇2u, (1)

∂tB+u ·∇B= B ·∇u+ η∇2B, (2)

∇· u= 0, (3)

∇·B= 0, (4)

where u is the velocity field, p is the pressure, B is the magnitude of the magnetic field, ρ0 = 1 is the density
of the fluid, ν is the kinetic viscosity, and η is the magnetic resistivity. We have two equations for evolution
and two constraint equations.

To ensure the zero velocity divergence condition of equation (3), the pressure is typically computed in
such a way that this condition always holds true. This is generally done by solving a Poisson equation to
calculate the pressure at each time step.

For the magnetic field divergence of equation (4), we lack any additional free parameters to ensure that
the equation holds true at all times. There are several ways to ensure that this condition holds including
hyperbolic divergence cleaning [28] and constrained transport [29]. For this work, we decide to preserve the

2



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

magnetic field’s zero divergence condition by instead evolving the magnetic vector potential A. This quantity
is defined such that

B=∇×A, (5)

which ensures that the divergence of B is zero to numerical precision as the divergence of a curl of a vector
field is zero. By evolving magnetic vector potential A instead of the magnetic field B, we have a new evolution
equation for the vector potential A. This equation is given by

∂tA+u ·∇A= η∇2A. (6)

2.2. Numerical methods
To simulate the MHD equations, we employed the Dedalus code [30], an open source parallelized spectral
python package that is designed to solve general PDEs. To obtain interesting results without additional
computational difficulty, we elected to solve the incompressible MHD equations in 2D with periodic
boundary conditions (BCs). This results in us solving a total of 3 evolution PDEs at each timestep-2 for the
velocity evolution and 1 for the magnetic vector potential evolution. To visualize and more easily diagnose
problems with the simulations, we include an additional PDE to evolve tracer particles denoted by s. The
tracer particles had an evolution equation given by

∂ts+u ·∇s= ν∇2s. (7)

Moreover, we employed a pressure gauge of
´
pdx2 = 0 for our equation. Numerically, most simulations

were carried out on a unit length square grid at resolutions with a total number of grid points N= 1282, with
Nx = Ny = 128 points in the x and y directions, respectively. We also examined some lower resolution
simulations with N= 642 and higher resolution simulations with N= 2562 to explore how resolution may
affect the results of the simulations.

As we have periodic BC, we employed a Fourier basis in each direction. To avoid aliasing error, we used a
dealias factor of 3/2 for these transformations. For timestepping, we used the RK4 integration method with a
constant timestep of∆t= 0.001. Simulation outputs were stored every 10 timesteps resulting in us recording
data at interval t= 0.01 time units. We ran these simulations until a time of t= 1. For each set of parameters,
we produced 1000 simulations, each with different initial data.

2.3. Reynolds number
An important consideration in this study was how the Reynolds number affects simulations and our AI
model’s ability to reproduce the results of the simulations. The Reynolds number is a dimensionless quantity
that expresses the ratio of inertial to viscous forces. The higher the Reynolds number is, the more prevalent
the effects of small scale phenomena are to the simulation. This often gives rise to turbulence at high
Reynolds numbers. For systems described by MHD equations, there are actually two types of Reynolds
numbers of interest. They are the kinetic Reynolds number, Re, and the magnetic Reynolds number, Rem. We
define the quantities in our simulation such that these Reynolds numbers are given by

Re= 1/ν, (8)

Rem = 1/η. (9)

The ratio between these two Reynolds numbers is called the magnetic Prandtl number Prm defined as

Prm =
Rem
Re

=
ν

η
. (10)

In this study, we sought to characterize how the Reynolds number affects our models and determine if
there is a cutoff Reynolds number, after which point, the models’ performance degrades considerably. We
generally kept Re= Rem or, equivalently, Prm = 1 unless otherwise noted and looked at Reynolds number
values of 100, 250, 500, 750, 1000, and 10 000.

One difference between MHD and hydrodynamic simulations is that, compared to the pure
hydrodynamic case, much of the magnetic field energy is stored at high wavenumbers which occur at smaller
scales. Thus, the models must be able to characterize high frequency features if they are to successfully
reproduce the results of the magnetic field evolution.

3



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

3. ModelingMHDwith PINOs

3.1. PINOs
The goal of a NO is to reproduce the results of an operator given some input fields using neural networks. A
common class of operator often studied by NOs are PDEs. To model PDEs, NO take the coordinates, initial
conditions (ICs), BCs, and coefficient fields as inputs. As outputs, NOs provide the solution of the operator,
in this case the PDE, at the desired spacetime coordinates.

There are a variety of different NOs that have been studied in recent works. These include DeepONets,
physics informed DeepONets, low-rank NOs, graph NOs (GNO), multipole GNOs (MGNOs), Fourier NOs
(FNO), factorized FNOs (fFNO), and PINO [22, 26, 27, 31–36]. In this study we use PINOs.

PINOs are a generic class of NOs that involve using an existing NO and employing physics informed
methods in the training [26, 27]. Physics informed deep learning methods involves encoding known
information about the physical system into the model during training [37–42]. This physics information may
include governing PDEs, symmetries, constraint laws, ICs, and BCs. By including such physical knowledge,
physics informed methods enable better generalization of the results of deep learning models [42]. In systems
where we have a lot of knowledge about the physical system like PDEs, such methods are especially useful as
theoretically we could learn from just this physics knowledge. In practice, we add data to help PINOs
converge to the correct solution more quickly.

One of the most common ways of encoding this physics into a neural network model is to incorporate
physics information into the loss function [37–40]. In other words, violations of these physics laws appear as
terms in the loss function that are reduced over time during training. Thus, this technique treats physics laws
as soft constraints learned by the neural network as it trains.

For the backbone NO, we selected a variant of fFNO [36] that employed the TensorLY [43] package to
perform tensor factorization. We call this model a tensor FNO (tFNO). The base FNOmodel [35] applies the
fast Fourier transform (FFT) to the data to separate it into its component frequencies and apply its weights
before performing an inverse FFT to convert back to real space. One particular feature of the FNO is its
ability to perform zero-shot super-resolution, in which the model predicts on higher resolution data than it
was trained on [22, 35]. We hope such properties of the FNO model would allow it to learn the high
frequency properties of the MHD equations.

To further augment the model, we utilized factorization with TensorLY within the spectral layers of the
model, so that it becomes an tFNO. The factorization was found to significantly improve the generalization
of the neural network in the initial tests. The decision to use TensorLY was inspired by experimental code
found in the GitHub repository of [26]. We will describe the model architecture in more detail in section 4.2.

3.2. Applying toMHD equations
Now let us discuss in more detail how to apply physics informed methods to model the MHD equations with
NOs. There are several aspects to modeling the MHD equations with such methods as denoted by each loss
term. These are the data loss Ldata, the PDE loss LPDE, the constraint loss Lconstr, the IC loss LIC, and the BC
loss LBC.

The data loss is modeled by obtaining simulation data and ensuring that the PINO output matches the
simulation results. This requires us to produce a large quantity of simulations to provide sufficient training
data like those described in section 2.2 to span the solution space. We will discuss in more detail how we
produced a sufficient number of simulations in section 4.1. Then we use the relative mean squared error
(MSE) between the simulation and the PINO predictions to define the value of the data loss Ldata.

The PDE loss describes the violations of the time evolution PDEs of the PINO outputs. Specifically, we
encode these time evolution PDEs as part of the loss function. This requires us to represent the spatial and
temporal derivatives of the output fields. Although some NOs are able to employ the automatic
differentiation of the deep learning framework to calculate such derivatives [32], this method is too memory
intensive for the tFNO architecture. Instead, we employ Fourier differentiation to represent the spacial
derivatives, which computes highly accurate derivative values while conveniently assuming periodic BC that
exists in our problem. For time derivatives, we use second order finite differencing. We note that such a time
differencing technique cannot be used during the original simulation as this requires knowledge of future
times to compute the time derivative of the current time.

Specifically, the PDEs we modeled with this technique were equation (1) for velocity evolution and
equation (5) for magnetic potential evolution. In this case, the model has a total of 3 output fields in 2D, the
velocity in the x direction u, the velocity in the y direction v, and the magnetic potential A. We also tested
replacing the magnetic vector potential evolution with the magnetic field evolution of equation (2), which
results in 4 output fields in 2D. The fields in this case are the velocity in the x direction u, the velocity in the y
direction v, the magnetic field in the x direction Bx, and the magnetic field in the y direction By. We note that

4



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

in testing, the former representation of the MHD equations produced better results. The PDE loss LPDE is
then defined as the MSE loss between zero and the PDE, after putting all the terms on the same side of the
equation.

Due to the complexity of both representations of the MHD equations, we tested the PDE loss on the data
produced by the simulations. We found that the loss was small, albeit nonzero. This nonzero PDE loss was
expected since the numerical methods for computing the derivatives during the simulation differs from those
of computing the derivatives of the PDE during the loss function. Some particular notable differences are
having fewer time steps in the output data than was used during the simulation, using different time
derivative methods (e.g. RK4 during simulation vs second order finite differencing during the loss
computation), and lacking dealiasing in the spatial derivatives in the PDE loss function.

The constraint loss illustrates the deviations of the elliptic constraint equations of the MHD equations.
Specifically, these refer to the velocity divergence free condition of equation (3) and the magnetic divergence
free condition of equation (4). We implemented these constraints similarly to the time evolution equations
in the PDE loss, but without any time derivative terms. The constraint loss Lconstr is then the MSE between
each of the constraint equations and zero. We note that we are representing the magnetic fields by the
magnetic potential, the magnetic field divergence free condition is satisfied up to the numerical precision of
the curl operator regardless of the prediction of the neural network. However, we still include the term for
completeness and this condition is not guaranteed to be nonzero if we are trying to compute the magnetic
fields directly.

The IC loss tells the model to associate the input field with the output at t= 0. Although this function
can often be achieved with the data loss alone, the IC loss emphasizes the importance of predicting the
correct IC and enables training in the absence of data. Both the significance of the IC and the ability to train
without data stem from the PDE loss term. Theoretically, one can train by correctly predicting the IC, the
BCs, and evolving the PDE correctly forward in time, although in practice, data helps the model converge
more quickly. However, an incorrect IC results in the PDE evolving the wrong data forward in time. Thus, we
add in the IC as its own term to encourage the model to first compute the IC correctly before learning the
time evolution later in training. We calculate the IC loss LIC by taking the input fields and computing the
relative MSE between said input fields and the outputs fields at t= 0.

Finally, the BC loss LBC describes the violations of the boundary terms. In our case, the tFNO model
architecture ensures that we have the desired periodic BC. Therefore, we do not use such a term in our
model. However, we mention this term for generality because not all BCs and the periodicity of the tFNO
architecture can be removed by zero padding the inputs along the desired non-periodic axis.

In physics informed deep learning methods, one must be careful when combining fields of different
magnitudes to ensure they all have an equal contribution to the loss. Therefore, our model has the ability to
normalize the input fields and denormalize the output fields by multiplying by predetermined constants.
Moreover, we assign a weight to each term when combining loss terms for different fields and equation. We
add additional weights when combining different losses. Thus, our loss L is given as

L= wdataLdata +wPDELPDE +wconstrLconstr +wICLIC , (11)

where wdata is the data weight, wPDE is the PDE weight, wconstr is the constraint weight, and wIC is the IC
weight.

4. Methods

4.1. Data generation
To generate the training data, we first needed to produce initial data before running it in the simulations
described in section 2.2. These initial data fields are produced using Gaussian random field method similar
to [27], in which the kernel was transformed into Fourier space to obey our desired periodic BCs. Specifically,
we used the radial basis function kernel to produce smooth initial fields. This kernel kl is defined as

kl (x1,x2) = exp

(
−∥x1 − x2∥2

2l2

)
, (12)

where l is the length scale of typical spatial deviations in the data. We used l= 0.1 for all fields in this works
unless otherwise stated. We also needed to ensure that the velocity and magnetic fields are both divergence
free. Therefore, we produced two initial data fields, the vorticity potential, ψ, and the magnetic potential A.
We defined ψ such that

v=∇×ψ, (13)

5



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure 1. Architecture. Schematic representation of the architecture of our PINO models, which use the TensorLY [43] package
to perform tensor factorization, thereby using tensor Fourier neural operators (tFNO) as the backbone of our AI models. On the
far left, we display sample input fields that are fed into our PINO, which are composed of the u, v, and A initial conditions (ICs).
To the right of the input fields, we illustrate how the data is transformed as it goes through the model. First, this input data is
lifted into a higher dimension representation by the neural network, P1. Then, the data enters a series of Fourier layers labeled
{F1, . . . ,Fi, . . . ,Fn}. The inset zooms into one of these Fourier layers. In the inset, labeled as ‘Fourier Layer F’, we apply a series of
operations that consist of non-local integral operators and nonlinear activation functions. Specifically, T1 represents a linear
transform that employs CP decomposed tensors as weights, T2 represents a local linear transform, and σ represents a nonlinear
activation function. F and F−1 stand for Fourier transform and inverse Fourier transform, respectively. Eventually, the neural
network P2 projects back into position space, producing the output shown on the right panels, which describe the time evolution
of the system. These outputs are presented on the right of the image for the output fields u, v, and A at times that range from t= 0
to t= 1.

which guarantees the velocity fields are divergence free initially. The magnetic potential A is defined in
equation (6) in a similar manner to prevent the presence of divergences in the initial magnetic fields.

We multiplied the resulting initial data fields by a constant to ensure that the resulting fields have
appropriate magnitude and are numerically stable. For example, we need to prevent
Courant–Friedrichs–Lewy condition violations, which can occur if the velocities are too high for a given
resolution and timestep choice [44]. Numerical instabilities can also occur if the initial magnetic potential
values are too high and may cause the simulation to fail. We chose these constants to be cψ = 0.1 for the
vorticity potential ψ and cA = 0.005 for the magnetic potential A.

4.2. Model architecture
A schematic of the tFNO models utilized in this study is presented in figure 1. The size and dimensions of the
model can be described by three hyperparameters—the width, the number of Fourier modes, and the
number of layers. We used four layers for all models in this work. The width and number of Fourier modes
were the same across all layers of the model in this work and were both set to 8 unless stated otherwise.
Although we suspect that we could get better results by increasing the these hyperparameters, especially the
number of Fourier modes which may have helped the models reproduce small scale features in the flow,
doing so proved too memory intensive for our GPUs.

We factorized the weight tensors within the spectral layers with TensorLY to improve generalizability.
Specifically, we used a canonical polyadic tensor decomposition [45] with a rank of 0.5 to perform this
factorization. Prior to producing the outputs, the models employ a fully connected layer of width 128.

In addition, the model normalizes its data internally by dividing by a constant input normalization factor
to ensure that magnitude varying inputs are treated the same way. In particular, the magnitude of the
magnetic potential A was considerably less than that of the velocity fields u and v. Similarly, we multiplied
the output by a constant output normalization factor to alleviate the tFNO model from having to produce
results with significantly different magnitudes. For this work, we used the same value for the input and
output normalization fields of 1 for the velocity fields and 0.00025 for the magnetic potential A. Finally, we
selected the Gaussian error linear unit for the nonlinearity of these models [46].

4.3. Training
To accelerate the training, we would employ transfer learning across different Reynolds number Re.
Specifically, we began by training a model at a resolution N= 1282 at Re= 100 from scratch. The checkpoint
generated from this run was used as the starting point for all the other models. In turn, this transfer learning
saved considerable time when training new models. We trained models initialized from the aforementioned
checkpoint at resolution of N= 1282 for Re values of Re= {100,250,500,750,1000,10000}. We then

6



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure 2. Loss curves. Here we display the loss curves for the training. The top row depicts the original Re= 100 case that was
trained from scratch. The final checkpoint that was created by this run was used as the starting point for all models presented in
this study. The bottom row shows an Re= 250 model that was trained starting at said checkpoint The left panels depicts the total
loss for the training and validation data on a linear scale. The center panels shows the training losses for each of the different types
of losses we track–total loss, data loss, PDE loss, IC loss, and constraint loss. The right panels display these same losses, but for the
validation data. To illustrate the different scales of these losses, the center and right panels use a log scale for the y-axis. The
decreases in loss every 20 epochs occur due to the scheduler decreasing the learning rate by a factor of 2 at those epochs.

compared these models to additional ones trained at resolutions of N= 642 and N= 2562. These models
were for the same Re as the previous N= 1282 resolutions, except for Re= 10000. All models trained using
950 simulations that encompassed the training data and were evaluated using the remaining 50 simulations
that served as the test data. In figure 2, we display some loss curves for the Re= 100 model that was trained
from scratch and for the Re= 250 model both at resolutions of N= 1282.

For most models, we trained on all available timesteps. However, we wanted to see the effect of being
asked to output fewer time steps had on the model. Therefore, we trained additional models that skipped
several timesteps. These trained at Re= 250 and N= 1282 and are described further in section 5.

We trained these models using the PyTorch deep learning framework [47]. All models in this study
trained for 100 epochs starting from the pretrained checkpoint. Most models used an initial learning rate of
5× 10−4. However, the models at N= 1282 with Re values of 750, 1000, and 10000 had initial learning
weights of 0.001. The different initial learning rate for these runs was unintentional. We suspect this higher
may have improved the performance of these runs based on how they perform compared to the same Re
runs at other resolutions, but no rigorous study of learning rate optimization was performed. We employed a
scheduler to decrease the learning rate by a factor of 2 every 20 epoch to help finetune the models. We
selected an AdamW optimizer [48] to optimize the models. This optimizer had a weight decay value of 0.1,
β1 = 0.9, β2 = 0.999.

We set most of the weight hyperparameters of the various loss terms to 1 with a few notable exceptions.
We set the weight of the magnetic potential evolution equation loss wDA to 106 as the magnitude of the term
was small compared to that of the other evolution equations. In addition, we used a value of the constraint
loss weight wconstr of 10. Finally, we selected wdata = 5 as our data loss weight. We logged specific
hyperparameters used in training each PINO using WandB [49] for reproducibility. In addition, we ran an
experiments where we modified the PDE loss weight wPDE hyperparameter to explore its impact on our AI
models. These were done at Re= 250 and Re= 500 both at N= 1282 and are described further in section 5.

4.4. Computational resources
We initially computed a subset of the results on the Pittsburgh Supercomputing Center’s Bridges-2 cluster.
Specifically, we used the V100 GPUs on this cluster. We primarily used the 16 GB variant of these GPUs,
though some cases utilized the 32 GB variation. To generate the training data, for the initial portion of the
study, we utilized the CPUs on the Bridges-2 cluster’s GPU nodes. We used a single GPU node for this
process, which has two Intel Xeon Gold 6248 ‘Cascade Lake’ CPUs, which have 20 cores, 2.50–3.90GHz, 27.5

7



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

MB LLC, 6 memory channels each. After verifying that our models worked as expected, we scaled up our
experiments using NCSA’s Delta cluster. For training, we employed the cluster’s NVIDIA A100 GPUs,
training each model on a single GPU. To generate an expanded quantity of training data, we employed the
Delta cluster’s CPU nodes. These come equipped with 128 AMD EPYC 7763 ‘Milan’ (PCIe Gen4) CPUs. We
parallelized the generation of the training data such that multiple simulations were generated at one, but
each only using one core. We considered low (N= 642), standard (N= 1282), and high resolution
(N= 2562) simulations.

4.5. Evaluation criteria
To evaluate the performance of our PINO models, we look at the relative MSE. This allows us to compare
errors of the various fields despite them differing in magnitude. We report the relative MSE for the
predictions the PINOs on the test dataset for each field of interest. In addition, we compute the total relative
MSE, MSEtot, for our PINOs on this data which we defined as

MSEtot =MSEu +MSEv +MSEA, (14)

where MSEu, MSEv, and MSEA are the MSE values of the u, v, and A fields respectively. In addition, we
computed the kinetic energy spectra Ekin(k) and magnetic energy spectra, Emag(k), of the PINO predictions
and the ground truth simulations. This allowed us to compare how the models perform at various scales as
specified by the wavenumber k.

5. Results

Here we present results for the accuracy with which our PINO models solve the MHD equations, and then
compare these AI predictions with high performance computing MHD simulations. These simulations are
evolved in the time domain t ∈ [0,1]. We present results for a broad range of Reynolds number Re,
summarized in table 1. Our PINO simulations and traditional MHD simulations are compared throughout
their entire evolution, and then we take a snapshot of their evolution at t= 1. We do this to capture the
largest discrepancy between AI-driven simulations and traditional PDE solvers at a time where numerical
errors and other discrepancies between these methodologies are maximized. We examined a variety of
factors that impact the performance of our models, including:

• Reynolds number: We quantify the ability of our AI surrogates to describe the physics of MHD simula-
tions for laminar and turbulent flows. In general, simulations with higher Reynolds numbers, Re, i.e. more
turbulent flows, are more challenging to describe accurately.

• Resolution:We compare the performance of our models using three grid resolutions: 642, 1282, and 2562,
which we denote as the low, standard, and high resolutions, respectively. In what follows, we present results
for the standard resolution, N= 1282. Results for low and high resolutions are presented in appendix A.

• PDE loss weight:We looked at how changing the PDE loss weight wPDE impacts our AI models. This rep-
resents how much the physics informed aspect of the model improved the results. We tested wPDE values of
0, 1, 2, 5, and 10.

• Timestep: By default, our AI models use 101 timesteps to cover the time range t ∈ [0,1]. We use the quantity
tstep to represent the frequency of sampling from the full set of times. For example, tstep = 1 uses all timesteps
and tstep = 2 uses every other timestep. For this experiment, we used tstep values of 1, 2, 5, and 10.

5.1. Resolution
To begin with, in the left panel of figure 3 we present how the data loss MSE varies with Re for N= 1282.
Therein we see the loss of each field (u,v,A) as well as the total loss as a function of Re. We observe that the
two velocity fields u and v possess around the same MSE value as one would expect. In contrast, the MSE for
the magnetic potential field A is larger than that of the velocity fields. Moreover, the MSE value of the A field
increases faster compared to those of the velocity fields u and v. In the right panel of figure 3 we see the total
MSE as a function of Re for three different resolutions, N= {642,1282,2562}. If we combine these two sets
of results, we realize that our AI surrogates can produce reliable MHD simulations for Re⩽ 250, and that the
main factor that degrades the accuracy of our AI surrogates is the ability to capture detailed features of the
vector potential A in turbulent flows. We also notice that the resolution of the training data does not have a
major impact in the accuracy of our AI surrogates.

5.2. PDE weight
Figure 4 illustrates how the MSE changes with PDE weight, wPDE, for Re= 250 and Re= 500. We observe
that the MSE improves as we increase wPDE. The only exception of Re= 500 and wPDE = 10 which increases

8



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Table 1. Summary of results. The Re column displays the Reynolds number of the model. The Resolution column provides the
resolution of the model. The Ntrain and Ntest columns tell us how many simulations were used in training and testing respectively for
each PINO. The MSE u, MSE v, and MSE A give us the relative MSE values of the u, v, and A fields respectively. The far right column,
MSE Total, lists the sum of the MSE values of the u, v, and A fields.

Standard runs Re Resolution MSE u MSE v MSE A MSE total

100 1282 0.019 433 0.023 787 0.039 242 0.082 462 103
250 1282 0.065 276 0.070 364 0.119 925 0.255 565 267
500 1282 0.136 089 0.146 443 0.262 841 0.545 372 143
750 1282 0.160 067 0.168 168 0.313 788 0.642 023 818
1000 1282 0.185 853 0.195 28 0.362 628 0.743 760 6

10 000 1282 0.280 736 0.282 56 0.557 567 1.120 862 162
100 642 0.018 748 0.022 466 0.036 03 0.077 244 182
250 642 0.062 604 0.070 628 0.122 528 0.255 759 554
500 642 0.129 726 0.139 503 0.249 703 0.518 932 519
750 642 0.170 337 0.180 869 0.325 797 0.677 003 03
1000 642 0.196 846 0.207 568 0.374 421 0.778 835 213
100 2562 0.019 498 0.023 901 0.037 558 0.080 957 422
250 2562 0.064 941 0.076 371 0.130 074 0.271 386 759
500 2562 0.134 618 0.147 628 0.261 671 0.543 917 469
750 2562 0.176 292 0.190 424 0.339 657 0.706 372 823
1000 2562 0.203 172 0.218 052 0.389 165 0.810 388 71

wPDE Re Resolution MSE u MSE v MSE A MSE total

0 250 1282 0.065 495 0.070 718 0.120 027 0.256 239 378
1 250 1282 0.065 276 0.070 364 0.119 925 0.255 565 267
2 250 1282 0.065 14 0.070 161 0.119 934 0.255 234 97
5 250 1282 0.064 882 0.069 786 0.120 038 0.254 706 307
10 250 1282 0.064 688 0.069 522 0.120 324 0.254 534 433
0 500 1282 0.136 623 0.147 041 0.264 064 0.547 728 002
1 500 1282 0.136 089 0.146 443 0.262 841 0.545 372 143
2 500 1282 0.135 796 0.146 161 0.262 429 0.544 385 653
5 500 1282 0.135 441 0.145 79 0.262 019 0.543 249 941
10 500 1282 0.135 667 0.145 995 0.262 715 0.544 377 502

tstep Re Resolution MSE u MSE v MSE A MSE total

1 250 1282 0.065 276 0.070 364 0.119 925 0.255 565 267
2 250 1282 0.064 159 0.069 215 0.115 976 0.249 350 436
3 250 1282 0.062 734 0.067 394 0.111 937 0.242 065 011
4 250 1282 0.061 139 0.065 587 0.108 474 0.235 199 714

Figure 3. Left panel: MSE vs Reynolds number Re at a resolution of N= 1282. We include the total MSE and the MSE for each of
the fields the model is trying to reconstruct–velocity in the x direction u, the velocity in the y direction v, and magnetic vector
potential A. Right panel: total MSE vs Reynolds number Re for grids of size N= {642,1282,2562}. We compare these resolutions
for Re= {100,250,500,750,1000}.

9



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure 4.MSE vs PDE weight. Impact of PDE weight, wPDE, on the performance of AI surrogates in terms of total MSE for
Re= 250 (left panel). and Re= 500 (right panel) simulations. We show results for wPDE values of 0, 1, 2, 5, and 10.

Figure 5.MSE vs timestep. Total MSE vs timestep, tstep, for values tstep = {1,2,5,10}.

in MSE compared to wPDE = 5, but still less than the other wPDE values at Re= 500. However, we should
observe that while including violations of the PDE into the loss function improves the result, their
contribution is only marginal.

5.3. Timesteps
Figure 5 illustrates, for the Re= 250 model, how the total MSE varies with the number of timesteps, tstep. We
observe that the fewer timesteps the model is required to output data for (higher tstep), the better the
performance of the model—though this improvement is marginal.

5.4. Pair-wise comparison of traditional and AI-drivenMHD simulations
We now compare traditional MHD simulations with predictions from AI surrogates assuming a grid of size
N= 1282, and tstep = 1. In figures 6–11 we present snapshots of the systems’ evolution at time t= 1 to show
the largest discrepancy between ground truth values (traditional MHD simulations) and AI predictions.
These results illustrate ICs, targets, prediction, and MSEs between target and AI predictions. At a glance, we
observe that AI models appear to possess the ability to resolve large scale features, but struggle to resolve
cases with small scale structure. This small scale structure arise at higher Re and is observed most strongly in
the A field. We summarize below the main findings of these studies using table 1, figures 3 and 6–11:

• Re= 100. Figure 6 shows that PINO models provide an accurate description of these MHD simulations.
Quantitatively and quantitatively PINOs can resolve the dynamics of the velocity field, (u, v), and the vec-
tor potential, A. We also notice that the largest discrepancy between AI predictions and traditional MHD
simulations at t= 1 is⩽4% for each of the fields.

• Re= 250. Figure 7 shows that PINOs provide a reliable description of the dynamics of these simulations. The
velocity field and vector potential potential are accurately described, with MSEs ⩽7% and ⩽10%, respect-
ively.

10



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure 6. Re= 100 MHD simulations. Results of the PINO model on sample test data from the Re= 100 simulations. The rows
correspond to the fields of interest with the velocity in the x direction u, the velocity in the y direction v, and the magnetic
potential A being the quantities featured in the top, middle, bottom rows, respectively. The far left column depicts the initial
condition given to the PINO model. The center left column shows the ground truth at time t= 1. In the center right column, we
present the PINO predictions at time t= 1. The far right column error between the ground truth and the PINO predictions at
t= 1.

Figure 7. Re= 250 MHD simulations. Same as figure 6 but now for a test set from the Re= 250 simulations.

• Re= 500. Figure 8 shows that PINOs capture well large scale features of these simulations. In particular, the
velocity field can be recovered with MSE⩽14%. On the other hand, detailed features of the vector potential
are not completely resolved, and the MSE is⩽26%.

• Re= 750. Figure 9 shows that PINO MHD simulations can resolve large scale features of the velocity field,
with MSE⩽16%, which is similar to simulations with Re= 500. Similarly, large scale features of the vector
potential are well described. However, as these systems become more turbulent, small scale features of the
vector potential are not captured by PINOs, and report an increase in MSE, i.e.⩽31%.

11



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure 8. Re= 500 MHD simulations. Same as figure 6 but now for a test set from the Re= 500 simulations.

Figure 9. Re= 750 MHD simulations. Same as figure 6 but now for a test set from the Re= 750 simulations.

• Re= 1000. Figure 10 presents a similar story to the two previous cases. Large scale structure is well described,
and the MSE for the velocity field is⩽18%. However, it is difficult to capture the small scale features of the
magnetic field, which now evolve in a rather complex manner for these turbulent systems.

• Re= 10000. Figure 11 indicates that, for very turbulent MHD systems, PINOs can only reproduce some of
the large scale features of the flow, but struggle to reproduce many of the detailed features. One particular
feature that the PINO misses is the small scale fluctuations in the velocity fields u and v that likely result
from strong magnetic fields in those areas. In other words, the PINO cannot resolve the effect of the mag-
netic field on the fluid motion. For the magnetic potential A, the PINO model appears to miss most of the
important features at first glance. If we lookmore closely, we observe that the PINO appears, to some extent,
to reproduce the mean field value over some very large regions. However, this comes at the cost of missing
any sort of interesting details in the magnetic field.

12



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure 10. Re= 1000 MHD simulations. Same as figure 6 but now for a test set from the Re= 1000 simulations.

Figure 11. Re= 10000 MHD simulations. Same as figure 6 but now for a test set from the Re= 10000 simulations.

In summary, figures 6–11 show that our PINO models can successfully reproduce large scale features of
MHD simulations, but had difficulty resolving detailed features for large Reynolds numbers, especially for
the magnetic potential, which is known to store its energy at higher wavenumbers. Thus, in the following
section we explored the ability of PINOs to learn the right data features associated to low and high
wavenumbers as the simulation evolves in time.

5.5. Spectra results
We analyzed the magnetic and kinetic energy spectra of the simulations in figure 12. Therein we observe that
for both the kinetic and magnetic energy spectra, the PINO models performed well at low wavenumbers k.
However, the PINOs were not able to accurately reproduce the energy spectra at high wavenumbers.
Interestingly, at low Re, the PINOs tended to overshoot the ground truth energies at high wavenumbers.
While at high Re, the PINOs tended to undershoot the ground truth energies at high wavenumbers.

13



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure 12. Spectra. The panels show the kinetic and magnetic spectra for each PINO model and simulation at time t= 1. We
present the kinetic energy spectra as solid lines and the magnetic energy spectra as dashed lines. The ground truth simulations are
illustrated in black while the PINO predictions are in blue. The top row presents from left to right the Re= 100, Re= 250, and
Re= 500. The bottom row contains the Re= 750, Re= 1000, and Re= 10000 cases.

Moreover, large Reynolds number simulations usually store more energy at higher wavenumbers. This is
especially true for the magnetic energy, which tends to peak at later wavenumbers in higher Re simulations.
Therefore, the spectra plots in figure 12 indicate that the difficulties the PINOs had in reproducing the
simulations at high Re and the magnetic potential field Amay stem from their relatively poor performance at
high wavenumbers. Therefore, future work should focus on developing methods that enable PINOs to
capture data features contained at high wavenumbers.

6. Conclusions

In this work we presented the first application of PINOs to produce 2D incompressible MHD simulations for
a variety of ICs and Reynolds numbers. We demonstrated how to incorporate physics principles, and suitable
gauge conditions, for the training and optimization of our AI surrogates. Once fully trained, we found that
our PINO models were able to accurately describe MHD simulations with Reynolds numbers Re⩽ 250
throughout the entire evolution of the system, i.e. t ∈ [0,1]. For other systems with larger Reynolds numbers,
we found that PINOs provide a reliable description of the system at earlier times, but as the system evolves,
PINO simulations gradually degrade in accuracy. We first noticed this behavior in the evolution of the
magnetic potential, A, which we used to evolve the magnetic fields, for MHD simulations with Re> 500. We
explored this issue in detail, and found that this issue may likely stem from the PINOs’ difficulty in learning
physics contained at high wavenumbers.

We suggest that future work should focus on optimizing NOs at these high wavenumbers. One
suggestion would be to increase the number of Fourier modes used by our tFNO backend. We were memory
limited and were restricted to 8 Fourier modes to store the model in GPU memory. Recent work involving
FNOs for hydrodynamic turbulence modeling have had success with using 20 Fourier modes [25]. One
should be cautious, however, since using too many Fourier modes may also introduce numerical noise and
complicate the resolution of small scale features in the data. We also suggest to use emergent methods to
train PINOs using high resolution datasets which, while difficult to fit in a state-of-the-art GPU, may be
readily used in AI-accelerator machines, as those housed in multiple supercomputing centers in the US and
elsewhere, e.g. the Argonne Leadership Computing Facility AI-Testbed.

Another suggestion is to develop methods that enable PINOs to learn the turbulence statistics of the
MHD simulation in addition to the flow. For example, one could incorporate the kinetic and magnetic

14

https://www.alcf.anl.gov/alcf-ai-testbed


Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

energy spectra into the loss function and weigh in the contribution of the high wavenumber portions of the
spectrum appropriately. Through this approach, PINOs may may predict the flow with the correct turbulent
characteristics even if they are unable to accurately model the details of the flow. It is also advisable to go
beyond the use of physics-informed loss functions, which only provide static optimization at present. A more
suitable approach for these types of complex systems would entail coupling physics-informed loss functions
with online or reinforcement learning that dynamically steer the AI surrogate to the right answer during the
optimization procedure as new data features, such as magnetic fields, arise in the simulation data. We expect
that the work we have presented here, in terms of data generators, AI surrogates, and optimization
approaches for complex systems, may provide a stepping stone to other AI practitioners who are developing
novel methods to model complex systems, such as turbulent MHD simulations.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This material is based upon work supported by Laboratory Directed Research and Development (LDRD)
funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S.
Department of Energy under Contract No. DE-AC02-06CH11357. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357. S R and E A H gratefully acknowledge National Science Foundation Award
OAC-1931561. This work used the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation Grant Number ACI-1548562. This work used the
Extreme Science and Engineering Discovery Environment (XSEDE) Bridges-2 at the Pittsburgh
Supercomputing Center through Allocation TG-PHY160053. This research used the Delta advanced
computing and data resource which is supported by the National Science Foundation (Award OAC-2005572)
and the State of Illinois. Delta is a joint effort of the University of Illinois Urbana-Champaign and its
National Center for Supercomputing Applications.

Appendix A. Additional results for low and high resolution simulations

Here we provide additional results that further establish the results we discussed in the main body of the
article. In summary, figures A1–A10 show that using low, standard or high resolution simulations have a
marginal impact in the performance of PINOs to capture the dynamics of turbulent MHD systems. What we
learn from these studies is that what really matters is that PINOs are able to dynamically assign the correct
kinetic and magnetic energy at high wavenumbers as the system evolves in time. The current approach in
which physics-inspired loss functions remain static should be replaced by dynamic loss functions. This
approach will be explored in the future.

15



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure A1. Re= 100 MHD simulations. As figure 6 but now for a test set with resolution of N= 642 grid points.

Figure A2. Re= 100 MHD simulations. As figure A1 but now for a test set with resolution of N= 2562 grid points.

16



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure A3. Re= 250 MHD simulations. As figure A1 but now for a test set from the Re= 250 simulations with resolution of
N= 642 grid points.

Figure A4. Re= 250 MHD simulations. Same as figure A3 but now for a test set with resolution of N= 2562 grid points.

17



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure A5. Re= 500 MHD simulations. As figure A1 but now for a test set from the Re= 500 simulations with resolution of
N= 642 grid points.

Figure A6. Re= 500 MHD simulations. Same as figure A5 but now for a test set with resolution of N= 2562 grid points.

18



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure A7. Re= 750 MHD simulations. As figure A1 but now for a test set from the Re= 750 simulations with resolution of
N= 642 grid points.

Figure A8. Re= 750 MHD simulations. Same as figure A7 but now for a test set with resolution of N= 2562 grid points.

19



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure A9. Re= 1000 MHD simulations. As figure A1 but now for a test set from the Re= 1000 simulations with resolution of
N= 642 grid points.

Figure A10. Re= 1000 MHD simulations. Same as figure A9 but now for a test set with resolution of N= 2562 grid points.

20



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure B1. Spectra at different resolutions. Same as figure 12 for the remaining N= 642 models with Re not plotted elsewhere.

Appendix B. Additional results for low and high resolution spectra

Figures B1 and B2 show that low and high resolution MHD simulations have similar properties in their
distribution of kinetic and magnetic energy at different wavenumbers. Thus, using high resolution data to
train PINOs does not constitute a silver bullet to ensure that PINOs capture the small scale structure of
turbulent flows, in particular that related to the impact of magnetic fields in the evolution of these systems.

21



Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

Figure B2. Spectra at different resolutions. Same as figure 12 for the remaining N= 2562 models with Re not plotted elsewhere.

ORCID iDs

Shawn G Rosofsky https://orcid.org/0000-0002-3319-576X
E A Huerta https://orcid.org/0000-0002-9682-3604

References

[1] Beresnyak A 2019 Living Rev. Comput. Astrophys. 5 2
[2] Schekochihin A A 2022 J. Plasma Phys. 88 155880501
[3] Pouquet A, Rosenberg D, Stawarz J and Marino R 2019 Earth Space Sci. 6 351–69
[4] Kiuchi K, Cerdá-Durán P, Kyutoku K, Sekiguchi Y and Shibata M 2015 Phys. Rev. D 92 124034
[5] Beresnyak A 2012 Phys. Rev. Lett. 108 035002
[6] Beresnyak A and Lazarian A 2015MHD Turbulence, Turbulent Dynamo and Applications (Springer) pp 163–226
[7] Grete P 2017 Large eddy simulations of compressible magnetohydrodynamic turbulence PhD ThesisMax-Planck-Institut für

Sonnensystemforschung
[8] Grete P, Vlaykov D G, Schmidt W, Schleicher D R G and Federrath C 2015 New J. Phys. 17 023070
[9] Grete P, Vlaykov D G, Schmidt W and Schleicher D R G 2016 Phys. Plasmas 23 062317
[10] Vlaykov D G, Grete P, Schmidt W and Schleicher D R G 2016 Phys. Plasmas 23 062316
[11] Grete P, Vlaykov D G, Schmidt W and Schleicher D R G 2017 Phys. Rev. E 95 033206
[12] Grete P, O’Shea B W, Beckwith K, Schmidt W and Christlieb A 2017 Phys. Plasmas 24 092311
[13] Kessar M, Balarac G and Plunian F 2016 Phys. Plasmas 23 102305
[14] Aguilera-Miret R, Viganò D and Palenzuela C 2022 Astrophys. J. Lett. 926 L31
[15] Palenzuela C, Aguilera-Miret R, Carrasco F, Ciolfi R, Kalinani J V, Kastaun W, Miñano B and Viganò D 2022 Phys. Rev. D

106 023013
[16] Viganò D, Aguilera-Miret R and Palenzuela C 2019 Phys. Fluids 31 105102
[17] Carrasco F, Viganò D and Palenzuela C 2020 Phys. Rev. D 101 063003
[18] Viganò D, Aguilera-Miret R, Carrasco F, Miñano B and Palenzuela C 2020 Phys. Rev. D 101 123019
[19] Radice D 2020 Symmetry 12 1249
[20] Rosofsky S G and Huerta E A 2020 Phys. Rev. D 101 084024
[21] Karpov P I, Huang C, Sitdikov I, Fryer C L, Woosley S and Pilania G 2022 Astrophys. J. 940 26

22

https://orcid.org/0000-0002-3319-576X
https://orcid.org/0000-0002-3319-576X
https://orcid.org/0000-0002-9682-3604
https://orcid.org/0000-0002-9682-3604
https://doi.org/10.1007/s41115-019-0005-8
https://doi.org/10.1007/s41115-019-0005-8
https://doi.org/10.1017/S0022377822000721
https://doi.org/10.1017/S0022377822000721
https://doi.org/10.1029/2018EA000432
https://doi.org/10.1029/2018EA000432
https://doi.org/10.1103/PhysRevD.92.124034
https://doi.org/10.1103/PhysRevD.92.124034
https://doi.org/10.1103/PhysRevLett.108.035002
https://doi.org/10.1103/PhysRevLett.108.035002
https://doi.org/10.1088/1367-2630/17/2/023070
https://doi.org/10.1088/1367-2630/17/2/023070
https://doi.org/10.1063/1.4954304
https://doi.org/10.1063/1.4954304
https://doi.org/10.1063/1.4954303
https://doi.org/10.1063/1.4954303
https://doi.org/10.1103/PhysRevE.95.033206
https://doi.org/10.1103/PhysRevE.95.033206
https://doi.org/10.1063/1.4990613
https://doi.org/10.1063/1.4990613
https://doi.org/10.1063/1.4964782
https://doi.org/10.1063/1.4964782
https://doi.org/10.3847/2041-8213/ac50a7
https://doi.org/10.3847/2041-8213/ac50a7
https://doi.org/10.1103/PhysRevD.106.023013
https://doi.org/10.1103/PhysRevD.106.023013
https://doi.org/10.1063/1.5121546
https://doi.org/10.1063/1.5121546
https://doi.org/10.1103/PhysRevD.101.063003
https://doi.org/10.1103/PhysRevD.101.063003
https://doi.org/10.1103/PhysRevD.101.123019
https://doi.org/10.1103/PhysRevD.101.123019
https://doi.org/10.3390/sym12081249
https://doi.org/10.3390/sym12081249
https://doi.org/10.1103/PhysRevD.101.084024
https://doi.org/10.1103/PhysRevD.101.084024
https://doi.org/10.3847/1538-4357/ac88cc
https://doi.org/10.3847/1538-4357/ac88cc


Mach. Learn.: Sci. Technol. 4 (2023) 035002 S G Rosofsky and E A Huerta

[22] Kovachki N, Li Z, Liu B, Azizzadenesheli K, Bhattacharya K, Stuart A and Anandkumar A 2021 Neural operator: learning maps
between function spaces (arXiv:2108.08481)

[23] Peng W, Yuan Z, Li Z and Wang J 2022 Linear attention coupled Fourier neural operator for simulation of three-dimensional
turbulence (arXiv:2210.04259)

[24] Peng W, Yuan Z and Wang J 2022 Phys. Fluids 34 025111
[25] Li Z, Peng W, Yuan Z and Wang J 2022 Theor. Appl. Mech. Lett. 12 100389
[26] Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Azizzadenesheli K and Anandkumar A 2021 Physics-informed neural operator

for learning partial differential equations (arXiv:2111.03794)
[27] Rosofsky S G, Al Majed H and Huerta E A 2022 Applications of physics informed neural operators (arXiv:2203.12634)
[28] Dedner A, Kemm F, Kröner D, Munz C D, Schnitzer T and Wesenberg M 2002 J. Comput. Phys. 175 645–73
[29] Mocz P, Vogelsberger M and Hernquist L 2014Mon. Not. R. Astron. Soc. 442 43–55
[30] Burns K J, Vasil G M, Oishi J S, Lecoanet D and Brown B P 2020 Phys. Rev. Res. 2 023068
[31] Lu L, Jin P, Pang G, Zhang Z and Karniadakis G E 2021 Nat. Mach. Intell. 3 218–29
[32] Wang S, Wang H and Perdikaris P 2021 Sci. Adv. 7 eabi8605
[33] Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A M and Anandkumar A 2020 Neural operator: graph kernel

network for partial differential equations (arXiv:2003.03485)
[34] Li Z, Kovachki N B, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A M and Anandkumar A 2020 Multipole graph neural

operator for parametric partial differential equations CoRR (arXiv:2006.09535)
[35] Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A M and Anandkumar A 2020 Fourier neural operator for

parametric partial differential equations (arXiv:2010.08895)
[36] Tran A, Mathews A, Xie L and Ong C S 2021 Factorized Fourier neural operators (arXiv:2111.13802)
[37] Raissi M, Perdikaris P and Karniadakis G E 2017 Physics informed deep learning (part I): data-driven solutions of nonlinear partial

differential equations (arXiv:1711.10561)
[38] Raissi M, Perdikaris P and Karniadakis G E 2017 Physics informed deep learning (part II): data-driven discovery of nonlinear

partial differential equations (arXiv:1711.10566)
[39] Raissi M, Perdikaris P and Karniadakis G 2019 J. Comput. Phys. 378 686–707
[40] Pang G, Lu L and Karniadakis G E 2019 SIAM J. Sci. Comput. 41 A2603–26
[41] Lu L, Meng X, Mao Z and Karniadakis G E 2021 SIAM Rev. 63 208–28
[42] Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S and Yang L 2021 Nat. Rev. Phys. 3 422–40
[43] Kossaifi J, Panagakis Y, Anandkumar A and Pantic M 2019 J. Mach. Learn. Res. 20 1–6
[44] Courant R, Friedrichs K and Lewy H 1928Math. Ann. 100 32–74
[45] Erichson N B, Manohar K, Brunton S L and Kutz J N 2020Mach. Learn.: Sci. Technol. 1 025012
[46] Hendrycks D and Gimpel K 2016 Gaussian error linear units (GELUs) (arXiv:1606.08415)
[47] Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L and Lerer A 2017 Automatic

differentiation in pytorch NIPS 2017 Workshop on Autodiff
[48] Loshchilov I and Hutter F 2017 Decoupled weight decay regularization (arXiv:1711.05101)
[49] Biewald L 2020 Experiment tracking with weights and biases software available from wandb.com (available at: www.wandb.com/)

23

https://arxiv.org/abs/2108.08481
https://arxiv.org/abs/2210.04259
https://doi.org/10.1063/5.0079302
https://doi.org/10.1063/5.0079302
https://doi.org/10.1016/j.taml.2022.100389
https://doi.org/10.1016/j.taml.2022.100389
https://arxiv.org/abs/2111.03794
https://arxiv.org/abs/2203.12634
https://doi.org/10.1006/jcph.2001.6961
https://doi.org/10.1006/jcph.2001.6961
https://doi.org/10.1093/mnras/stu865
https://doi.org/10.1093/mnras/stu865
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1126/sciadv.abi8605
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2006.09535
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2111.13802
https://arxiv.org/abs/1711.10561
https://arxiv.org/abs/1711.10566
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/18M1229845
https://doi.org/10.1137/18M1229845
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/BF01448839
https://doi.org/10.1088/2632-2153/ab8240
https://doi.org/10.1088/2632-2153/ab8240
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1711.05101
https://www.wandb.com/

	Magnetohydrodynamics with physics informed neural operators
	1. Introduction
	2. Simulating incompressible MHD
	2.1. Equations
	2.2. Numerical methods
	2.3. Reynolds number

	3. Modeling MHD with PINOs
	3.1. PINOs
	3.2. Applying to MHD equations

	4. Methods
	4.1. Data generation
	4.2. Model architecture
	4.3. Training
	4.4. Computational resources
	4.5. Evaluation criteria

	5. Results
	5.1. Resolution
	5.2. PDE weight
	5.3. Timesteps
	5.4. Pair-wise comparison of traditional and AI-driven MHD simulations
	5.5. Spectra results

	6. Conclusions
	Appendix A. Additional results for low and high resolution simulations
	Appendix B. Additional results for low and high resolution spectra
	References


