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Abstract
Understanding the mechanics and failure of materials at the nanoscale is critical for their
engineering and applications. The accurate atomistic modeling of brittle failure with crack
propagation in covalent crystals requires a quantum mechanics-based description of individual
bond-breaking events. Artificial neural network potentials (NNPs) have emerged to overcome the
traditional, physics-based modeling tradeoff between accuracy and accessible time and length
scales. Previous studies have shown successful applications of NNPs for describing the structure
and dynamics of molecular systems and amorphous or liquid phases of materials. However, their
application to deformation and failure processes in materials is still uncommon. In this study, we
discuss the apparent limitations of NNPs for the description of deformation and fracture under
loadings and propose a way to generate and select training data for their employment in
simulations of deformation and fracture simulations of crystals. We applied the proposed approach
to 2D crystalline graphene, utilizing the density-functional tight-binding method for more
efficient and extensive data generation in place of density functional theory. Then, we explored
how the data selection affects the accuracy of the developed artificial NNPs. It revealed that NNP’s
reliability should not only be measured based on the total energy and atomic force comparisons for
reference structures but also utilize comparisons for physical properties, e.g. stress–strain curves
and geometric deformation. In sharp contrast to popular reactive bond order potentials, our
optimized NNP predicts straight crack propagation in graphene along both armchair and zigzag
(ZZ) lattice directions, as well as higher fracture toughness of ZZ edge direction. Our study
provides significant insight into crack propagation mechanisms on atomic scales and highlights
strategies for NNP developments of broader materials.

1. Introduction

Understanding fracture mechanics and crack propagation is key to predicting and controlling mechanical
behaviors for materials processing and subsequent materials applications. In many materials, crack
propagation under loading is an overriding failure and, therefore, one of the critical problems in materials
science. Accurate computational modeling of crack propagation, thus, becomes an essential tool for
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understanding the underlying mechanisms [1–3] and will open pathways for the computational design of
advanced materials processing [4].

Crack propagation in covalent crystals is a multiscale phenomenon requiring high atomic-level accuracy
but large-length scales for computational modeling. However, physics-based molecular simulations
performed on associated atomic-scale potential energy surfaces are often limited by the fundamental tradeoff
between the simulation accuracy on one hand and accessible time and length scales on the other. For
example, highly accurate quantum mechanics-based electronic structure approaches such as density
functional theory (DFT) are computationally demanding and generally impractical for long-timescale
simulation of complex and large systems. On the other hand, classical molecular mechanics-based
forcefields, including reactive forcefields, can cover larger system sizes, but their accuracy and transferability
in specific applications are often inferior. Recently, machine learning (ML) techniques have revolutionized
problem-solving approaches in a wide range of fields of science and engineering [5–9]. Significantly, ML
potentials have emerged as a possible solution to resolve the conflicts arising from such tradeoffs [10].

There are many types of ML potentials proposed and developed [11–13]. Among them, the so-called
‘neural network’ (NN) is a ML method that mimics the structures and function of the human brain to
process data. NNs have been applied to various problems, such as classification, predictions, and pattern
recognition. NN-based potentials (NNPs) utilize NNs to fit the interatomic interaction energies [14], which
have rapidly emerged due to their flexibility, accuracy, and efficiency, and they are more suitable for large and
complex systems than other types of ML potentials as they can handle large data sets with many training data
points.

NNPs rely on mapping or encoding the local chemical environment of atoms in a molecular or bulk
system to a unique ‘input feature.’ Recent advances expand these input features from local descriptors to
include long-range and dispersion interactions [11, 12]. Such efforts and achievements are promising for
NNPs to describe complex systems accurately and efficiently. One of the most common approaches to the
local atomic environment descriptors, symmetry functions, goes back to the early work of Behler and
Parrinello (BP) [15]. BP symmetry functions use translational and rotational invariant representations of
atomic geometry and can be readily expanded to multiple chemical element types [16, 17]. More recently,
convolutional NNPs have been proposed [18], showing overall better accuracy than BP-NNPs but requiring a
higher computational cost. Another class of ML potentials, namely kernel-based approaches, including
Gaussian approximation potential [19], spectral neighbor analysis potential [20], and moment tensor
potential [21], offer good performance with a small number of data sets. Still, the computational time
increases with the number of reference data. NNPs can achieve high accuracy, comparable to the
kernel-based methods, but faster with a large number of data [13] (e.g. RMSE of energy under 1 kcal mol−1

with extended MD17 data set [22]).
While many studies have used NNPs for various applications [10], mechanical properties related to the

deformation and fracture of materials were less commonly explored. Recent reports clearly show that the
generation of training data for a wide range of configurations and phases for NNPs is not straightforward
and requires careful evaluation of the representability contained in the data set [23, 24]. Thus, a critical issue
in addressing fracture and deformation from NNPs is the generation and selection of the training data set.
Configurations driven by mechanical forces, e.g. tensile or shear loadings, cannot be obtained from the
equilibrium molecular dynamics (MDs) simulations or normal mode analysis [16]. Instead, one should
perform deformation simulations until failure occurs to obtain appropriate training data that will allow the
NNP to accurately reproduce these processes. Another important challenge stems from the fact that the
moment of failure or fracture is a rare event in the entire loading history, so naturally, a data imbalance
problem emerges.

In this study, we developed an NNP for one of the most famous two-dimensional (2D) materials,
crystalline graphene, to describe its crack propagation, and compared the results with previous experimental
observations. Graphene frequently plays a role as a popular ‘test bed’ when new interatomic potentials are
developed, especially related to the prediction of mechanical properties and vibrational properties to
examine their reliability. Many-body potentials and empirical reactive forcefields such as adptive
intermolecular reactive empirical bond order (AIREBO) [25, 26] have been widely utilized for crack
propagation and fracture dynamics [27].

There are well-known limitations of empirical potentials for bond breaking, and therefore, many ways to
correct them have been proposed. Most approaches are based on avoiding stiffening effects from the
switching function in potentials [28–30]. A more detailed example of the switching function in AIREBO on
bond breaking is well described in a previous review [31]. If we choose the suitable cutoffs of the switching
function, AIREBO can predict the mechanical strength of graphene and stress–strain curves along both
zigzag (ZZ) and armchair (AC) directions. However, crack propagation from AIREBO along the AC
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Figure 1. (a) Schematic of current study from the data generation to MD simulations. Data are generated for possible fracture
scenarios of graphene with a small size. The data are reduced and selected based on physical properties. The selected NNP is
utilized for the crack propagation of graphene with a sharp crack. (b) Small crystal system of 24 atoms under three main loadings.
The size was selected to avoid self-interaction when we consider the radius cutoff of local descriptors of NNP (c) Energy
comparison from the training and validation sets.

direction does not occur in a straight line, even though a previous high-resolution transmission electron
microscope (TEM) study reported both straight AC- and ZZ-torn graphene [32].

Two-dimensional materials are ideal for validating atomistic models of materials failure under the effects
of vacancies, bilayer, crack directions, and folding by comparing the fracture patterns observed through
advanced TEM techniques [33–36]. A recent in-situ TEM with reactive molecular simulation has shown that
lattice distortion at the crack tip in 2D materials, WS2 with a hexagonal lattice, can drastically change the
entire path of crack propagation [35]. Also, theoretical comparisons between DFT and AIREBO show that
the lattice distortion under tensile loading is significantly different [37]. Therefore, we hypothesized that
developing an NNP of graphene for lattice deformation and fracture under various loadings could provide a
more faithful prediction of crack propagation in graphene, especially along the AC direction. Furthermore,
establishing a data preparation process can provide a foundational workflow to develop NNPs for mechanics
and fractures of other materials.

A schematic of the current study is shown in figure 1(a). In a previous study [37], we showed that DFTB
could correctly predict both mechanical behaviors and lattice deformation of graphene under various
loading conditions, in good agreement with DFT calculations. Therefore, we here utilized DFTB to generate
extensive data for possible fracture scenarios of graphene under various loadings by mixing two tensile and
one shear deformation. The data are reduced and selected based on deformation and energy differences to
improve the generalization during the training. Then, we explored how the data selection affects the accuracy
of the trained NNPs and the reliability evaluated based on physical properties such as deformation and
stress–strain curves. In the end, we performed simulations for the crack propagation of graphene with a

3



Mach. Learn.: Sci. Technol. 4 (2023) 035001 G S Jung et al

sharp crack using the trained NNP. We compared the results with an approach based on a popular empirical
bond order potential, AIREBO. The results show better agreement with previous experiments regarding the
resulting edge structures and the frequency of the type of torn edges.

2. Method

2.1. Generation of data
The MDs simulations with DFTB for data generation were performed via the large-scale atomic/molecular
massively parallel simulator (LAMMPS) package [38]. DFTB calculations were performed at each time step
through the DFTB+ package [39], utilizing a previously developed interface for LAMMPS [40]. We
employed the 3OB [41] C–C parameters with the DFTB3 scheme because the stress–strain behaviors are
well-matched with those from DFT calculations with the PBE functional [40]. We generated 10 000 data
points through the NVT ensemble at 400 K with the time step of 0.5 fs to obtain reference RMSE of the
relative energy from the canonical data generation.

Then, we obtained data points for the deformation and fracture under various loading. Static loading or
quasi-static loading with full energy minimization has a limitation for the training data set because all atoms
are located in the energy minimized positions. We need slightly perturbated coordinates to train the NNP to
distinguish the contribution of a single atomic energy. Therefore, we utilized dynamics loading for the data
generation. We consider different loading directions by mixing the loadings along x, y (pure tensile), and xy
(pure shearing) directions as (vx, vy, vxy). We prepared 361 directions with constant velocity 400 m s−1 with
0.5 fs time step. Each direction has 2000 steps, so the total data number is 722 000. Here, the loading speed is
much faster than what is desired to provide reliable behaviors, which is under 20 m s−1 [40]. The effect of the
loading speed becomes critical when the speed is too fast for the system to have enough time to relax the
structures under the deformation. So, after every 20 steps, we included a small step of energy minimization
to overcome the delay. The number of steps was tuned to match the stress–strain curve under shear loading
to the results from the quasi-static loading. At each step, we deformed the simulation box by about 0.002 Å,
resulting in a total deformation for each loading of about 4 Å.

2.2. Selection of data
From the 722 000 data points, we built neighbor lists between data points based on the deformation of the
simulation box (dx, dy, dxy). We consider the distance (δr) between data as an indicator of the deformation
similarity. Then, we sequentially deleted the data but saved it if the energy difference in the list is larger than
δE. We utilized vales of δr (0.01 Å–0.2 Å) and δE (1 kcal mol−1–50 kcal mol−1) from the original 722 000
data points, and the number of reduced data from (δr, δE) is listed in table 1.

2.3. Training
We utilized TorchANI library and its setting for training the NNs. For training, 80% of data was used, while
20% of data was utilized for validation with a small mini-batch size of 64. We note that we did not explicitly
prepare a specific test set in this study because we utilized most hyperparameters suggested in the previous
study of TorchANI [42]. Instead, we evaluated the performance of each model by the same reference data
(δr = 0.01 Å, δE = 1 kcal mol−1,∼450 k). Therefore, our selected model from the data set (e.g. δr = 0.1 Å,
δE = 1 kcal mol−1,∼250 k) was trained without 200 k data in both training and validation for their final
performance.

The loss function is defined as

Loss=
1

Ndata

∑ (ENNP − Eref)
2

√
Natom

+
α

Ndata

∑(
F⃗NNP − F⃗ref

)2

Natom
, (1)

where α is a parameter to determine the contribution of forces, and we used 0.1. The Adam optimizer was
utilized with weight decay for the weights [43, 44] (weight decays for two hidden layers are set 1× 10−5 and
1× 10−6, respectively, others are default values) and stochastic gradient descent (SGD) [45] for the biases
(learning rate= 0.001, others are default values), as suggested in the previous study. The weights were
initialized by Kaiming initialization [46] with the normal distribution, and the initial values of biases were
zeros. We utilized a learning rate scheduler (a function ‘reduced lr on plateau’ in Pytorch) for both Adam and
SGD with factor= 0.5, patience= 100, and threshold= 0. Others are default values). We took the best
model for the validation set during the entire epochs.

2.4. MDs simulations for crack propagation
We prepared the pristine graphene of 10 nm by 20 nm with a 2 nm sharp crack along the y direction with
periodic boundary conditions. To avoid the interaction between image cells, 20 nm space along the y
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Table 1. The numbers of data selected from the initial 722 000 data points.

δE (kcal mol−1)
δr (Å) 1 2 5 10 20

0.01 450 k 270 k 130 k 88 k 80 k
0.02 430 k 260 k 120 k 66 k 40 k
0.05 360 k 200 k 100 k 57 k 29 k
0.1 250 k 150 k 78 k 37 k 20 k
0.2 120 k 70 k 33 k 18 k 9 k

direction and 3.35 nm space along the z direction were inserted. Instead of full dynamic loading, we applied a
0.01 strain at each iteration to stretch to a 0.04 strain along the x direction with structural relaxations. Then,
we applied dynamic tensile loading along the x direction at low temperature, 10 Kelvin. The loading speed
was 2.0 m s−1, and the time step was set to 1 fs.

2.5. PyTorch interface with LAMMPS
We utilize the python functions in LAMMPS (v. 29OCT20) to utilize the python code in the python
environment. Through the python environment, we can easily call python library. Utilizing TorchANI, we
calculate the atomic environmental vectors (AEV) for NNs. Forces and stress are calculated with the given
coordinates and simulation box through the autograd engine in PyTorch [47] and updated at each time step.

3. Results and discussions

One of the most critical parts of NNP development is the training data set. The data for training should cover
the essential features of the problem-specific configurations. Previous NNPs have been trained from the data
usually generated from first principles DFT-based MDs simulations and conformal searches based on the
normal mode analysis [15, 16, 48]. The initial training set is generally not sufficient for the desired accuracy.
Therefore, adaptive and active learning approaches have been proposed and applied [49, 50]. The basic
principle of such methods is to detect new data not contained in the initial training data set by analyzing the
data using configuration fingerprints or comparing values from multiple models of NNPs, an ensemble, or a
so-called committee. Iteratively searching the new data, training, and sampling provide better data sets in the
end. However, these approaches are not sufficiently good for fracture dynamics if the initial data set is not
accurate enough to describe the dynamics during the failure.

We first tested previously trained models of ANI-1x [16], ANI-1cxx [51], and ANI-2x [52] as provided in
the TorchANI library [42], where the data sets include the deformed geometries of small organic molecules
from normal mode sampling. We examined the reliability with a single-layer graphene system consisting of
24 atoms under three different loadings (shown in figure 1(b)) by evaluating stress–strain curves and the
deformation of bond length (l1, l2, and l3) and angles (θ1, θ2, and θ3). Since we utilized local descriptors with
a radius cutoff∼5 Å in TorchANI, the unit cell of 24 atoms with system size (∼7.4 Å× 8.5 Å) was selected as
a compromise to avoid self-interaction effects on one hand and allow sufficiently large data creation with
DFTB for training the NNP. A newly developed PyTorch interface in LAMMPS was utilized for
communicating energy, forces, and stress with the TorchANI python library. Figures S1–S3 show the results
of stress–strain curves and the deformation through ANI models.

We note that the data sets do not explicitly include graphene information, but interestingly, the NNPs
from ANIs can well describe graphene’s behaviors under small deformation. As expected, however, they
clearly fail for fracture behaviors and large deformation. Therefore, we designed data generation by mixing
three loading directions along the x, y, and xy directions and generated more than 700 000 data points. Then,
we trained new NNPs from scratch using the TorchANI [42] tool. The structure of the utilized NNP in the
current study is shown in figure 2 and the comparison between other ANI models is in table S1. From the
actual coordinates (q), AEV (also known as a symmetry function, G) are utilized as input to be invariant
under translation and rotational transformation and the permutation of the same atom types [15]. There are
two parts in the AEV: radial and angular terms from two atoms (i and j with distance Rij) and three atoms (i,
j, and k with two distances Rij, Rik, and one θijk), respectively [42]:

GR
m =

all atoms∑
j ̸=i

e−η(Rij−R(k)
s )

2

fC
(
Rij

)
, (2)

GA
m = 21−ζ

all atoms∑
j,k ̸=i

(
1+ cos

(
θijk − θ(q)s

))ζ

× e−η(0.5[Rij+Rik]−R(p)
s )

2

fC
(
Rij

)
fC (Rik) , (3)
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Figure 2. (a) Structure of neural network potential based on the symmetry functions or atomic environmental vector (AEV). AEV
(G) is calculated from the three-dimensional atomic coordinates (q) and used as an input for the neural network to obtain atomic
energy. (b) Dimension of AEV with radial and angular terms from carbon system and details of neural network structure with
layers and nodes.

where η controls the width of Gaussian function with multiple Rs for probing specified radial environments
(m is an index for Rs); ζ controls the width of probing as η; θs decides the specific region in the angular
environments as Rs. f C is a cutoff function to change values to zero at RC smoothly, defined as

fC (R) = 0.5
[
cos πR

RC
+ 1

]
for R⩽ RC and 0 for R> RC. AEV from each atom is an input for the NN to

estimate the single atomic energy. We followed the parameters of AEV and the structures of nodes and layers
from ANI-2x: the radial term has 16 different radii, and the angular term has 4 angles and 8 radii [52] shown
in figure 2(b). The NN has three hidden layers with Gaussian error linear unit activation function [53] to add
non-linearity.

Next, we checked the performance of the NN structures and training processes from the data generated
from graphene’s MD simulation at equilibrium states at 400 Kelvin. We utilized a root mean square error
(RMSE) for the evaluation of the accuracy for both energy and force components as a kcal mol−1 energy
unit. Because some previous works utilized a mean absolute error (MAE) with meV atom−1 energy unit as
metrics, we also added the MAE values with meV atom−1. A RMSE in the relative energy lower than
0.8 kcal mol−1 (RMSE= 1.5 meV atom−1 ∼ 0.034 kcal mol−1 atom−1, MAE= 0.6 meV atom−1 ∼
0.014 kcal mol−1 atom−1) is achieved around 200 epochs, which we consider a very high accuracy from the
perspective of computational chemistry, where a threshold 1 kcal mol−1 (for small molecules with∼20
atoms) in accuracy is commonly considered a ‘gold standard’. However, our result clearly shows that an
agreement between NNP and ground truth data in terms of relative energy does not guarantee correct
physical properties. As shown in figure S4, the failure behaviors are not correctly described.

Figure 3(a) shows a naïve way to save data under loading, recording data based on constant deformation
(δr) or at a constant time interval. There are two apparent problems with this approach. First, it is likely to
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Figure 3. (a) and (b) Schematics of data distribution under loading with δr and δE. Data with a constant deformation or space
(δr), it would lose the important data of the failure. Instead, energy difference (δE) based data selection will conserve the key data
and reduce data near the equilibrium state. (c) Example of data distributions with the two loading directions to show a practical
method to achieve data selection based on δE. First, neighbor lists are built with a defined cut-off, δr. The data of which the
energy difference is smaller than δE are deleted from the list.

miss essential data during the failure process, where the configurations drastically change in a very short
time. Second, the many similar data are close to each other near the non-deformed structures, which
probably hinders the training due to the data imbalance [54]. Therefore, we utilized a constant energy
difference (δE) to select data, as shown in figure 3(b). It would have better chances to capture the key data
during the failure process even with the same number of data points. Figure 3(c) shows the schematic to
represent the data distributions with the two main directions of the loadings: x and xy. From the total data,
we built neighbor lists of each data point with a defined cutoff in the deformation space, δr. Then, the data in
the neighbor list is sequentially removed if the energy difference is not bigger than the predefined criterion,
δE. Table 1 lists the parameters: δr and δE with the screened data numbers.

We checked the stress–strain curves of the trained model from all data without any reduction, as shown
in figure S5. As expected, it shows much better behaviors than ANIs or the trained model from NVT
ensemble trajectories because the current data set explicitly includes various fracture scenarios. However, it
fails to describe the fracture patterns and stress–strain after fracture along the x direction loading in figure
S5(a). The energy minimization during the quasi-static loading should result in complete bond breaking
between broken edges. Figures 4(a) and (b) show the RMSE of energy and force components from training,
validation, and total data from each data set selected from the above-mentioned approach as varying δr with
fixed δE = 1 kcal mol−1. We note that the data from larger δr is selected from the data set of smaller δr,
which means the smaller data sets always belong to the larger data sets. Therefore, the difference of RMSE,
e.g. better accuracy of δr = 0.1 Å than that of δr = 0.05 Å, does not come from the data difference but from
better generalization with reducing the overfitting (See SI discussion). We assume the original data set has
too many similar data to prevent generalization. So, we evaluate the accuracy of all trained models based on
the first selected data set from δr = 0.01 Å and δE = 1 kcal mol−1 as shown in figures 4(c) and (d).
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Figure 4. RMSE of relative energy per atom (a) and force components (b) from training, validation, and total data from each data
set selected from δr with fixed δE= 1 kcal mol−1. δr = 0 indicates the entire data points without reduction. Reevaluation RMSE
of relative energy (c) and force components (d) with the same data set (δr = 0.01 Å, δE= 1 kcal mol−1). RMSEs depend on data
set, and even smaller numbers of data can have higher accuracy. Also, RMSE does not guarantee the physical properties of the
models.

The RMSE of relative energy from the model (δr = 0.01 Å, δE = 1 kcal mol−1) shows the lowest value,
but RMSE of force components from the model (δr = 0.1 Å, δE = 1 kcal mol−1) show the lowest value. Also,
we investigated the stress–strain curves and deformation for the reliability of the trained NNPs. The models
trained from δr = 0.01 Å to δr = 0.05 Å data have problems near the fracture point, as indicated with arrows
in figures S6–S8 (See figures S9-S11 for other conditions). In terms of the stress–strain curves and
deformation, the trained model from δr = 0.2 Å looks better than that from δr = 0.1 Å, but the model from
δr = 0.1 Å was selected for the next stage because the RMSE of force components exhibits the lowest value.
This is a reasonable choice because the RMSE of atomic force is a good indicator for overfitting (see SI
discussion). We also tested how the choice of δE affects the accuracy of models with δr lower than 0.1, as
shown in figure S12. Since the number of data decreases as the value of δE increases, it is expected to lose
accuracy. However, this also does not monotonically decrease, and data with δr = 0.1 Å and
δE = 5 kcal mol−1 is reasonably optimal with the number of data points, 78 000 (= 78 k). Considering the
fact that the reference data (∼450 k) is six times larger, the loss of accuracy of energy and force components
are only 0.02 kcal mol−1 atom−1 (RMSE= 0.9 meV atom−1) and 0.12 kcal mol−1 Å−1 (5 meV Å−1),
respectively. Also, the NNP describes the stress–strain and deformation under three loadings very well, as
shown in figure S13. This kind of data reduction without losing the essential data is important for active
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Figure 5. (a) Definition of three different bond lengths and angles to evaluate the deformation under loadings (b) Stress–strain
curves from the trained model with the reduced data (δr = 0.1 Å, δE= 1 kcal mol−1) with DFTB reference points under the
loading along the x direction from selected NNP and DFTB calculations. (c) The bond lengths during the deformation under the
x direction in panel a. The bond (l2) gets shorter as the strain increases (εxx). (d) The angles during the deformation under the x
direction. The other directions are shown in figure S9.

learning. However, such data augmentation is out of the current scope, and we selected the model from the
data (δr = 0.1 Å, δE = 1 kcal mol−1) for the next simulations. Figure 5 shows the stress-strain curves and
deformation of the selected model under the loading along the x direction.

A previous microscopy study reported both straight AC and ZZ torn graphene edges through the
high-resolution TEM [32]. Also, torn lines along the AC edge are twice more frequently observed than the
torn lines along the ZZ edge [55]. In previous theoretical studies, ReaxFF and AIREBO have been utilized to
describe the mechanics and crack propagation from atomistic modeling. However, ReaxFF has some
limitations in describing mechanics and stress–strain curves near failure compared to DFT calculations [56].
Especially, brittle crack propagation is hindered by the stiffening effect near the point of failure. Instead,
AIREBO is preferred because the stress–strain curves of pristine graphene are well-matched with DFT
calculations once its bond order switching function is controlled [31]. MD simulations of pristine graphene
with AIREBO consistently show that the fracture toughness along the ZZ edge is lower than the AC edge
[57–59]. Also, once the crack propagates along the AC direction, the fracture pattern from the AIREBO
shows the ZZ torn edge preference. Although nanopore formation through the electron beam prefer to form
the ZZ edge [60], the configuration does not come from the mechanics or crack preference but from the
kinetic stability during the reconstructions [61]. This shows that empirical forcefields are limited for
predicting pristine graphene’s torn edge configuration and the dynamics of crack propagation.
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Figure 6. (a) Initial geometries of crack inserted graphene along the armchair and zigzag edges to evaluate the crack propagation
(b) Fracture pattern of NNP after crack propagations (see movies 1 and 2). (c) Fracture pattern of NNP after crack propagations
(see movies 3 and 4). (d) The obtained stress–strain curves from NNP and AIREBO.

Finally, we performed MD simulations using both selected NNP and AIREBO to test our hypothesis for
the crack propagation along the AC direction with a rectangular system with 10 nm× 20 nm with a crack of
2 nm, as shown in figure 6. We performed the crack propagation simulations by combining quasi-static
loading and dynamic loading to reduce the computational cost. The NNP results in a straight and clean torn
edge in both AC and ZZ crack direction in figure 6 (see movies 1 and 2). As described above, AIREBO
predicts that the straight propagation along the AC direction is less likely to occur. Instead, it shows
meandering crack paths in figure 6 (see movies 3 and 4) with ZZ crack edges. The obtained stress–strain
curves from NNP and AIREBO are shown in figure 6. The notable difference here is the fracture toughness.
We estimated the critical energy release rate and fracture toughness in both AC and ZZ crack directions.
Considering the brittle behaviors of the stress–strain curve, we can directly estimate the external work as the
critical energy release rate (Gc) from the critical stress (σc, GPa) and the critical elongation (∆l, nm) as

Gc = 0.5
σcly∆l

∆a

(
Jm−2

)
, (4)
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Table 2. Critical elongation, critical stress, critical energy release rate, and fracture toughness of both NNP and AIREBO in the current
study.

∆a (nm) ∆l (nm) σc (GPa) Gc (J m
−2) Kc (MPa m1/2)

AC-edge (NNP) 18 0.436 39.8 9.6 3.10
ZZ-edge (NNP) 18 0.479 43.8 11.7 3.41
AC-edge (AIREBO) 18 0.548 41.2 12.5 3.54
ZZ-edge (AIREBO) 18 0.474 41.2 10.9 3.29

Table 3. Elastic constants and Poisson’s ratio (ν) obtained from DFTB, reactive FFs, and trained neural network potential from the
different data set selected by δr with the same δE= 1 kcal mol−1.

E (GPa) (C11-C12)/2 (GPa) ν

DFT [62] 1010 0.203
AIREBO 828.8 304.1 0.362
ReaxFF 787.2 256.2 0.536
DFTB (reference) 1108.2 451.9 0.226
δr = 0.01 Å 1168.3 471.0 0.240
δr = 0.02 Å 1173.0 461.6 0.270
δr = 0.05 Å 1192.5 474.4 0.257
δr = 0.1 Å 1141.1 452.6 0.261
δr = 0.2 Å 1132.0 453.1 0.249

Table 4. Elastic constants obtained from neural network potential from the different data set selected by δE with the same δr = 0.1 Å.

E (GPa) (C11-C12)/2 (GPa) ν

δE = 1 kcal mol−1 1141.1 452.6 0.261
δE = 2 kcal mol−1 1093.2 485.6 0.126
δE = 5 kcal mol−1 1112.6 445.9 0.248
δE = 10 kcal mol−1 1143.6 467.0 0.224

where ly (= 20 nm) is the length of the system in the y direction, and∆a (nm) is the total length of the crack
propagation. Fracture toughness is then can be obtained by

Kc =
√

GcE, (5)

where E is Young’s modulus, and it is assumed as 1 TPa. The obtained values are listed in table 2. The
obtained fracture toughness values from AIREBO for AC-edge (zz loading direction, 3.54 MPa m1/2) and
ZZ-edge (ac loading direction, 3.29 MPa m1/2) agree with those from the previous studies with AIREBO
[59]. The NNP predicts the fracture toughness along the AC-edge (zz loading direction, 3.10 MPa m1/2) is
lower than the ZZ-edge (ac loading direction, 3.41 MPa m1/2), which shows an opposite trend to the results
of the AIREBO. We note that our focus is on the difference in fracture toughness between ZZ and AC
directions. The main factor of our estimations comes from the stored elastic energy before the crack
propagation. Therefore, a correction of Young’s modulus (calculated elastic constants are listed in table 3 and
table 4) estimation without assuming 1 TPa does not affect the relative fracture toughness, e.g. ratio.

The frequency of torn edges in the suspended polycrystalline graphene monolayer depends on the
fracture toughness of pristine graphene. The prediction from the NNP agrees well with those previous
observations, while AIREBO predicts opposite behaviors in terms of the frequency of torn edge observation
and torn AC edge configuration. The limitation of AIREBO comes from the softened angle stiffness under
tensile loading, which also has been compared with DFT and DFTB calculations in the previous study [40].
Figure 7 shows graphene’s bond lengths and angles at the crack tip just after the first bond breaking during
the crack propagation. The angular deformation of NNP shows a lower angle (∼124◦) than that of AIREBO
(133◦), which results in the elongation of the inner side bond length, l2 (∼1.7 Å) than the outer side bond
length, l3 (∼1.6 Å). The relative bond lengths between l2 and l3 determine the crack path, and AIREBO
prefers ZZ crack paths because l3 (1.72 Å) is longer than l2 (1.67 Å). In another 2D material, WS2, these
lattice distortions can result in anisotropic crack dynamics even with the same surface energy [35].
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Figure 7. Bond and angle at the crack tip after the first bond breaking along the AC edge direction from NNP (a) and AIREBO
(b). Dotted red arrows represent the crack propagation. The angular deformation of trained NNP shows a lower angle than that
of AIREBO, which results in the elongation of the inner side bond length, l2, than the outer side bond length, l3, from NNP.
AIREBO shows propagation along the zigzag edge because l3 is longer than l2.

4. Conclusion

In summary, we proposed generating and selecting the training data for the deformation and fracture of
crystals and applied it to 2D crystal graphene through DFTB calculations. We utilized the previously
developed PyTorch library, TorchANI, to train the models of the Behler-Parrinello type’s NNP. For MD
simulation, we developed a PyTorch interface with LAMMPS, which can be expanded to other ML potential
libraries through PyTorch. The proposed data reduction process improves the generalization of NNP
training by mitigating overfitting. We show that the low RMSEs of energy and force do not automatically
guarantee the reliable behaviors of the trained models3. The selected model considering physical properties
can describe the torn edge configuration observed in the previous studies and explains well the higher
frequency of torn AC edge occurrence, which is not possible with other reactive potentials. The proposed
work frame can be applied to understand fracture dynamics of 2D and bulk crystals using NNPs.

We wish to emphasize that the current NNPs are limited as they should only be used for the simulation of
stress-induced fracture and failure of pristine graphene. The training data set does not explicitly have failure
dynamics of bilayer graphene, diamond, amorphous carbon network, carbon nanotube, graphyne, grain
boundary, vacancies, folding, etc. Therefore, new data should be generated, or transfer learning/active
learning is required to provide a quick path for developing NNPs of other applications. However, NNP is
more useful for a large system in terms of computational speed than first principles-based electronic structure
approaches. Also, the NNP is very flexible in capturing non-linear deformation-stress behaviors well
(figure 5), which is challenging with the fixed functional form, such as harmonic equations in classical
forcefields. In the previous study, we observed that it is challenging to match both deformation and
non-linearity of stress–strain behaviors of graphene simultaneously with those from DFT even through

3 While this manuscript was in review, we noticed a recent preprint with a similar finding [63].
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reactive forcefields [37]. Crack dynamics is one of the exciting applications for NNPs due to its intrinsic
multiscale feature. In this study, we only focus on the data generation and selection from the mixed loading
and data reduction using DFTB as the reference method. However, the selected data can be utilized for high
throughput calculation with more accurate methods. Also, active learning and transfer learning from the
selected data would be interesting topics in the future.
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