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Abstract
We present a machine-learning approach, based on normalizing flows, for modelling atomic solids.
Our model transforms an analytically tractable base distribution into the target solid without
requiring ground-truth samples for training. We report Helmholtz free energy estimates for cubic
and hexagonal ice modelled as monatomic water as well as for a truncated and shifted
Lennard-Jones system, and find them to be in excellent agreement with literature values and with
estimates from established baseline methods. We further investigate structural properties and show
that the model samples are nearly indistinguishable from the ones obtained with molecular
dynamics. Our results thus demonstrate that normalizing flows can provide high-quality samples
and free energy estimates without the need for multi-staging.

1. Introduction

Accurate estimation of equilibrium properties of a thermodynamic system is a central challenge of
computational statistical mechanics [1, 2]. For decades, molecular dynamics (MD) and hybrid Monte
Carlo [3] have been the methods of choice for sampling such systems at scale [4–6]. Recently there has been a
surge in using deep learning to develop learned schemes for sampling from probability distributions in
general and physical systems in particular, most notably using normalizing flows [7, 8]. Flow-based learned
sampling schemes have been applied to various physical systems, from lattice field theories [9–11], to spin
systems [12], to proteins [13].

Normalizing flows are appealing because of the following two properties: first, they can generate
independent samples efficiently and in parallel; second, they can provide the exact probability density of
their generation mechanism [14, 15]. Thus, training a flow-based model q to approximate a target
distribution p (for example, the Boltzmann distribution of a physical system) yields an efficient but
approximate sampler for p; re-weighting the samples by their probability density (for example, using
importance sampling) can then be used to remove estimation bias [13, 16, 17]. For free energy estimation in
particular, flows are interesting because they do not require samples from intermediate thermodynamic
states to obtain accurate estimates, unlike traditional estimators such as thermodynamic integration [2] or
the multistate Bennett acceptance ratio (MBAR) method [18]. Instead, the flow model can be used as part of
a targeted estimator [11, 12, 19–24] which was demonstrated to be competitive to MBAR in terms of
accuracy when applied to a small-scale solvation problem [21].

Despite their appeal for both sampling and free energy estimation of atomistic systems, constructing and
training flow-based models that can rival the accuracy of already established methods remains a significant
challenge. One of the reasons is that for simple re-weighting schemes such as importance sampling to be
accurate in high dimensions, the model qmust be a very close approximation to the target distribution p,
which is hard to achieve with off-the-shelf methods. Even for common benchmark problems of identical
particles, such as a Lennard-Jones system [2], successful training has thus far been demonstrated for small
system sizes of up to tens of particles (for example, 38 particles in [13], 13 particles in [25]), requiring
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ground-truth samples from p to train in all cases. Addressing this limitation is crucial for scaling up
flow-based methods to systems of interest in statistical mechanics.

In this work, we propose a flow model that is tailored to sampling from atomic solids of identical
particles, and we demonstrate that it can scale to system sizes of up to 512 particles with excellent
approximation quality. The model is trained to approximate the Boltzmann distribution of a chosen
metastable solid by fitting against a known potential energy function. Training uses only the energy evaluated
at model samples, and does not require samples from the Boltzmann distribution as ground truth. We
examine the quality of the learned sampler using a range of sensitive metrics and estimate Helmholtz free
energies of a truncated and shifted Lennard-Jones system (FCC phase) and of ice I (cubic and hexagonal)
using a monatomic model [26]. Comparison with baseline methods shows that our flow-based estimates are
highly accurate, allowing us to resolve small free energy differences.

2. Method

We begin by considering a system of N identical particles interacting via a known energy function U and
attached to a heat bath at temperature T. The equilibrium distribution of this system is given by the
Boltzmann distribution

p(x) =
1

Z
exp[−βU(x)], (1)

where x denotes a point in the 3N-dimensional configuration space, Z=
´
dxexp[−βU(x)] is the partition

function, β = 1/kBT is the inverse temperature and kB is the Boltzmann constant. Our aim is to build and
train a flow model that can accurately approximate p, for atomic solids in particular.

2.1. Flowmodels
A flow model is a probability distribution q defined as the pushforward of an analytically tractable base
distribution b through a flexible diffeomorphism f, typically parameterized by neural networks [14, 15].
Independent samples from q can be generated in parallel, by first sampling z from b and taking x= f(z). The
probability density of a sample can be obtained using a change of variables,

q(x) = b(z)
∣∣det Jf(z)∣∣−1

, (2)

where J f is the Jacobian of f.
We can train q to approximate p by minimizing a loss function that quantifies the discrepancy between q

and p. In this work, we use the following Kullback–Leibler divergence as the loss function

D(q∥p) = ⟨lnq(x)− lnp(x)⟩q
= ⟨lnq(x)+βU(x)⟩q + lnZ

=
〈
lnb(z)− ln

∣∣det Jf(z)∣∣+βU( f(z))
〉
b
+ lnZ. (3)

Since lnZ is a constant with respect to the parameters of q, it can be ignored during optimization. The
expectation in the final expression can be estimated using samples from b, so D(q∥p) can be minimized using
stochastic gradient-based methods. This loss function is appealing because it does not require samples from
p or knowledge of Z, and can be optimized solely using evaluations of the energy U.

2.2. Systems and potentials
The systems considered in this work are crystalline solids consisting of N indistinguishable atoms at constant
volume and temperature. The crystal is assumed to be contained in a 3-dimensional box with edge lengths
L1,L2,L3 and periodic boundary conditions. A configuration x is an N-tuple (x1, . . . ,xN), where
xn = (xn1,xn2,xn3) are the coordinates of the nth atom and xni ∈ [0,Li/σ] with σ being a characteristic length
scale of the system (here the particle diameter). By expressing x in reduced units, Z and all probability
densities become dimensionless.

The potentials used in this work are invariant to global translations (with respect to periodic boundary
conditions) and arbitrary atom permutations. Both of these symmetries are incorporated into the model
architecture; that is, we design the base distribution b and the diffeomorphism f such that the density
function q is invariant to translations and atom permutations, as well as compatible with periodic boundary
conditions. We explain how this is achieved in the following paragraphs.
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Figure 1. Illustration of generating samples from the base distribution in 2D: atoms arranged on a lattice (left) are perturbed with
truncated Gaussian noise and randomly permuted (right).

2.3. Model architecture
Our base distribution b is constructed as a lattice with N sites that have been randomly perturbed and
permuted as illustrated in figure 1. Starting from a lattice zo = (zo1, . . . ,zoN), a configuration z= (z1, . . . ,zN)
is generated by independently adding spherically-truncated Gaussian noise to each lattice site, followed by a
random permutation of all atoms. The truncation is chosen such that no two neighbouring atoms can swap
lattice sites, so that after the permutation, all atoms can be traced back to the site they originated from. This
construction yields a base distribution that can be trivially sampled from, and has a permutation-invariant
probability density function that can be evaluated exactly.

Our diffeomorphism f is implemented as a sequence of K invertible functions composed such that
f= fK ◦ · · · ◦ f1. Each function f k is parameterized by a separate neural network, whose parameters are
optimized by the loss in equation (3). We implement the functions f k using an improved version of the
model proposed in [21]. In this model, each f k transforms element-wise either one or two coordinates of all
atoms as a function of all remaining coordinates. The transformation of each coordinate is implemented
using circular rational-quadratic splines [27], which ensures that the transformation is nonlinear, invertible
and obeys periodic boundary conditions. The spline parameters are computed as a function of the remaining
coordinates using multiple layers of self-attention, a neural-network module commonly used in language
modelling [28]. Wirnsberger et al [21] showed that a diffeomorphism f parameterized this way is equivariant
to atom permutations, which means that permuting the input of f has the same effect as permuting the
output of f. As also shown by [25, 29], the combination of a permutation-invariant base distribution with a
permutation-equivariant diffeomorphism yields a permutation-invariant distribution q, as desired. More
implementation details are provided in the supplementary material (available online at
stacks.iop.org/MLST/3/025009/mmedia).

Finally, we incorporate the translational symmetry into the above architecture as follows. We fix the
coordinates of an arbitrary reference atom (say x1), and use the flow model to generate the remaining N − 1
atom coordinates as described above. Then, we globally translate the atoms uniformly at random (under
periodic boundary conditions), so that the reference atom can end up anywhere in the box with equal
probability. Since the index of the reference atom and its original position are known and fixed, we can
reverse this operation in order to obtain the probability density of an arbitrary configuration. This procedure
yields a translation invariant probability density function that can be calculated exactly.

A key feature of our model architecture is that we can target specific crystal structures by encoding them
into the base distribution. For example, if we are interested in modelling the hexagonal phase of a crystal, we
can choose the lattice of the base distribution to be hexagonal. Empirically, we find that, after training, the
flow model becomes a sampler for the (metastable) crystal state that we encode in the base distribution, and
does not sample configurations from other states. Thus, by choosing the base lattice accordingly, we can
guide the model towards the state of interest, without changing the energy function or using ground-truth
samples for guidance.

3. Results

We train the models on two different systems. The first is a truncated and shifted Lennard-Jones (LJ) crystal
in the FCC phase at reduced temperature and density values of 2 and 1.28, respectively, employing a reduced
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Figure 2. Energy histograms (A) and (B) and radial distribution functions (C) and (D) of the base distribution, the fully trained
model and MD simulation data, for the 500-particle LJ system (left) and the 512-particle cubic ice system (right).

cutoff of 2.7 as in [30]. The second is ice I modelled as monatomic Water (mW) [26] in the diamond cubic
(Ic) and hexagonal (Ih) phases at a temperature of 200 K and a density of approximately 1.004 gcm−3 similar
to [31]. All further simulation details are provided in the supplementary material.

Code for reproducing the experiments and pre-trained models are provided at https://github.com/
deepmind/flows_for_atomic_solids. The code uses JAX [32], Haiku [33] and Distrax [34] for building and
training models.

3.1. Evaluation of model samples
To assess the quality of our trained models, we compare against MD. We ran NVT simulations of the target
systems using the simulation package LAMMPS [35]. Figure 2 shows the energy histogram and radial
distribution function (RDF) of the Lennard-Jones FCC crystal and of cubic ice, as computed by samples
from the base distribution, the trained model, and MD. The RDF g(r) is the ratio of the average number
density at a distance r of an arbitrary reference atom and the average number density in an ideal gas at the
same overall density [2]. By construction, the base distribution captures the locations of the peaks in the
RDF correctly, but its energy histogram is far off compared to the MD result. The energy histograms and the
RDFs computed from model samples, however, are nearly indistinguishable from MD in both systems.
Importantly, no unbiasing or re-weighing was necessary to obtain this quality of agreement. The results for
hexagonal ice show a similar level of agreement (see supplementary material). These results demonstrate that
the mapping f successfully transforms the base distribution into an accurate sampler.

To demonstrate that the trained model becomes a sampler of the (metastable) crystal structure that we
have encoded into the base distribution, we computed histograms of the averaged local bond-order
parameter q6 [36] that was designed to discriminate between different phases (see figure 3). We can see that
the two histograms are well separated and agree with MD, showing that the model does indeed become an
accurate sampler of only the crystal state encoded in the base distribution. If that were not the case, we could
have enforced it by adding a biasing potential to the energy, as commonly done in nucleation studies that
employ umbrella sampling [37].
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Figure 3. Histograms of averaged local bond order parameter q6 for 512-particle cubic and hexagonal ice. Solid lines indicate the
histograms fromMD samples; shaded areas from model samples. The vertical lines mark the maximum and minimum values
seen in 1 M bond order parameters for each of the two model histograms.

3.2. Free energy estimation
Next, we use the trained flow models to estimate the Helmholtz free energy F for various system sizes, which
is given by [2]

F=−β−1 (lnZ− lnN!) . (4)

We note that the thermal de Broglie wavelength does not appear in the above expression as we set it to σ,
following [38], and absorb it into Z by expressing x in reduced units. We then estimate lnZ by first defining a
generalized work function [19]

βΦ(x) = βU(x)+ lnq(x). (5)

The average work value ⟨βΦ(x)⟩q is also our training objective in equation (3). We then harness the trained

flow to draw a set of samples {x(m)}Mm=1 from q and estimate lnZ via the targeted free energy perturbation
estimator [19]

lnZ= ln⟨exp(−βΦ(x))⟩q ≈ ln
1

M

M∑
m=1

exp
(
−βΦ(x(m))

)
. (6)

The above estimation method, referred to as learned free energy perturbation (LFEP) in combination with a
learned model [21], is appealing, because it does not require samples from p for either training the model or
for evaluating the estimator.

Although the approximation in equation (6) becomes exact in the limit of an infinite sample size, to
obtain accurate results for a finite sample set we require sufficient agreement between the proposal and the
target distributions [19, 21]. Since βΦ quantifies the pointwise difference between lnq and lnp (up to an
additive constant), the distribution of generalized work values is a good metric for assessing the quality of the
flow for free energy estimation.

Figure 4 compares distributions of work values computed for the base distribution and for the fully
trained model. From the non-negativity of the Kullback–Leibler divergence in equation (3) it follows that
⟨βΦ(x)⟩q ⩾− lnZ, with equality if and only if q and p are equal. Therefore, the gap between the average work
value and− lnZ (which we aim to estimate) quantifies how accurately the model q approximates the
Boltzmann distribution p; for a perfect model, we would expect to see a delta distribution located at
− lnZ [19]. The work values obtained with the trained model are indeed sharply peaked near our MBAR

estimate of−l̂nZ. On a qualitative level, this shows a clear benefit of LFEP [21] over the original FEP
estimator corresponding to f being the identity map, which failed to converge on this problem.

Using the same trained model as in LFEP, we can also employ a learned version of the bidirectional BAR
estimator (LBAR) [21, 39]. LBAR uses samples from both the base distribution b and from the target p and is
known to be the minimum variance estimator for any asymptotically unbiased method [40]. The downside
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Figure 4. Histograms of work values (βΦ) per particle from base and model samples for 500-particle LJ crystal (A) and

512-particle cubic ice (B). The dashed vertical line marks−̂lnZ/N as estimated by MBAR (enlarged in inset). Upper insets:

scatter plots of model density vs approximately normalized target density ln p̂=−βU− ̂lnZ computed from model samples,

where the model is either the base distribution or the fully trained model and ̂lnZ is the MBAR estimate. The dotted diagonal
marks the identity.

Table 1.Helmholtz free energy estimates, βF̂/N, obtained with 2 M, 2× 1M and 100× 10k samples for LFEP, LBAR and MBAR for LJ,
and 2 M, 2× 1M and 200× 10k samples for ice. Parentheses show the uncertainties in the last digits (two standard errors); error bars
for LFEP and LBAR were computed using ten independently trained models, so they quantify uncertainty both due to randomness in
training and due to finite sample size in estimation; error bars for MBAR were computed across ten independent estimates. The literature
value for LJ is 3.11(4) for 256 particles [30]; the literature value for mW is unknown. See supplementary material for further details.

System N LFEP LBAR MBAR

LJ 256 3.10800(28) 3.10797(1) 3.10798(9)
LJ 500 3.12300(41) 3.12264(2) 3.12262(10)
Ice Ic 64 −25.16311(3) −25.16312(1) −25.16306(20)
Ice Ic 216 −25.08234(7) −25.08238(1) −25.08234(5)
Ice Ic 512 −25.06163(35) −25.06161(1) −25.06156(3)
Ice Ih 64 −25.18671(3) −25.18672(2) −25.18687(26)
Ice Ih 216 −25.08980(3) −25.08979(1) −25.08975(14)
Ice Ih 512 −25.06478(9) −25.06479(1) −25.06480(4)

compared to LFEP is that an additional MD simulation needs to be performed to obtain samples from p for
computing the estimator (but not for training the model).

To verify the correctness of the flow-based free energy estimates, we require an accurate baseline method.
The Einstein crystal (and molecule) method [38, 41] and lattice-switch Monte Carlo (LSMC) [42] are
common choices for computing solid free energies with different trade-offs. While the former is conceptually
simple, we found it challenging to optimize it to high precision, which is consistent with previously reported
results [30, 38]. The latter is known to be accurate but provides only free energy differences between two
compatible lattices rather than absolute free energies. We therefore tested MBAR as an alternative estimator
on this problem and found it yields sufficiently accurate absolute free energy estimates to serve as a reference.

A quantitative comparison of free energy estimates for both systems and different system sizes is shown
in table 1 (see also supplementary material). For LFEP we use S samples from the base distribution b; for
LBAR we use S samples from b, plus another S samples from the target p obtained by MD; for MBAR we use
a sufficiently large number of intermediate states between b and p to obtain good accuracy, which we sample
using MD (see caption of table 1 for exact numbers). Overall, we find excellent agreement of the learned
estimators with MBAR for both LJ and ice. The LBAR estimates exhibit lower statistical uncertainties than
LFEP across the board, with error bars on the order of 10−5kBT per particle. We find it remarkable, however,
that LFEP can yield comparable accuracy in most cases without access to MD samples for training or
estimation, and without the need for defining intermediate states. Finally, we compute the Helmholtz free
energy difference between cubic and hexagonal ice for 216 particles by subtracting the two LFEP estimates in
table 1. This yields a value of 12.4(2) Jmol−1 which is in good agreement with the reported Gibbs free energy
difference of 11.2(2) Jmol−1 obtained with LSMC simulations at atmospheric pressure [31].
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4. Discussion

In summary, we have proposed a normalizing-flow model for solids consisting of identical particles and have
demonstrated that it can be optimized to approximate Boltzmann distributions accurately for system sizes of
up to 512 particles, without requiring samples from the target for training. We have shown that flow-based
estimates of RDFs, bond-order parameters and energy histograms agree well with MD results, without the
need for an unbiasing step. A detailed comparison of free energy estimates further verifies that our
flow-based estimates are correct and accurate. Our work therefore clearly demonstrates that flow models can
approximate single states of interest with high accuracy without training data, providing a solid foundation
for follow-up work.

A current limitation of our proposed method is the computational cost of training. Although generating
samples from the model and obtaining their probability density is efficient as it is trivially parallelizable,
training the model with gradient-based methods is inherently sequential. While training took only a day on
the smallest system (64-particle mW), reaching convergence of the free energy estimates for the biggest
systems (512-particle mW and 500-particle LJ) took approximately 3 weeks on 16 A100 GPUs (details in the
supplementary material). Therefore, our approach is best suited for applications where the cost of training
can be amortized across several evaluations. In particular, a promising research direction is training a single
model parameterized by state variables or order parameters (such as temperature, pressure, particle density,
etc), so that a range of states or systems can be approximated at the cost of training only once.

With rapid improvements in model architectures, optimizers and training schemes, it seems likely that
this type of approach can be scaled up to larger system sizes and other types of challenging systems, such as
explicit water models with electrostatic interactions and rotational degrees of freedom, in the future. The
application and adaptation of increasingly suitable normalizing flows is a very active area of research, for
example, the concurrent work on solids in [43], yielding increasingly flexible flows for progressively more
general systems. The end-to-end differentiability of our approach (or one more general) could be leveraged
to address difficult inverse material design problems, extending recent MD-based approaches [44].

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://github.com/deepmind/flows_for_atomic_solids.
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