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Abstract
Conditional independence mixture models (CIMMs) are an important class of statistical models
used in many fields of science. We introduce a novel unsupervised machine learning technique
called the independent classifier networks (InClass nets) technique for the nonparameteric
estimation of CIMMs. InClass nets consist of multiple independent classifier neural networks
(NNs), which are trained simultaneously using suitable cost functions. Leveraging the ability of
NNs to handle high-dimensional data, the conditionally independent variates of the model are
allowed to be individually high-dimensional, which is the main advantage of the proposed
technique over existing non-machine-learning-based approaches. Two new theorems on the
nonparametric identifiability of bivariate CIMMs are derived in the form of a necessary and a
(different) sufficient condition for a bivariate CIMM to be identifiable. We use the InClass nets
technique to perform CIMM estimation successfully for several examples. We provide a public
implementation as a Python package called RainDancesVI.
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1. Introduction

In this section we shall introduce the general problem of nonparametric estimation of conditional
independence mixture models (CIMMs), discuss related work, and briefly describe our machine learning
based estimation technique. In section 1.1 we define CIMMs and discuss their different estimation
paradigms, namely parametric, semi-parametric and non-parametric. In sections 1.2 and 1.3 we review
related ideas in the literature, and in section 1.4 we provide a high-level overview of our technique, before
filling in the technical details in the subsequent sections.

1.1. Conditional independence mixture models
In many fields of science one encounters multivariate models which consist of several distinct
sub-populations or components, say C in number. Each component i ∈ {1, . . . ,C} has its own characteristic
probability density function f (i)(X ) of the relevant multi-dimensional variable X . Such models are referred
to as multivariate finite mixture models [1], and the probability density of X under such a model is given by

P(X ) =
C∑
i=1

wi f
(i)(X ) , with

C∑
i=1

wi = 1 , and wi ⩾ 0 ∀i ∈ {1, . . . ,C} , (1)

where the non-negative weights wi parameterize the mixing proportions of the individual components. An
important special case of these finite mixture models is that of the conditional independence multivariate
finite mixture models3 [3, 4], which for brevity we will simply refer to as CIMMs. Under this special case, the
variable X is parameterized using V ‘variates’ as X ≡ (x1, . . . ,xV) such that for each component i, the density
function f (i) factorizes into a product of distributions for the individual variates as

f (i)(X ) =
V∏

v=1

f (i)v (xv) , ∀i ∈ {1, . . . ,C} , (2)

so that (1) becomes

P(X ) =
C∑
i=1

wi

V∏
v=1

f (i)v (xv) . (3)

Here f (i)v (xv) is the unit-normalized probability density of xv within component i—the top index (i) denotes
the component and the bottom index v denotes the variate. In our treatment, the individual variates xv are
themselves allowed to be multi-dimensional. In other words, V is not the dimensionality of the data, but
rather the number of groups the attributes in X can be partitioned into so that they are (conditionally)
independent of each other within the given component i a datapoint belongs to. This is similar to the
treatment, for example, in [3, 5, 6]. In particular, the technique we develop below will be applicable in
situations where the variates xv are high-dimensional (dim(xv)≫ 1). Unless otherwise stated, henceforth a
‘mixture model’ shall refer to the CIMM of (3).

1.1.1. Applications of conditional independence mixture models
CIMMs have applications in situations where the correlations and dependence between different variables in
the data are explained in terms of a latent or hidden confounding variable which influences the observed
variables. This is referred to as Latent Structure Analysis (LSA) [7, 8]. In particular, when the confounding
variable is discrete or categorical, it can be interpreted as representing the class a given datapoint belongs to.
Such models are referred to as latent class models and their study and analysis is referred to as latent class
analysis (LCA) [9].

The connection between CIMMs and LCMs can be seen in a straightforward manner as follows. We can
sample a datapoint as per the mixture model in (3) by first generating the component index i ∈ {1, . . . ,C} as
per the multinomial probability distribution induced by the weights wi, and then sampling (x1, . . . ,xV) as per
the distribution f (i)(X ) within component i. Now, the component index i can be interpreted as the latent
variable that explains the dependence between the random variates {x1, . . . ,xV} in the mixture.

CIMMs, LCA, and mixture models in general have applications in a wide range of fields, including
econometrics [10, 11], social sciences [12–15], bioinformatics [16], astronomy and astrophysics [17–23],
high energy physics [24–26], and many others.

3 In the literature, these models are also referred to as finite mixtures of product measures [2].
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1.1.2. Nonparametric estimation of conditional independence mixture models

Estimation of a CIMM is simply the process of estimating the weights wi and functions f
(i)
v (assuming the

number of components C is known) from a dataset sampled from the joint distribution P(X ) of the variates
under the mixture model, see (3).

Under ‘parametric’ estimation of mixture models (conditionally independent or otherwise), one assumes
that each of the distributions f (i)(X ) is from an appropriately chosen parametric class of distributions, e.g.
multivariate Gaussians. The choice of the class of functions assumed to contain the true f (i)(X ) is informed
by practitioner’s prior knowledge of the problem at hand. This reduces the problem of estimating the
mixture to the more tractable problem of estimating the weights wi and the parameter values corresponding
to the true f (i)(X ). This weight and parameter estimation from the data is typically approached as a
maximum likelihood estimation problem [27] (often tackled using the expectation–maximization algorithm
[28]) or within a Bayesian approach [29].

‘Semi-parametric’ estimation of mixture models has been studied in many works, including [3, 30–32].
In this paper, however, we are interested in the ‘nonparametric’ estimation of CIMMs, i.e. no parametric

forms will be assumed for the functions f (i)v (xv). Nonparametric estimation has been addressed by several
works recently [4–6, 31, 33–38]. In this paper, we introduce a novel machine-learning-based-approach,
called the InClass nets technique, to split the dataset into its different components in a nonparametric way.
This splitting naturally leads to the estimation of the mixture model. In order to perform the splitting, the
InClass nets technique directly exploits the fact that the variates xv are mutually independent of each other
within each component. Earlier known approaches nonparametric CIMM estimation either (a) discretize the

data-space into bins and estimate the representative value of the component functions f (i)v in those bins [33],
(b) estimate each component distribution using a smoothed kernel-based approach [4–6, 31, 34–36], or
(c) express each component distribution in terms of a set of basis functions [38]. Due to the curse of
dimensionality, these approaches are applicable only when the individual variates xv are low-dimensional.
Due to neural networks (NNs) ability to handle high dimensional data, our technique can tackle situations
where the individual variates xv are high-dimensional—this is the biggest advantage offered by our
machine-learning-based-technique over existing approaches. This opens up the possibility of using CIMMs
for hitherto unfeasible applications.

The estimation of mixture models is closely tied to the concept of ‘identifiability’ of mixture models. A
statistical model is said to be identifiable if it is theoretically possible to estimate the model (i.e. uniquely
identify the parameters and functions that describe it) based on an infinite dataset sampled from it. A model
will not be identifiable if two or more parameterizations of the model are observationally indistinguishable
even with an infinite dataset.

In the situations where the CIMM is identifiable, our technique estimates the true wi and f (i)v . On the
other hand, when the model is not identifiable, our technique will yield one of the parameterizations that
best fits the available data. In section 4.1, we provide some new results on the (nonparametric) identifiability
of bivariate (V = 2) CIMMs, to supplement existing results on nonparametric mixture model identifiability
[2, 5, 33, 39–45].

1.2. Unsupervised classification in machine learning
In this paper, we approach the estimation of CIMMs as a classification problem—classifying the datapoints
in a given dataset into the different categories will lead to the estimation of the mixture model in a
straightforward way.

This classification needs to be performed in an unsupervised manner since the dataset being analyzed
does not contain labels for the component each datapoint belongs to. In this way, our method has
connections to unsupervised clustering techniques like k-means clustering [46] and other density-based
clustering techniques [47]. However, our approach does not rely on the different components being spatially
clustered to perform the classification.

The intuition behind our method can be understood as follows: In supervised classification, the target
class labels associated with the training datapoints serve as the supervisory signal for training the classifier. In
the absence of target labels, a quantity that is dependent on or shares mutual information with, the
(unavailable) target label can be used as the supervisory signal. Now, lets say we are training a classifier that
bases its decision or output only on the first variate x1. The other variates {x2, . . . ,xV} can serve as the
supervisory signal, since they contain information regarding the component i the datapoint belongs to. Our
approach can be thought of as training V classifiers, one for each of the V variates, with each classifier relying
on the other V − 1 variates to act as the supervisory signal for training.

There are a few ways of interpreting and actualizing this intuition [48–50]. For example, in [50], NNs
were trained without supervision to classify images, using a training dataset consisting of pairs of images,
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where the images in a given pair are from the same category. In the InClass nets approach developed in this
paper, the NN architecture and training cost functions we develop will primarily be geared towards
estimating CIMMs, which, as shown below in section 3.3, can nevertheless be used for classification similar
to the technique of [50]. In section 5.2, we also discuss a straightforward extension of the technique in [50] to
handle n-tuples of data, where the components of the n-tuple could be from different sample spaces (as
opposed to pairs of images from the same sample space of images).

The idea of using a quantity that shares information with the true labels as the supervisory signal has been
employed previously in weakly supervised classification techniques like ‘Learning from Label Proportions’
(LLPs) [51–53] and ‘Classification Without Labels’ (CWoLa) [54]. LLP and CWoLa learn to distinguish
between different classes of datapoints, using multiple mixed datasets which differ in the mixing proportions
of the classes—the identity of the mixed dataset a given datapoint belongs to serves as the supervisory signal,
since it contains information about the class the datapoint belongs to (due to the mixing proportions in
different mixtures being different). While CWoLa and LLP are not fully unsupervised techniques (since they
still require a label indicating which mixture a training datapoint belongs to), they are applicable even in

situations where the distribution of the feature X within a given class i does not factorize as
V∏

v=1

f (i)v .

1.3. Other related work
The idea of separating a mixture into its components using a mutual-information-based technique is similar
in spirit to Independent Component Analysis (ICA) [55]. However, ICA solves a signal separation problem
where multiple mixtures with different mixing weights for the components are provided—this is different
from the problem of separating data from a single CIMM into its components.

Bayesian nonparametric methods have been applied in the context of mixture models to select the
number of components C in the mixture model using the data itself [56]. In this technique, the individual
components of the mixture themselves are parameterized. In contrast, our technique assumes that the
number of components C is a priori known (we briefly discuss how C could be estimated in section 4.3), but
the individual component distributions are left nonparameterized.

Mixture models have applications in data analysis in high energy physics [24–26], where datasets are
mixtures of ‘events’ (datapoints) produced under different ‘processes’ (categories). The sP lot technique [57],
which is popular in data analysis in high energy physics, is used to analyze bivariate CIMMs where the
distribution of one of the variables (referred to as the discriminating variable) is known a priori. In such
situations, the sP lot technique can estimate the distribution of the other variable, referred to as the control
variable. On the other hand, the InClass nets approach introduced in this paper is capable of estimating the
mixture model ‘without any knowledge of the distributions of any of the variables’. In section 4.5, we
describe how the InClass nets approach can be modified to incorporate additional information about the
distributions of some of the variates.

1.4. Synopsis
1.4.1. Review of parametric model estimation using maximum likelihood estimation
Our technique for nonparametric mixture model estimation is closely related to the estimation of parametric
models using maximum likelihood estimation (MLE). Under MLE, we have a parametric class of probability
distributions {Pθ : θ ∈Θ}, parameterized by θ (possibly multi-dimensional). We are provided a dataset
{X1, . . . ,XN} of size N sampled from an unknown data-distribution Pθ∗ , which is known to belong to the
parametric class. The goal is to determine the value of θ∗ (assuming the model is identifiable). The MLE
estimator for θ∗ is given by

θ̂MLE = argmax
θ∈Θ

[
1

N

N∑
a=1

lnPθ(Xa)

]
= argmin

θ∈Θ

[
− 1

N

N∑
a=1

lnPθ(Xa)

]
. (4)

The asymptotic consistency of this estimator follows from noting that

plim
N→∞

θ̂MLE = argmin
θ∈Θ

[
EPθ∗

[
− lnPθ(X )

]]
(5a)

= argmin
θ∈Θ

[
EPθ∗

[
lnPθ∗(X )− lnPθ(X )

]]
(5b)

= argmin
θ∈Θ

[
KL
[
Pθ∗

∣∣∣∣ Pθ

]]
, (5c)

5
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where plim denotes convergence in probability, and KL
[
Pθ∗

∣∣∣∣ Pθ

]
is the Kullback–Leibler divergence from

Pθ to Pθ∗ , which is minimized when Pθ equals Pθ∗ almost everywhere.

1.4.2. Blueprint for nonparametric estimation of CIMMs
The preceding review of MLE suggests the following approach to estimating CIMMs nonparametrically
using a dataset sampled from the data-distribution P∗.

(a) Search through the space of CIMMs P of the form given in (3), and
(b) Minimize an appropriate objective function which depends on P and the available data. Asymptotically,

minimizing the objective function should be equivalent to minimizing the Kullback–Leibler divergence
from P to the data distribution P∗.

We will use NNs to parameterize CIMMs. More specifically, we will use V different NN-based classifiers
(one for each variate), along with the marginal distributions of the individual variates in the data, to
parameterize CIMMs. We refer to this as the Independent Pseudo Classifiers (IPCs) representation of
CIMMs (section 2.1.1). We will show that every CIMM has a (non-unique) IPC representation. Thus the
task of searching through the space of CIMMs has been converted into the task of searching through the
space of classifiers, i.e, training the NN-based classifiers using an appropriate cost function.

Next, in section 2.1.4, we will derive an expression for the KL divergence from the distribution P (in the
IPC representation) to the data distribution P∗ (up to a constant term independent of P). This is the
quantity to be minimized in order to estimate P∗. After deriving the expression for KL

[
P∗
∣∣∣∣ P], one can

find a data-sample-based estimator for the same by replacing expectations over P∗ with sample means. This
leads to a cost function which only depends on the NN-classifier ‘outputs’ for the various ‘input’ datapoints

in the sample. Minimizing this cost function is asymptotically equivalent to minimizing KL
[
P∗
∣∣∣∣ P]. In

section 2.1, we will also describe how the weights wi and component distributions f (i)v of the estimated
mixture model can be extracted from the classifier networks.

The rest of the paper is organized as follows. In section 2.2 we use the bivariate case as a simple case study
to summarize the results from section 2.1, in the order in which they will be used in a typical analysis. We
provide a public implementation of InClass nets as a Python package called RainDancesVI and use it to
validate our InClass nets technique with several worked out examples in section 3. In section 4.1 we then
derive some new results on the nonparametric identifiability of bivariate CIMMs, in the form of a necessary
and a (different) sufficient condition for a bivariate CIMM to be identifiable. In sections 4 and 5 we discuss
our technique in the context of science applications, and provide possible variations and extensions, before
finally summarizing in section 6.

2. Methodology

2.1. Independent classifier networks (InClass nets)
For the purpose of nonparametric estimation of CIMMs, we introduce a new NN architecture which we shall
call ‘Independent Classifier networks’ or ‘InClass nets’ for short. Under InClass nets, the V variates
{x1, . . . ,xV} of the input X are fed into V independent NNs—one variate for each independent network.
Each of the V networks returns a multi-class classifier output. More explicitly, for each v ∈ {1, . . . ,V}, the vth
classifier network returns a vector

(
η
(1)
v (xv), . . . ,η

(C)
v (xv)

)
, whose ith component can ‘roughly’ be

interpreted as the probability that a datapoint belongs to category i, conditional only on its xv value.
The outputs of the independent classifiers are constrained to obey

η(i)v (xv)⩾ 0 , ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V} , (6a)

C∑
i=1

η(i)v (xv) = 1 , ∀v ∈ {1, . . . ,V} , (6b)

possibly using the softmax output layer4 [58] as follows:

η(i)v (xv) = softmax(i)
(
z(1)v , . . . ,z(C)v

)
, ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V} , (7)

4 For the case of C= 2, one can also simply use a one-dimensional output layer constrained to be in [0,1], with (output,1− output)
serving as (η(1),η(2)).

6
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Figure 1. Basic architecture of independent classifier networks (InClass nets). The V variates {x1, . . . ,xV} of the input X are fed

into V independent NNs, each of which returns a multi-class classifier output η
(i)
v (xv) for v ∈ {1, . . . ,V}.

where the z(i)-s are the inputs to the final output layer (which performs the softmax operation) of the
corresponding network. Alternatively, if softmax is used as an activation function of the final layer, then the
z(i)-s represent the outputs of the layer before applying the activation function. The softmax function is
defined as

softmax(i)
(
z(1)v , . . . ,z(C)v

)
≡

exp
(
z(i)v
)

C∑
j=1

exp
(
z( j)v

) . (8)

Figure 1 illustrates the basic architecture of InClass nets. In the next few sections, we will build the
framework for estimating CIMMs using InClass nets.

Recall that the variates xv can be multi-dimensional. In particular, InClass nets can handle
high-dimensional data types like images. The choice of architecture for the individual classifier networks can
be influenced by the nature of the input data the classifier will handle.

For the purposes of this paper, we have restricted the output dimensionality of the individual classifiers to
be the same (equal to C). We have also restricted the inputs {x1, . . . ,xV} of the individual classifiers to form a
non-overlapping partition of the features or attributes in X , which is in line with the structure of CIMMs.
However, InClass nets can have applications outside mixture model estimation as well, and for those
purposes it may be appropriate to lift the above restrictions. For example, InClass nets can be used to
perform unsupervised ‘multi-label’ classification, where the outputs of different classifiers correspond to
different labels. In this case, the different classifiers can have different output dimensionalities and the inputs
to these networks can also potentially have overlapping features. In section 5.2 we will briefly indicate how
the multi-label variant of InClass nets can be trained to perform unsupervised classification by maximizing
the mutual information between the classifier outputs.

2.1.1. Parameterizing mixture models with InClass nets
In this section we will show how CIMMs can be parametrized using InClass nets. The parametrization will
be done using the IPCs representation of mixture models which will be introduced in section 2.1.1. But as a
useful lead-up, let us first introduce the Constrained Independent Classifiers (CICs) representation.

7
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2.1.1.1. Constrained independent classifiers representation

The mixture model in (3) is completely specified by the mixture weights wi and the distributions f
(i)
v . Recall

that they satisfy

wi ⩾ 0 , f (i)v (xv)⩾ 0 , ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V} , (9a)

C∑
i=1

wi = 1 , (9b)

ˆ
dxv f

(i)
v (xv) = 1 , ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V} . (9c)

The goal of this paper is to develop a machine learning technique to fit a mixture model to the given data
in an agnostic, nonparametric, manner. In other words, we will estimate the weights wi and the distributions

f (i)v , without assuming, a priori, any parameterized forms (like Gaussians, exponentials, etc) for f (i)v . We will
approach this as an unsupervised multi-class classification problem—classifying the data into different
components will automatically result in an estimation of the mixture model5. To this end, let us rewrite the
mixture model distribution in terms of the marginal distributions Pv(xv) of the individual variates and
multi-class classifiers α(i)

v (xv) given by

Pv(xv) =
ˆ

dx1 . . .

ˆ
dxv−1

ˆ
dxv+1 . . .

ˆ
dxV P(X ) (10a)

=
C∑
i=1

wi f
(i)
v (xv) , ∀v ∈ {1, . . . ,V} , (10b)

α(i)
v (xv) =

wi f
(i)
v (xv)

Pv(xv)
, ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V} . (10c)

Pv is the probability density of the vth variate in the full mixture and can be directly accessed from a

dataset sampled from P . α(i)
v (xv) can be interpreted as the probability that an observed datapoint is from

component i conditional on the value of xv. The vector function
(
α
(1)
v (xv), . . . ,α

(C)
v (xv)

)
can be interpreted

as the output of a multi-class ‘classifier’ that returns the probability of a datapoint X to have come from the
different components based only on the vth variate. At this point, one might already notice an emerging
connection with InClass nets, which we shall crucially exploit below. The marginals density functions Pv and
the multi-class classifiers α(i)

v satisfy

Pv(xv)⩾ 0 , α(i)
v (xv)⩾ 0 , ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V} , (11a)

ˆ
dxv Pv(xv) = 1 , ∀v ∈ {1, . . . ,V} , (11b)

C∑
i=1

α(i)
v (xv) = 1 , ∀v ∈ {1, . . . ,V} , (11c)

ˆ
dxv Pv(xv)α(i)

v (xv) =

ˆ
dxu Pu(xu)α(i)

u (xu) , ∀(i,v,u) ∈ {1, . . . ,C}×{1, . . . ,V}2 , (11d)

where the integrals in (11d) are simply equal to the weight wi of the ith component. There is a one-to-one

map6 from the description of the mixture model in terms of the wi-s and f (i)v -s satisfying (9) to the

5 Directly modeling the distributions f
(i)
v is possible using generative networks, but classifier outputs are more robust quantities, e.g. they

are invariant under invertible transformations of the xv-s, and are typically easier to learn in machine learning.
6 This is not a statement on the identifiability of conditional independence mixture models. Identifiability of mixture models will be
briefly discussed in section 4.1.
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description in terms of Pv-s and α
(i)
v -s satisfying (11). This can be seen from the existence of the inverse

transform shown below:

wi =

ˆ
dxv Pv(xv)α(i)

v (xv)≡ EP
[
α(i)
v

]
, ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V}, (12a)

f (i)v (xv) =
Pv(xv) α(i)

v (xv)

wi
, ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V}, (12b)

where EP [ · · · ] represents the expectation value of · · · under the model. The probability density of X under
the corresponding mixture model is given by

P(X ) =
C∑
i=1

wi

V∏
v=1

Pv(xv) α(i)
v (xv)

wi
(13a)

=

[
V∏

v=1

Pv(xv)

] [
C∑
i=1

w1−V
i

V∏
v=1

α(i)
v (xv)

]
. (13b)

As mentioned earlier, the marginal distributions Pv can be directly estimated from the data. The

functions α(i)
v can ‘potentially’ be modeled using InClass nets. The only hurdle is that while the outputs α(i)

v

of the V NNs can be constrained to obey (11a) and (11c) using the softmax output layer (as seen in (6)), the
constraint in (11d) in general will not be satisfied by independent classifiers. We will handle this difficulty

next in section 2.1.1. We will refer to the description in terms of Pv-s and α
(i)
v -s satisfying (11a)–(11d) as the

CICs representation of the mixture model.

2.1.1.2. Independent pseudo classifiers representation
To accommodate the fact that independent classifiers will not obey the constraint (11d) of the CICs
representation, we introduce the IPCs representation in terms of pseudo marginalsQv and pseudo classifiers

β
(i)
v which only satisfy the equivalents of constraints (11a–11c):

Qv(xv)⩾ 0 , β(i)
v (xv)⩾ 0 , ∀(i,v) ∈ {1, . . . ,C}×{1, . . . ,V} , (14a)

ˆ
dxv Qv(xv) = 1 , ∀v ∈ {1, . . . ,V} , (14b)

C∑
i=1

β(i)
v (xv) = 1 , ∀v ∈ {1, . . . ,V} . (14c)

The mixture weights under the IPC representation are given by

wi =
w̃i

C∑
j=1

w̃j

, ∀i ∈ {1, . . . ,C} , (15)

where the unnormalized weights w̃i-s are given by

w̃i =

[
V∏

v=1

ˆ
dxv Qv(xv)β

(i)
v (xv)

]1/V
=

[
V∏

v=1

EQ
[
β(i)
v

]]1/V

≡

[
V∏

v=1

φ(i)
v

]1/V
, ∀i ∈ {1, . . . ,C} , (16)

where φ(i)
v ≡ EQ

[
β
(i)
v

]
represents the expectation value of β(i)

v under the distributionQv. The distributions

f (i)v within the different components are given under the IPC representation by

f (i)v (xv) =
Qv(xv) β

(i)
v (xv)

EQ
[
β
(i)
v

] =
Qv(xv) β

(i)
v (xv)

φ
(i)
v

. (17)

9
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In (15), we have used w̃i, which is defined in (16) as the geometric mean7 of φ(i)
v -s, as the actual mixture

weight wi, after an appropriate scaling to make the weights add up to 1 across all components. We will refer

to φ(i)
v as the pseudo weight of component i corresponding to variate v. Using (15) and (17), we can write the

probability density function for the mixture model in the IPC representation as

P(X ) =
C∑
i=1

wi

V∏
v=1

Qv(xv) β
(i)
v (xv)

w̃i
(18a)

=

[
V∏

v=1

Qv(xv)

] C∑
i=1

w̃1−V
i

V∏
v=1

β(i)
v (xv)

C∑
i=1

w̃i

, (18b)

where the w̃i-s can be written in terms ofQv-s and β
(i)
v -s using (16). We will now make the following

observations relevant to our goal of fitting a mixture model to data using InClass nets:

(a) IPC describes a CIMM. Note that by construction, the mixture weights in (15) and the distributions in
(17) are non-negative and normalized to 1.

(b) The pseudo marginals and pseudo classifiers do not necessarily correspond to the true marginals and
classifiers. However, the true marginals and classifiers of the CIC representation can be extracted from
the IPC representation as follows

Pv(xv) =
Qv(xv)
C∑
i=1

w̃i

C∑
i=1

β
(i)
v (xv) w̃i

φ
(i)
v

, (19a)

α(i)
v (xv) =

 C∑
j=1

β
( j)
v (xv) w̃j

φ
( j)
v

−1

β
(i)
v (xv) w̃i

φ
(i)
v

. (19b)

These results follow from plugging in (15)–(17) in (10).
(c) The IPC representation of a mixture model is not unique. Unlike the CIC representation, we cannot find

a unique map from the weights wi and f
(i)
v to the pseudo marginals and pseudo classifiers. This is because

of the additional degrees of freedom due to the removal of the constraints in (11d).
(d) Every mixture model has an IPC representation8 in which the pseudomarginals match the truemarginals

of the model. This can be seen from the fact that the true marginals Pv and classifiers α(i)
v from the CIC

representation of a mixture model can used as the pseudo marginalsQv and pseudo classifiers β
(i)
v under

the IPC representation to get the same model.

Observation (d) means that in order to fit a mixture model to data, we can restrict ourselves to IPC
representations of the mixture models with the pseudo marginals set to the marginals of the data. The only

remaining unknowns in the IPC representation are the pseudo classifiers β(i)
v (xv) which we can parameterize

using an InClass net, identifying β(i)
v with the network output η(i)v . Next, we will develop the technique to fit

a mixture model parameterized with an InClass net to a given dataset.

2.1.2. Fitting mixture models to data with InClass nets
In this section we will construct a cost function which can be used to train InClass nets to fit mixture models
to the given data. Let the data to which we want to fit a mixture model be sampled from the true underlying
distribution P∗(X ) with true marginals P∗

v (xv). As per observation (d) in the previous section, we restrict

7 It is also possible to use other mean functions, including generalized means, instead of the geometric mean here. However we use the

geometric mean, since it subsequently leads to simple expressions, since
V∏

v=1
φ
(i)
v can be replaced with w̃V

i , for example, as in (18a). This

simplification also leads to computational advantages during NN training.
8 Not necessarily unique, even after imposing the constraint that the pseudo marginals match the true marginals.

10
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our attention to IPC representations withQv ≡ P∗
v . Using (16) and (18b), we can write the probability

density of X under this restricted class of mixture models as

P(X ) =

[
V∏

v=1

P∗
v (xv)

] C∑
i=1

[
V∏

v=1

β(i)
v (xv)

(
EP∗

[
β(i)
v

])(1−V)/V
]

C∑
i=1

[
V∏

v=1

(
EP∗

[
β(i)
v

])1/V] , (20)

where EP∗ refers to the expectation value under the true distribution of the data. The best-fitting P can be
estimated by minimizing the Kullback–Leibler (KL) divergence from P to P∗ given by

KL
[
P∗ ∣∣∣∣ P]= ˆ dX P∗(X ) log

[
P∗(X )
P(X )

]
. (21)

As discussed in section 1.4, minimizing the KL divergence (over some class of distributions) is equivalent to,
and commonly known in some disciplines as, maximizing the likelihood in the large statistics limit. Using
the expression for P from (20), we can rewrite (21) as

KL
[
P∗ ∣∣∣∣ P]= ˆ dX P∗(X ) log

 P∗(X )[
V∏

v=1
P∗
v (xv)

]
[

V∏
v=1
P∗
v (xv)

]
P(X )

 (22a)

=

ˆ
dX P∗(X ) log

 P∗(X )[
V∏

v=1
P∗
v (xv)

]
−ˆ dX P∗(X ) log

 P(X )[
V∏

v=1
P∗
v (xv)

]
 (22b)

= C∗(x1, . . . ,xV)− EP∗

 log



C∑
i=1

[
V∏

v=1

β(i)
v

(
EP∗

[
β(i)
v

])(1−V)/V
]

C∑
i=1

[
V∏

v=1

(
EP∗

[
β(i)
v

])1/V]


 , (22c)

where C∗(x1, . . . ,xV) is the total correlation [59, 60] of the V variates in the data, which is one of the
generalizations of mutual information to more than two variables. It is given by the KL divergence from the
product distribution

∏
v
P∗
v (xv) to the joint distribution P∗(X ) as

C∗(x1, . . . ,xV) =

ˆ
dX P∗(X ) log

[
P∗(X )

P∗
1 (x1) P∗

2 (x2) . . . P∗
V (xV)

]
. (23)

Note that the C∗ term in (22c) is independent of the state of the InClass net under consideration. This means
that the second term in (22c) can be used as a cost function for the network to minimize in order to
minimize the KL divergence, and hence fit the mixture model parameterized by the InClass net to the data.
Noting the similarity between the two terms in (22b) and drawing inspiration from the naming of ‘cross
entropy’, we introduce the ‘negative cross total correlation’ cost function (neg_ctc_cost) defined as

neg_ctc_cost = KL
[
P∗ ∣∣∣∣ P]−C∗(x1, . . . ,xV) (24a)

=−EP∗

 log



C∑
i=1

[
V∏

v=1

β(i)
v

(
EP∗

[
β(i)
v

])(1−V)/V
]

C∑
i=1

[
V∏

v=1

(
EP∗

[
β(i)
v

])1/V]


 . (24b)

Note that β(i)
v are functions of the corresponding input variate xv. Despite the complicated appearance, this

cost function provides a viable approach to learning the underlying mixture model from data. Let us make

the following observations in the context of training InClass nets using this cost function, with outputs η(i)v

of the network identified with β
(i)
v .

11
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Figure 2. A flowchart illustrating the training of InClass nets. The indices a ∈ {1, . . . ,Nbat}, v ∈ {1, . . . ,V}, and i ∈ {1, . . . ,C}
correspond to samples, variates, and components, respectively. The diagram shows how the cost function in (25) is computed for
a batch of Nbat datapoints, after they are sent through the InClass net. The output η of the InClass net is identified with the
pseudo classifier β in the cost function.

(a) The cost function depends only on the outputs β(i)
v of the network. More precisely, the cost function

depends on the distribution of the network output. It does not need the input data to be labelled to
learn the mixture model, and the only supervisory signal exploited by the training process is the joint-
distribution of the input data.

(b) The cost function for a given state of the InClass net can be estimated using a (mini-)batch of training
samples by approximating the expectation values EP∗ [ · · · ] with sample means, as shown below:

neg_ctc_cost_from_data

=− 1

Nbat

Nbat∑
a=1

 log



C∑
i=1

 V∏
v=1

β(i)
v (xa,v)

(
1

Nbat

Nbat∑
b=1

[
β(i)
v (xb,v)

])(1−V)/V


C∑
i=1

 V∏
v=1

(
1

Nbat

Nbat∑
b=1

[
β(i)
v (xb,v)

])1/V




 , (25)

where a and b are sample indices, and xa,v is the vth variate of the ath datapoint. The batch sizeNbat should

be large enough to perform a good estimation of EP∗

[
β
(i)
v

]
.

These observations allow us to train the NNs. The computation of the cost function for a batch of events
is illustrated in figure 2. After training the InClass net, (15)–(18) and (17) can be used to extract the fitted

model, with the pseudo marginalsQv set to the true marginals P∗
v . The classifiers α

(i)
v (xv) can be extracted

from the pseudo classifiers β(i)
v (xv) using (19b). If one is interested in classifying the individual datapoints

based on the full information X , an aggregate classifier can be constructed, based on (18b), as

α
(i)
aggregate(X ) =

w̃1−V
i

V∏
v=1

β(i)
v (xv)

C∑
j=1

w̃1−V
j

V∏
v=1

β( j)
v (xv)

. (26)

Note that if there is a mismatch between the model learned by the InClass net and the true distribution the
data is sampled from, then classifying the data using the aggregate classifier will not necessarily lead to
components within which the xv-s are independent.

2.2. Bivariate case
When analyzing real data with CIMMs, a common difficulty is the identification of a suitable partitioning of
the attributes of X into variates xv so that the distribution within each component would factorize to a good
approximation. In this sense, a higher number of (conditionally independent) variates represents stronger
assumptions about the underlying model. This makes the bivariate case (V = 2) extremely important. The
bivariate case is also difficult from an identifiability point of view—data distributed according to a
conditional independence bivariate mixture model, in general, will not uniquely identify the model, since
several different mixture models can lead to the same overall probability density P(X ). In section 4.1, we
will present some new results on the identifiability of conditional independence bivariate mixture models. In
particular, we will provide the conditions under which bivariate mixture models are identifiable.

Despite being the most difficult case in terms of identifiability, the bivariate case lets us gain some useful
intuition, as demonstrated with several examples in section 3 below. But first, in preparation for section 3, let
us summarize the results from the previous sections for the bivariate case, in the order in which a typical
analysis might use them.

12
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2.2.1. Notation
The expressions from the previous sections become easier to follow if we explicitly write out the two variates,
thus avoiding the product notation. To this end, let us simplify the notation by giving names x and y to our
two variates x1 and x2, resulting in

x≡ x1 , Px ≡ P1 , Qx ≡Q1 , P∗
x ≡ P∗

1 , α(i)
x ≡ α

(i)
1 , β(i)

x ≡ β
(i)
1 , f (i)x ≡ f (i)1 , (27a)

y≡ x2 , Py ≡ P2 , Qy ≡Q2 , P∗
y ≡ P∗

2 , α(i)
y ≡ α

(i)
2 , β(i)

y ≡ β
(i)
2 , f (i)y ≡ f (i)2 . (27b)

Under this notation, the CIMM of (3) becomes simply

P(x,y) =
C∑
i=1

wi f
(i)
x (x) f (i)y (y) . (28)

2.2.2. Cost function
Noting that total correlation is a generalization of mutual information for more than two variables, we will
refer to the negative cross total correlation cost function of (24b) in the bivariate special case as the ‘negative
cross mutual information’ cost function (neg_cmi_cost). Under our new notation, it is given by

neg_cmi_cost =−EP∗


log



C∑
i=1

β
(i)
x β

(i)
y√

EP∗

[
β(i)
x

]
EP∗

[
β(i)
y

]
C∑
i=1

√
EP∗

[
β(i)
x

]
EP∗

[
β(i)
y

]




, (29)

where, as before, EP∗ represents the expectation over the true distribution P∗(x,y) from which the data is
sampled. As in (25), the expectations over P∗ can be estimated using sample means to train the NNs using
this cost function.

2.2.3. Extracting the learned mixture model from the trained network

After training the InClass net, the trained β
(i)
x and β

(i)
y cannot directly be interpreted as classifiers based on x

and y since they may correspond to different mixture weights. In order to extract the learned mixture model

(and the corresponding classifiers), we can first estimate the pseudo weights φ(i)
x and φ

(i)
y from the data as

φ(i)
x = EP∗

[
β(i)
x

]
, φ(i)

y = EP∗

[
β(i)
y

]
. (30)

Now, using (16) and (19b), the marginals and classifiers for the model represented by the InClass net can be
constructed as

Px(x) = P∗
x (x)

C∑
i=1

β(i)
x (x)

√√√√φ
(i)
y

φ(i)
x

C∑
i=1

√
φ(i)
x φ(i)

y

, α(i)
x (x) =

β
(i)
x (x)

√√√√φ
(i)
y

φ(i)
x

C∑
j=1

β( j)
x (x)

√√√√φ
( j)
y

φ( j)
x

, (31a)

Py(y) = P∗
y (y)

C∑
i=1

β(i)
y (y)

√√√√φ
(i)
x

φ(i)
y

C∑
i=1

√
φ(i)
x φ(i)

y

, α(i)
y (y) =

β
(i)
y (y)

√√√√φ
(i)
x

φ(i)
y

C∑
j=1

β( j)
y (y)

√√√√φ
( j)
x

φ( j)
y

. (31b)
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From (15) and (16), the component weights of the learned model are given by

wi =

√
φ(i)
x φ(i)

y

C∑
j=1

√
φ( j)
x φ( j)

y

(32)

and from (17), the distributions f (i)x and f (i)y within each component are given by

f (i)x (x) =
P∗
x (x) β

(i)
x (x)

φ(i)
x

, f (i)y (y) =
P∗
y (y) β

(i)
y (y)

φ(i)
y

. (33)

The corresponding joint distribution is given by

P(x,y) = P∗
x (x)P∗

y (y)

C∑
i=1

β
(i)
x (x)β(i)

y (y)√
φ(i)
x φ(i)

y

C∑
i=1

√
φ(i)
x φ(i)

y

. (34)

Note that after estimating P∗
x , P∗

y , φ
(i)
x , and φ

(i)
y from the dataset, the mixture model can be read off directly

from the InClass net using (32) and (33).

2.2.4. Aggregate classifier
From (26), the aggregate classifier that classifies the individual datapoints based on the full information (x, y)
is given by

α
(i)
aggregate(x,y) =

β
(i)
x (x)β(i)

y (y)√
φ(i)
x φ(i)

y

C∑
j=1

β
( j)
x (x)β( j)

y (y)√
φ( j)
x φ( j)

y

. (35)

3. Results

We provide a public, tensorflow-based [61], implementation of InClass nets as a Python 3 package called
RainDancesVI [62]. The package provides a) routines for wrapping the classifier networks of individual
variates into InClass nets, and b) cost functions for training them. It also provides utilities for extracting the
model learned by the network post-training. In this section we will demonstrate the working of InClass nets
using several toy examples [63] analyzed using RainDancesVI. In each case, we assume that the number of
components C in the mixture is known a priori. The examples considered below are meant for illustration
purposes, and were deliberately chosen to require no domain knowledge. At the same time, there are many
potential applications of the method to real experimental data, e.g. in astro-particle physics for studying dark
matter kinematic substructure in the Milky Way [22], which we are currently pursuing in a separate project.

3.1. Mixture of two independent bivariate Gaussians (V = 2,C = 2)
In the first example, we consider the mixture of two independent bivariate Gaussians. In the first component,
x and y are both (independently) normally distributed with mean−1 and standard deviation 1.5. The
second component is identical, except x and y both have mean+1. The mixture weights are taken to be
w1 = 0.4,w2 = 0.6. Table 1 summarizes the mixture model specification and figure 3 shows the normalized
joint distributions of (x, y) under each of the two components as heatmaps. Figure 4 shows the normalized
joint distribution of (x, y) under the mixture model and our InClass net will estimate the mixture model
based on data generated as per this distribution.

The classifier networks β(i)
x and β

(i)
y were constructed using keras with the tensorflow backend. The

NNs are distinct, but have identical architectures. The networks are fairly simple, consisting of three
sequential dense layers of 32 nodes using the rectified linear unit (ReLU) [64] activation function. The
output layer is a dense layer with two nodes (since C= 2), with the softmax activation function. The
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Table 1. The mixture model specification for the example considered in section 3.1.

i wi f (i)x f (i)y

1 0.4 N (mean=−1,SD= 1.5) N (mean=−1,SD= 1.5)
2 0.6 N (mean=+1,SD= 1.5) N (mean=+1,SD= 1.5)

Figure 3. Heatmaps of the normalized joint distributions of (x, y) under component 1 (left panel) and component 2 (right panel)
for the example considered in section 3.1.

Figure 4. Heatmap of the normalized joint distribution of (x, y) under the mixture model defined in table 1.

individual classifier networks were then wrapped into an InClass net using the RainDancesVI package. The
resulting network has a total of 4484 trainable parameters.

We trained the InClass net to minimize the negative cross mutual information cost function (29), using
100 000 datapoints sampled from the distribution depicted in figure 4. The optimization was performed for
15 epochs with the Adam [65] optimizer (with default hyperparameters) using a batch size of 50. After

training the network, we used the same dataset to estimate the pseudo weights φ(i)
x and φ

(i)
y and the mixture

weights wi using (30) and (32). Note that the estimation of mixture models can only be performed up to
permutations of the components indexed by i. For clarity of the presentation, unless otherwise stated, the
components of the true mixture model will be matched with the respective closest candidates from the
machine-learned components. The results of the estimation of the mixture weights are summarized in
table 2, which demonstrates an excellent agreement between the true and estimated values.
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Table 2. Results of the estimation of the mixture weights for the example considered in section 3.1.

i Estimated φ
(i)
x Estimated φ

(i)
y Estimated wi True wi

1 0.4055 0.4048 0.4051 0.4
2 0.5945 0.5952 0.5949 0.6

Figure 5. The classifiers α(i)
x (x) (left panel) and α

(i)
y (y) (right panel) learned by the network (red solid lines) and the

corresponding true classifiers (green dash-dot lines).

Figure 6. The distributions f (i)x (left panel) and f
(i)
y (right panel). The estimated (true) distributions are shown with red solid

(green dash-dot) lines.

The solid red curves in figure 5 depict the classifiers α(i)
x (x) (left panel) and α

(i)
y (y) (right panel) learned

by the network—they are extracted from β
(i)
x and β

(i)
y with the help of (31). For comparison, the true

classifiers based on the exact functional forms of the component distributions are also shown as green
dash-dot curves. The red solid lines and the green dash-dot lines almost coincide, which validates our
method.

Next, we used (33) to estimate the distributions f (i)x and f (i)y . The resulting distributions are shown with
red solid lines in the left and right panels of figure 6, respectively. In applying (33), for simplicity we used the
exact expressions for the marginal distributions of x and y in the mixture. In a typical example, the exact
expressions for the marginals will not be available, but can be easily estimated from the data, say using a

histogram or kernel density estimation [66, 67]. In figure 6, we also show the true f (i)x and f (i)y as green

dash-dot curves. The good agreement between the true wi, f
(i)
x , and f (i)y and their estimates shown in table 2

and figure 6, demonstrates that the InClass net has successfully estimated the mixture model. Finally, we use

(35) to estimate the aggregate classifier α(i)
aggregate(x,y) which is shown as a heatmap in the left panel of figure 7.

For comparison, in the right panel we show the true aggregate classifier based on the exact functional forms
of the component distributions f (i)(x,y). As expected, the two heatmaps are in very good agreement.

3.2. The checkerboardmixture (V = 2,C = 2)
Now we will look at an artificial toy example which was instrumental in the conception and development of
the InClass nets technique, see figures 8 and 9. Figure 8 shows the joint distribution of (x, y) for a
‘checkerboard’ mixture under which the datapoints are uniformly distributed on the bright squares of a 4× 4
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Figure 7. The estimated aggregate classifier α
(i)
aggregate(x,y) from (35) (left panel) and the true aggregate classifier (right panel).

Figure 8. Heatmap illustrating the joint distribution of (x, y) for the ‘checkerboard’ mixture example considered in section 3.2.
The datapoints are uniformly distributed on the bright squares of a 4× 4 checkerboard spanning the region 0 ⩽ x,y< 4, while
the dark squares have zero density.

Figure 9. Heatmaps of the normalized joint distributions of (x, y) under component 1 (left panel) and component 2 (right panel)
for the ‘checkerboard’ mixture shown in figure 8.
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Figure 10. The distributions f (1)x (left panel) and f
(1)
y (right panel) for the ‘checkerboard’ example considered in section 3.2. The

estimated (true) distributions are shown with red solid (green dash-dot) lines. We only show the first component in this figure for
the sake of visual clarity (see text).

checkerboard spanning the region 0⩽ x,y< 4, while the dark squares have zero density. For concreteness,
the vertical (horizontal) boundaries between cells are assigned to the cell on the right (top). It is easy to see
that x and y are, individually, uniformly distributed between 0 and 4. It can also be seen that x and y, despite
being uncorrelated, are not mutually independent in the mixture, since x lies within [0,1)∪ [2,3) if and only
if y does as well.

As shown in figure 9, the checkerboard mixture can be separated into two equally weighted components
within which x and y are mutually independent. Under the first component, x and y both lie within
[0,1)∪ [2,3), and under the second component x and y both lie within [1,2)∪ [3,4). Note that each of these
components has four spatially disconnected regions—the classification cannot be achieved using spatial
clustering techniques. This example also naturally evokes the intuition of the variates x and y serving as each
other’s supervisory signal, since the value of either x or y uniquely determines the component the datapoint
belongs to.

Let us now analyze this toy example using an InClass net. All the details of the network training process
are identical to the analysis of the example in section 3.1, including the network architectures, the size of the
training dataset, the choice of optimizer, batch size and epoch count. The estimated mixture weights are
w1 = 0.501,w2 = 0.499, which is in excellent agreement with their true values of w1 = w2 = 0.5. Figure 10
shows, in solid red curves, the distributions of x (left panel) and y (right panel) under the first component
learned by the network, using the same procedure as in section 3.1. We only show the first component in this
figure for the sake of clarity—the second component fills the gaps in the univariate distributions of x and y so

that w1 f
(1)
x +w2 f

(2)
x and w1 f

(1)
y +w2 f

(2)
y are constant. For comparison, the true ‘rectangular wave’

distributions are also shown as green dash-dot curves, which are also seen to agree with the estimates.

3.3. Semi-supervised training onMNIST data (V = 2,C = 10)
The biggest advantage offered by a machine learning based technique over existing non-machine-learning
techniques for nonparametric mixture model estimation is the possibility of tackling high-dimensional data.
As a proof of concept, in this section we will train an InClass net to classify images of handwritten digits from
the MNIST database [68], with the classes corresponding to the digits 0–9. With this example, we will focus
more on the data classification aspect of this paper than the mixture model estimation.

The MNIST dataset contains 28px× 28px grayscale images of handwritten digits. Each image also has an
associated label indicating the digit contained in the image. We will construct a bivariate mixture model out
of the MNIST dataset, where each datapoint is a pair of images. A single datapoint of the dataset will be
sampled by first choosing a class between 0 and 9 uniformly at random, and then sampling two images9

containing that digit uniformly from the MNIST dataset (with replacement). This gives us a bivariate CIMM
with ten classes of equal mixture weights—note that within each component (or class), the two images are
mutually independent of each other. Figure 11 illustrates the kind of data the InClass net will see, with five
randomly chosen datapoints from the mixture model (one in each column).

For analyzing this dataset, instead of creating two different classifiers for the variates, we use the same NN
for classifying both x and y. Viewed differently, the networks classifying x and y are identical in architecture

9 Alternatively, one can generate image pairs by sampling the first image from theMNIST dataset, and applying a random transformation
on the sampled image to get the second, as in [32].
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Figure 11. Five representative datapoints from the dataset used to train the InClass net in the example considered in section 3.3.
Each datapoint (x, y) is a pair of images containing the same digit.

and share their weights as well, and only differ in the input (output) they receive (return). The network uses
a sequential architecture and contains, in order, a layer to flatten the 28× 28 image data, three dense layers
each with the ReLU activation function and 32 nodes, and finally a dense layer with the softmax activation
function and ten nodes (since C= 10). This network has a total of 27 562 trainable parameters.

In principle, an InClass net can be trained without supervision to distinguish the digits. However,
considering the large number of input dimensions and classes, without supervision, our network is expected
to have difficulties ‘discovering’ new classes in the data, and will end up in bad local minima of the cost
function. We will discuss some ways of overcoming this difficulty in appendix B.

In this example, we addressed this issue by taking a semi-supervised approach: We ‘seeded’ the classes
(digits) in the network by performing a supervised training over a small dataset with noisy labels. For this
purpose, we used a training dataset containing 2000 images. The noisy label associated with each image
matches its true label with probability 0.6, and matches one of the other nine incorrect labels (chosen
uniformly) with probability 0.4. The network was trained using the categorical cross-entropy loss function
with the Adam optimizer for 30 epochs (batch size 20).

After this pre-training, we trained the network further using our neg_ctc_cost function on 100 000
pairs of images from our mixture model10. Ten percent of the 100 000 datapoints were set aside as a
validation dataset to monitor the evolution of the network performance, though no hyperparameter
optimization was actively performed using the validation data. The training was done using the Adam
optimizer with a batch size of 100 for 20 epochs.

Finally, we evaluated the performance of the classifier on a testing dataset of 10 000 single images unseen
by the network (either during training or during validation). The performance is illustrated as a confusion
matrix in the left panel of figure 12. Each row of the confusion matrix shows the output of the network
averaged over test images containing a given digit (true label), both as a heatmap and as numerical values
within each cell of the matrix. Recall that our network output, for each image, is 10-dimensional and can be
interpreted as the probabilities assigned by the network to the different classes. Because the classes were
pre-seeded into the network in a supervised manner, they matched with the true classes without requiring
any manual reassignment.

For completeness, in the middle panel of figure 12, we show the confusion matrix of the network after the
supervised pre-training performed on the noisily labelled data. Note that the training that resulted in the
performance improvement from the middle panel to the left panel was completely unsupervised. We will
discuss this semi-supervised training approach in the context of real world applications in section 5.3.

For comparison, in the right panel of figure 12, we show the confusion matrix of a classifier network with
an identical architecture that was trained in a fully supervised manner, using noise-free labels (training was
performed until the performance on the validation dataset saturated). As can be seen, the network trained
using our unsupervised technique (left panel) achieves a comparable performance to the fully supervised
classifier (right panel). Their prediction accuracies are 95.07% and 95.79%, respectively11.

10 The 200 000 images were all sampled with replacement from a set of 60 000 total images in the MNIST training dataset—repetitions
will occur within the dataset.
11 Note that both training techniques can result in further improved accuracies using more sophisticated network architectures.
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Figure 12. Confusion matrix of the neural network after full training (left panel) and after noisy pre-training (middle panel).
Each cell of the confusion matrix shows the average probability assigned by the network for images from a given true class (y-axis)
to belong to a given predicted class (x-axis). For comparison, we also include the confusion matrix of a classifier with an identical
network architecture that was trained with full supervision using the true labels.

Table 3. The mixture model specification for the example considered in section 3.4. The last column shows the mixture weights
estimated by the InClass net technique.

i wi f (i)x f (i)y f (i)z Estimated wi

1 0.22 N (mean=−1,SD= 1.5) N (mean=−1,SD= 1.5) N (mean=−1,SD= 1.5) 0.228
2 0.28 N (mean=+1,SD= 1.5) N (mean=+1,SD= 1.5) N (mean= 0,SD= 1.5) 0.268
3 0.18 N (mean=−1.5,SD= 1.5) N (mean=+1.5,SD= 1.5) N (mean=+1,SD= 1.5) 0.187
4 0.32 N (mean=+1.5,SD= 1.5) N (mean=−1.5,SD= 1.5) N (mean=+2,SD= 2.5) 0.318

3.4. Mixture of four independent trivariate Gaussians (V = 3,C = 4)
In this example, we will demonstrate that the InClass nets technique works for the estimation of mixture
models with more than two variates as well. We consider the mixture of four independent trivariate
Gaussians, with the third variate denoted by z. Table 3 summarizes the mixture model specification. The

classifier networks β(i)
x , β(i)

y , and β
(i)
z have a similar architecture to the classifier architectures used in

section 3.1, except that the output layer has four nodes, since C= 4. The InClass net constructed out of the
classifiers has a total of 6924 trainable parameters. We trained the InClass net with the neg_ctc_cost
function, using 1000 000 datapoints for 15 epochs and a batch size of 500 (the other details of the training
process remained the same as in section 3.1), and estimated the mixture model. The estimated mixture
weights, shown in the last column of table 3, are in good agreement with the true weights of the components

(second column in table 3). The estimated distributions f (i)x , f (i)y , and f (i)z of the variates x, y, and z,
respectively, are shown in figure 13 as red solid curves, along with the true distributions depicted as green
dash-dot curves. In all twelve cases (4 components× 3 variates) we observe good agreement between the
true and estimated distribution.

4. Discussion

In this section, we will discuss some considerations which might be relevant in the context of science
applications of the InClass nets technique introduced in this paper.

4.1. Identifiability of conditional independence bivariate mixture models
Identifiability of a statistical model is concerned with whether the parameters and functions that describe the
model are uniquely identifiable from an infinite sample of datapoints produced from the model. The
identifiability of mixture models is an important concept, especially in the context of using the techniques
introduced in this paper for science applications.

For a given statistical model, the definition of what it means to estimate the model is usually chosen to be
practically useful. In the context of estimating nonparametric CIMMs, the definition allows for the following
‘leniencies’:

• The number of componentsC is assumed to be known a priori. Otherwise, any CIMMwill be unidentifiable
since a given component i can always be split into several new components which share the same distribution
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Figure 13. The distributions f (i)x (top-left panel), f
(i)
y (top-right panel), and f

(i)
z (bottom-left panel) for the example considered in

section 3.4. The estimated (true) distributions are shown with red solid (green dash-dot) lines.

f (i)(X ) (withweights adding up to theweight of the ‘parent’ component). Similarly, zeroweight components
can always be added without affecting the data distribution.
• The model only needs to be (and can only ever be) estimated up to permutations of the component indices.

• The distribution f (i)v is considered to be the same as the distribution g(i)v if f (i)v (xv) = g(i)v (xv) ‘almost surely’.

In other words, f (i)v and g(i)v are allowed to be different over a set of probability measure 0. This is required

for the nonparametric case which allows arbitrary f (i)v -s.

The (V= 1,C⩾ 2) case (univariate) is always unidentifiable nonparametrically. For the (V⩾ 3,C= 2)
case, [33] provided certain regularity conditions under which instances of CIMMs are identifiable, and [42]
generalized the result to the (V⩾ 3,C⩾ 2) case. The result from [42] states that an instance of a CIMM with

V⩾ 3 and C⩾ 2 is identifiable if the functions
{
f (1)v , . . . , f (C)v

}
are linearly independent, for all v= 1, . . . ,V.

This leaves the bivariate case (V= 2), which is the main focus of this section. reference [33] showed that
in the (V= 2,C= 2) case, instances of nonparametric CIMMs are not identifiable in general. In particular it
was shown that for any instance of a two component bivariate nonparametric CIMM, there exists a
two-parameter family of instances which leads to the same distribution of the observed variables (x, y). The
authors also noted that non-negativity conditions will introduce constraints on the allowed values for the
two parameters. Extending this result from [33], we derive the following two theorems which provide a
sufficient and a (different) necessary condition for instances of nonparametric CIMMs with (V= 2,C⩾ 2)
to be identifiable. The two conditions coincide for the C= 2 case. We relegate the proof of the theorems to
appendix A.

Theorem 1 (Necessary condition). Anonparametric conditional independence bivariate (V= 2)mixturemodel with
C⩾ 2 components of the form given in (28) is uniquely identifiable up to permutations of the component-identities
only if the following necessary condition is satisfied:

ess sup

[
wif

(i)
t (t)

wif
(i)
t (t)+wjf

( j)
t (t)

]
≡ ess sup

[
α
(i)
t (t)

α
(i)
t (t)+α

( j)
t (t)

]
= 1 ,

∀(i, j) ∈ {1, . . . ,C}2 : i ̸= j , ∀t ∈ {x,y} , (36)

where ess sup[func(t)] represents the essential supremum of func(t). □
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Theorem 2 (Sufficient condition). A nonparametric conditional independence bivariate (V= 2) mixture model with
C⩾ 2 components of the form given in (28) is uniquely identifiable up to permutations of the component-identities
if the following sufficient condition is satisfied:

ess sup

[
wif

(i)
t (t)

Pt(t)

]
≡ ess sup

[
α
(i)
t (t)

]
= 1 , ∀i ∈ {1, . . . ,C} ,∀t ∈ {x,y} , (37)

where, as before, ess sup[func(t)] represents the essential supremum of func(t). □

The essential supremum can be thought of as an adaptation of the notion of supremum of a function,
allowing for ignoring the behaviour of the function over regions with a total probability measure12 of zero.
These conditions can ‘roughly’ be interpreted as follows: The sufficient condition (37) will be satisfied if, for
every component i and variate x or y, there exists some region in the phase space of the variate where
component i completely dominates the mixture, i.e. all the datapoints in that region are from component i.
The necessary condition (36) will be satisfied if, for every pair of components i ̸= j and variate x or y, there
exists some region in the phase space of the variate where component i ‘completely’ dominates the mixture of
components i and j.

Let us now revisit the examples considered earlier in section 3 from the point of view of identifiablilty.
Considering the successful estimation of mixture models and/or classifier training in those examples, we can
expect them to be identifiable. For the mixture of two independent bivariate Gaussians, figure 5 shows how,
for both x and y, the true and reconstructed classifier output for the first (second) component approaches 1
for increasingly negative (positive) values. This ensures that the sufficient condition for identifiability (37) is
satisfied. Similarly, for the checkerboard mixture, by construction, there are regions in x and y which contain
points from only component 1 or only component 2, see figure 9.

Recall that in our treatment, the individual variates x and y are themselves allowed to be
multi-dimensional. In the special case of one-dimensional variates x and y, typically a component will only
dominate the mixture in either the left tail or the right tail of the other components. This means that for
most natural examples with one-dimensional x and y, it is unlikely for the mixture to be identifiable for more
than two components. On the other hand, this limitation does not apply to higher dimensional variates x
and y which our InClass nets specialize in. For instance, the sufficient condition (37) for the mixture model
constructed out of the MNIST dataset becomes: ‘For every digit d, there must exist some region in the space
of images, within which the images look unmistakably like the digit d

′
. This condition is naturally expected

to be satisfied, considering the reliability of good handwritten communication.

4.1.1. Reduced identifiability due to limited statistics
The unique estimation of mixture model instances guaranteed by theorem 2 can only be achieved with an
infinite dataset. There will always be an uncertainty associated with estimation performed using finite
datasets [69]. The level of this uncertainty is related to (among other things) how close the conditions (36)
and (37) are to being satisfied within the region of sample space covered sufficiently by the finite dataset at
hand. In this sense, the result in theorem 2 is useful from a practical point of view. To illustrate this, we
repeated the two Gaussians example from section 3.1, with the same setup, but with much fewer datapoints,
namely 5000 instead of 100 000. With fewer datapoints, the dataset is less likely to probe the tails of the x and
y distributions, where a single component dominates. As expected, this time the estimation of the weights is
slightly worse—we obtained w1 = 0.44 and w2 = 0.56, to be compared with the true values of w1 = 0.4 and

w2 = 0.6. The results for the classifiers α(i)
x (x) and α

(i)
y (y) and for the component distributions f (i)x and f (i)y

are shown in figures 14 and 15, respectively. Comparing to the analogous high statistics figures 5 and 6, we
see that the estimation has generally succeeded (after all, the model was identifiable), but is not perfect and
suffers from statistical uncertainties.

4.1.2. Unidentifiable situations
When a CIMM instance is not identifiable, our technique will yield one of the parameterizations (weights
and functions) that best fits the available data. Note that the unidentifiability of an instance of a
nonparametric CIMM is not a weakness of our InClass nets approach, but rather a statement on the
impossibility of the task of unique estimation.

4.2. Uncertainty quantification
An important aspect of estimating a model (or equivalently, fitting a model to the available data), is
providing an uncertainty on the estimate. Uncertainties in parametric estimation are conceptually

12 It is understood that the relevant probability measure in (36) and (37) is the one that corresponds to the mixture model itself.
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Figure 14. The same as figure 5, but using only 5000 events for the estimation of the mixture model considered in section 3.1.

Figure 15. The same as figure 6, but using only 5000 events for the estimation of the mixture model considered in section 3.1.

straightforward—they correspond to the (possibly correlated) uncertainties in the estimated values of the
parameters. The corresponding approach in the context of nonparametric models (which allow arbitrary

functions), would be to treat either the NN outputs β(i)
v or the estimated distributions f (i)v as Gaussian

processes [70]. For a Gaussian process G(input), the value of G at any finite set of input values is taken to
be randomly distributed according to a multivariate normal distribution. This allows us to assign uncertainty
estimates on the value of G at individual input points, while also accounting for the correlations in the
uncertainties between the values at different input points. It has been shown that Gaussian processes can be
modeled using Bayesian NNs with wide layers [71–73]. Using wide Bayesian NNs as the individual classifiers
of the InClass net, one can obtain robust uncertainties on the estimated mixture model. In many scenarios,

one is simply interested in visualizing a band of uncertainty around the estimated β
(i)
v -s, α(i)

v -s, or f (i)v -s and
even narrow Bayesian NNs may be sufficient for this purpose.

Note that the Gaussian process approach will work when the instance of the CIMM at hand is
identifiable, and the uncertainty in the estimated model arises only from the finiteness of the dataset being
analyzed. It is presently unclear whether Bayesian NNs can capture the degree(s) of freedom in the model
specification which are introduced by the unidentifiability of the CIMM instance.

4.3. Estimating the number of components C
In many applications, one does not a priori know the number of components in the CIMM [37, 74]. In other
situations, the assumption that the distribution of the data can be written as a CIMMmay not necessarily be
valid. In such situations, by training different InClass nets with different values of C, one may be able to a)
verify the validity of the conditional independence assumption, and b) estimate C.

Note that increasing the number of components increases the fitting ability of a CIMM. More concretely,
every CIMM instance with C components can be thought of as a CIMM instance with C ′ > C components
(with C ′−C additional zero-weight components). As a result, an InClass net with more components should
strictly perform better (in terms of the minimum cost value achieved), up to network training deficiencies
and statistical fluctuations due to the finiteness of the training dataset. However, the improvement (in the
minimum cost achieved) resulting from increasing C is expected to diminish beyond a certain point.
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In particular, if the true probability distribution of the data P∗(X ) can be modeled as a CIMM, then
there exists a minimum number of components Cmin required to express P∗(X ) in the form

P∗(X ) =
Cmin∑
i=1

wi

V∏
v=1

f (i)v (xv) . (38)

Increasing C from 1 to Cmin will show an improvement in neg_ctc_cost value, but beyond Cmin, the
performance is expected to saturate. This feature, if observed, can simultaneously a) confirm that the data is
consistent with the conditional independence assumption, and b) provide an estimate of Cmin. Note that the
Cmin value identified in this way is only an estimate—inferring the presence of a component with a small
mixing weight, or the presence of two components with very similar distributions f (i)(X )may be statistically
limited by the amount of data available. If the actual number of components is a priori unknown, then the
Cmin estimate can serve as an Occam’s razor estimate of C.

On the other hand, if such a sharp saturation of network performance is not observed at a particular
value of C, and the saturation is more gradual, this could be a sign of a Latent Factor Model—the underlying
latent variable that explains the dependence of the different variates could be continuous instead of being the
discrete category label i.

4.4. Minimum possible value of neg_ctc_cost
When estimating Cmin using the method described in section 4.3, one relies on observing a saturation in the
value of the minimum cost achieved. However, such a saturation could also result from deficiencies in the
architecture and/or training of the network. It it therefore useful to have an estimate of the minimum
possible neg_ctc_cost achievable by the best fitting model. Recall from (24a), that

neg_ctc_cost = KL
[
P∗ ∣∣∣∣ P]−C∗(x1, . . . ,xV) , (39)

where KL
[
P∗
∣∣∣∣ P]is the KL divergence from the distribution represented by the InClass net P to the true

distribution P∗ and C∗(x1, . . . ,xV) is the total correlation of the variates under the true distribution. Since,
the KL divergence is manifestly non-negative and equals 0 only when P∗ is equivalent to P , we have the
following inequality

neg_ctc_cost ⩾−C∗(x1, . . . ,xV) , (40)

where the equality is achieved when P∗ matches P almost surely. Thus, the negative total correlation−C∗

provides a (theoretically achievable) lower-bound on the negative cross total correlation neg_ctc_cost.
From (23) the total correlation C∗ is given by

C∗(x1, . . . ,xV) =

ˆ
dX P∗(X ) log

[
P∗(X )

P∗
1 (x1) P∗

2 (x2) . . . P∗
V (xV)

]
, (41)

where P∗
v represents the marginal distribution of xv in the data. For low dimensional data, C∗ can be

estimated directly using this formula, after first estimating the distributions P∗(X ) and P∗
v (xv).

Alternatively, for both low and high dimensional data, one can estimate C∗ using supervised machine
learning as follows. Let the distributionQ∗(X ) be defined as

Q∗(X )≡
V∏

v=1

P∗
v (xv). (42)

Note that C∗ is simply the Kullback–Leibler divergence KL
[
P∗
∣∣∣∣Q∗] fromQ∗ to P∗. One can produce

datapoints as per the distributionQ∗(X ) by independently sampling the variates x1, . . . ,xV from the
available dataset. This gives us two datasets: the original one distributed as per P∗ and a resampled one
distributed as perQ∗. One can train a machine in a supervised manner to distinguish between these two
datasets and estimate the KL divergence, and hence C∗, from the trained classifier.

4.5. Incorporating prior knowledge
In some applications, one may have additional prior knowledge about the mixture model, beyond the
conditional independence assumption. It may be possible to incorporate this knowledge into the InClass net
directly. For example, in the MNIST image classification example considered in section 3.3, we used the
information that the variates x and y are both images of digits to use the same classifier NN for both variates.
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As a different example, if the distribution of a given variate xv is known under a given component i, then

the value of β(i)
v can be set to f (i)v (xv)/P∗

v (xv) up to a multiplicative weight factor which will constitute a
single, trainable parameter. For the special case where the distribution of a given variate xv is known under
every component, the classifier for the vth variate can be parameterized by only the mixture weights of the
components—in this way the InClass nets technique can be applied in the situations where the sP lots
technique is currently being used in high energy physics.

As yet another example, consider the case where the weights of the different components are a priori
known (but not the distributions of the variates within the components). Then an extra term can be added to
the cost function to force the mixture weights wi estimated by the InClass net towards the true known
weights wtrue

i . One possible form of the extra term is inspired by the cross entropy:

−λ
C∑
i=1

wtrue
i log(wi) , (43)

where λ is a parameter that controls the relative importance of the new term in the cost function. The
additional term could be added either at the beginning, or after training the network for a few epochs (and
identifying the map from the true component indices to the learned component indices). The additional
term may be particularly useful in estimating unidentifiable CIMMs, where the additional knowledge of the
mixture weights could help rule out the observationally indistinguishable ‘fake’ CIMM instances.

5. Possible variations and extensions

In this section we will discuss some potential variations and extensions of the InClass nets technique
introduced in this paper whose detailed exploration is beyond the scope of this work. Additionally, in
appendix C, we provide some surrogate cost functions for training CIMMs, which are already implemented
in the RainDancesVI package.

5.1. Regularizers
Recall that the dataset at hand could be consistent with multiple CIMM instances, either due to the
unidentifiability of the instance or due to the finiteness of the dataset. In such situations, one can impose
additional conditions for the learned model to satisfy. For example, depending on the application at hand,
one might be interested in roughly evenly weighted components. This can be encouraged by adding (to the
cost function) additional regularization terms like

tikhonov_reg = λ
C∑
i=1

w2
i , (44a)

neg_shannon_reg = λ
C∑
i=1

wi logwi, (44b)

where λ is a positive constant. If one is interested in more lopsided weight distributions for the components
(possibly suppressing the weights of some components), the same regularizer terms can be used with λ set to
a negative value.

5.2. Unsupervised classification with multi-label InClass nets
The InClass nets architecture introduced in this paper can have more general data mining applications
beyond the estimation of CIMMs. If the datapoints in a dataset are comprised of the (possibly
multi-dimensional) variates x1, . . . ,xV, the joint distribution of these variates may be understandable in
terms of the classes of datapoints within the dataset, even if it does not fall under a CIMM. Furthermore, the
set of classes corresponding to one variate need not necessarily be the same as the set of classes corresponding
to another. In the literature, the existence of different sets of classes within the dataset falls under the realm of
‘multi-label classification’.

For example, consider a dataset containing paired data: each datapoint contains the identities of a book
and a movie liked by a person. The working assumption could be that there exists a classification of books
and a (different) classification of movies, such that the class of books liked by a person is related to the class
of movies liked by the same person. In such cases, it may be possible to simultaneously train a book and a
movie classifier using the InClass nets architecture, by simply maximizing the mutual information between
the classes predicted by the network.
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To this end, we define the ‘negative total correlation function’ neg_tc_cost and its bivariate special case
‘negative mutual information’ cost function neg_mi_cost as

neg_tc_cost =−
C1∑
i1=1

C2∑
i2=1

· · ·
CV∑
iV=1

EP∗

[
V∏

v=1

α(iv)
v

]
log


EP∗

[
V∏

v=1

α(iv)
v

]
V∏

v=1

EP∗

[
α(iv)
v

]
, (45a)

neg_mi_cost =−
Cx∑
i=1

Cy∑
j=1

EP∗

[
α(i)
x α( j)

y

]
log

 EP∗

[
α(i)
x α( j)

y

]
EP∗

[
α(i)
x

]
EP∗

[
α( j)
y

]
, (45b)

where the outputs of the InClass net η(i)v are directly interpreted as the classifier output α(i)
v , and Cv is the

number of classes for the classifier corresponding to the vth variate—note that the Cv-s need not all be equal.
We point out that the neg_tc_cost of (45a) is a generalization of the cost function used in [50] for the case

where a) there can be more than two variates in the data, b) the classifiers α(i)
v are not necessarily the same

for different variates, and c) the number of classes Cv could be different for different variates. Also, in this
formulation, it is not required that the inputs xv to the different classifiers have only non-overlapping
attributes of the datapoint.

5.3. Semi-supervised classification with InClass nets
In the MNIST image classification example considered in section 3.3, we seeded the categories into the
classifier network via supervised learning using a small, noisily labeled dataset. After the categories were
seeded in, we used the unsupervised training of the InClass nets technique to further train the network.

This strategy has straightforward applications in semi-supervised learning scenarios where only a subset
of the datapoints in the training dataset are labeled. For example, in the training of NNs to perform medical
diagnosis [75], generating labeled datasets requires manual annotation by experts, and only a small number
of labeled samples may be available. On the other hand, a large number of unlabeled samples are typically
available for training purposes. If, say, two different aspects (or variates) of the medical records are expected
to only be weakly dependent on each other, but a confounding factor like the presence or absence of a disease
can influence both variates, then we can train a NN to perform the diagnosis leveraging both the labeled and
unlabeled datasets. A hybrid cost function that incorporates a supervised classification cost function (for the
labeled datapoints), as well an unsupervised cost function introduced in this paper (for the unlabeled
datapoints) may be appropriate for the task.

Note that the medical diagnosis example considered here will not strictly be a CIMM. For instance, in
addition to the presence or absence of the disease, the severity of a particular case is also likely to influence
the medical record. It may be possible to accommodate this particular effect by having multiple labels for
different severity levels. Despite not strictly being an example of conditional indepedence mixture model,
training using the neg_ctc_cost or the neg_tc_cost can still potentially yield useful diagnostic tools.

6. Summary

In this paper we introduced a novel approach for the ‘nonparametric’ estimation of CIMMs defined by (3).
In this approach, the estimation of a CIMM is treated as a multi-class classification problem, which we solve
with machine-learning methods. The main results of the paper are as follows.

• We develop a specific machine-learning technique which we call the InClass nets technique. The basic archi-
tecture of InClass nets is illustrated in figure 1 and consists of a number of classifiers (one for each variate),
which are realized as artificial NNs.
• In section 2.1, we show how CIMMs can be represented using InClass nets. The ability of NNs to approx-
imate arbitrary functions allows for the ‘nonparametric’ modeling of the CIMM.
• We recast the problem of estimation of a CIMMas a classification problem, and construct suitable cost func-
tions for training the individual NNs without supervision. We also provide the prescription for extracting
the learned CIMM from the trained InClass nets. The efficacy of our procedure is demonstrated with several
toy examples in section 3, including a high-dimensional image classification problem.
• For easy adoption of the InClass nets technique, we provide a public implementation of our method as a
Python package called RainDancesVI [62].
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• In section 4.1 we derive some new results on the nonparametric identifiability of bivariate CIMMs, in the
form of a necessary and a (different) sufficient condition for a bivariate CIMM to be identifiable. The proofs
of the theorems can be found in appendix A.

While performing comparative studies with previously existing (non-machine-learning) estimation
techniques in the literature is beyond the scope of this work, we note that (for a given C and V) a
machine-learning technique like InClass nets can potentially handle higher dimensional variates than
non-machine-learning techniques. As discussed in sections 4 and 5, the InClass nets technique has many
potential applications beyond the narrow focus of CIMM. Specifically, the use of machine learning opens
new avenues for addressing old-standing problems in nonparametric statistics.
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Appendix A. Proof of theorems 1 and 2

Here we will prove theorems 1 and 2. Let us begin by noting that:

• A nonparametric CIMM can be identifiable only if all the mixture weights are non-zero—if one of the
mixture components has zero weight, it can be removed from the mixture and different component can be
split into two.
• A nonparametric CIMMwith V = 2 cannot be identifiable if there exists a pair of components i, j for which

f (i)x (x) = f ( j)x (x) almost surely. Otherwise, the sub-mixture of the components i and j, wi f
(i)
x (x) f (i)y (y)+

wj f
( j)
x (x) f ( j)y (y), can be rewritten as a different combination of two components of total weight wi +wj

which have the same distribution of the variate x as the original components, but different mixture weights
and distributions of the variate y.
• Similarly, a nonparametric CIMM with V = 2 cannot be identifiable if there exists a pair of components i, j

for which f (i)y (y) = f ( j)y (y) almost surely.

Congruently, neither the necessary nor the sufficient condition from theorems 1 and 2 can be satisfied if

one of the mixing weights is zero, or if ∃(i, j, t) : f (i)t (t) = f ( j)t (t) almost surely. Henceforth, we will only
consider instances of nonparametric bivariate CIMMs for which

wi > 0 , ∀i ∈ {1, . . . ,C} , (A.1a)

(
f (i)x − f ( j)x = 0 almost surely

)
⇒

(
i= j

)
, (A.1b)

(
f (i)y − f ( j)y = 0 almost surely

)
⇒

(
i= j

)
. (A.1c)

A.1. Two component case (C = 2)
Let us first tackle the C= 2 case of theorems 1 and 2. Throughout this section, equality of distributions will
refer to their equality almost surely. From theorems 4.1 and 4.2 of [33], for every instance of parametric
bivariate CIMM of the form given in (28), all the instances with the same distribution of observed data form
a two-parameter family. This family of instances identified in [33] can be parameterized in terms of γ ∈ R
and 0⩽ w ′

1 ⩽ 1, and can be written as
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2∑
i=1

w ′
i g

(i)
x (x)g(i)y (y) =

2∑
i=1

wi f
(i)
x (x) f (i)y (y) , (A.2)

where

w ′
2 = 1−w ′

1 , (A.3a)

g(1)x (x) = Px(x)+ γw ′
2

√
w1 w2

w ′
1 w

′
2

(
f (1)x (x)− f (2)x (x)

)
, (A.3b)

g(2)x (x) = Px(x)− γw ′
1

√
w1 w2

w ′
1 w

′
2

(
f (1)x (x)− f (2)x (x)

)
, (A.3c)

g(1)y (y) = Py(y)+
w ′
2

γ

√
w1 w2

w ′
1 w

′
2

(
f (1)y (y)− f (2)y (y)

)
, (A.3d)

g(2)y (y) = Py(y)−
w ′
1

γ

√
w1 w2

w ′
1 w

′
2

(
f (1)y (y)− f (2)y (y)

)
. (A.3e)

Note, that the transformation γ←→−γ,w ′
1 ←→ 1−w ′

1 is equivalent to a permutation of the
component indices (1)←→ (2). Since, we are only interested in the identifiability of the CIMM instance
upto this permutation, we can restrict γ to be non-negative. The only additional constraints on γ and w ′

1 are

provided by the non-negativity of the distribution functions g(i)x and g(i)y .

It can be verified that γ= 1 and w ′
1 = w1 corresponds to the original CIMM instance with g(i)x = f (i)x and

g(i)y = f (i)y . Furthermore, any other set of values for γ and w ′
1 corresponds to a different instance, since the

w1,w2 > 0 and the differences f (1)x − f (2)x and f (1)y − f (2)y are not identically zero. This leads us to the following

lemma: The CIMM instance will be identifiable if and only if the non-negativity constraints on g(i)x and g(i)y
only allow γ and w ′

1 to be 1 and w1, respectively.

The non-negativity conditions on the functions g(i)x and g(i)y can be written using (A.3) as

1

γ

√
w ′
1

w ′
2

⩾√w1 w2 ess sup

[
f (2)x (x)− f (1)x (x)

Px(x)

]
=

µ
(2)
x −w2√
w1 w2

, (A.4a)

1

γ

√
w ′
2

w ′
1

⩾√w1 w2 ess sup

[
f (1)x (x)− f (2)x (x)

Px(x)

]
=

µ
(1)
x −w1√
w1 w2

, (A.4b)

γ

√
w ′
1

w ′
2

⩾√w1 w2 ess sup

[
f (2)y (y)− f (1)y (y)

Py(y)

]
=

µ
(2)
y −w2√
w1 w2

, (A.4c)

γ

√
w ′
2

w ′
1

⩾√w1 w2 ess sup

[
f (1)y (y)− f (2)y (y)

Py(y)

]
=

µ
(1)
y −w1√
w1 w2

, (A.4d)

where

µ
(i)
t = ess sup

[
wi f

(i)
t (t)

w1 f
(1)
t (t)+w2 f

(2)
t (t)

]
, ∀i ∈ {1,2} ,∀t ∈ {x,y} . (A.5)

It can seen from (A.4) that the µ(i)
t -s satisfy the constraints wi ⩽ µ

(i)
t ⩽ 1, since the essential supremum of the

difference between two normalized distributions is non-zero—normalized equations have to cross or be
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equal almost surely. Now, multiplying (A.4a) with (A.4c), and (A.4b) with (A.4d) we get the following
constraint in the ratio w ′

1/w
′
2(

µ
(2)
x −w2

)(
µ
(2)
y −w2

)
w1 w2

⩽ w ′
1

w ′
2

⩽ w1 w2(
µ
(1)
x −w1

)(
µ
(1)
y −w1

) . (A.6)

Note that all values w ′
1/w

′
2 allowed by this constraint are allowed by (A.4) and vice versa. This implies that

the CIMM instance will be identifiable only if the constraint (A.6) only allows w ′
1 = w1. The upper and lower

bounds on the ratio w ′
1/w

′
2 from (A.6) both equal w1/w2 iff µ

(1)
x = µ

(2)
x = µ

(1)
y = µ

(2)
y = 1 (which would also

set γ= 1 in (A.4)). This completes the proof of theorems 1 and 2 for the two component case.

A.2. Necessary condition for the C >2 case
The necessary condition from theorem 1 for the C > 2 case can be seen as a corollary of the same theorem 1
for the C= 2 case, since a nonparametric CIMM instance with more than two components can be
identifiable only if for every pair of components, the two component mixture formed by the pair (after
appropriately scaling their weights to add up to 1) is identifiable.

A.3. Sufficient condition for the C >2 case
Let Ωx and Ωy be the sample spaces of x and y, respectively, and let P[ · · · ] represent the probability of an
event. Let us consider a bivariate CIMM instance with C > 2 components which satisfies condition (37), i.e.

the sufficient condition for identifiability according to theorem 2 (which is to be proved here)13. Let wi, f
(i)
x ,

f (i)y , α(i)
x , and α

(i)
y have the same meanings as in the rest of the paper.

From the definition of ess sup, we can see that for all 0< ϵ < 1, there exist disjoint sets X1, . . . ,XC ⊂ Ωx

and disjoint sets Y1, . . . ,YC ⊂ Ωy such that14

P[x ∈ Xi]> 0 , ∀i ∈ {1, . . . ,C} , (A.7a)

P[y ∈ Yi]> 0 , ∀i ∈ {1, . . . ,C} , (A.7b)

(1− ϵ)⩽ α(i)
x (x)⩽ 1 , ∀x ∈ Xi ,∀i ∈ {1, . . . ,C} , (A.7c)

(1− ϵ)⩽ α(i)
y (y)⩽ 1 , ∀y ∈ Yi ,∀i ∈ {1, . . . ,C} . (A.7d)

From (A.7c) and (A.7d), we can see that

α(i)
x (x)⩽ ϵ , ∀x ∈ Xj , ∀(i, j) ∈ {1, . . . ,C}2 : i ̸= j , (A.8a)

α(i)
y (y)⩽ ϵ , ∀y ∈ Yj , ∀(i, j) ∈ {1, . . . ,C}2 : i ̸= j . (A.8b)

As ϵ is made arbitrarily small, the region x ∈ Xi and the region y ∈ Yi become arbitrarily close to being
populated exclusively by the component i. This induces a block diagonal structure, with the probability
Pij ≡ P

[
(x,y) ∈ Xi×Yj

]
becoming arbitrarily small if i ̸= j. More concretely, from (13), we can write

Pij = P[x ∈ Xi] P[y ∈ Yj]
C∑

k=1

Ex∈Xi

[
α
(k)
x (x)

]
Ey∈Yj

[
α
(k)
y (y)

]
wk

. (A.9)

Using (A.7c), (A.7d), (A.8), and (A.9), we can show that

Pij ⩽ ϵ P[x ∈ Xi] P[y ∈ Yj]
C∑

k=1

w−1
k , ∀i ̸= j . (A.10)

13 The following proof also works for the C= 2 case.
14 For notational convenience, the ϵ-dependence of the sets Xi and Y i is not indicated explicitly.
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Similarly, using (A.7c), (A.7d), and (A.9) we can show that

Pii ⩾ (1− ϵ)2
P[x ∈ Xi] P[y ∈ Yi]

wi
, ∀i . (A.11)

Now, let us consider a different CIMM instance with weights w ′
i , distributions f

′(i)
x and f ′(i)y , and classifiers

α
′(i)
x and α

′(i)
y which has an observationally equivalent distribution P(x,y) as the original CIMM instance.

We will refer to this as the ‘primed CIMM instance’. We will prove that the original CIMM is identifiable by
showing that the primed CIMM instance must be equivalent to the original, up to permutations of the
component index i.

The key observation is that in the small ϵ limit, no component of primed CIMM instance can have
non-vanishing contributions in the region (x,y) ∈ Xi×Yi for more than one i. If some component of the
primed instance, say the kth component, has non-vanishing contributions to Pii and Pjj for i ̸= j, then the
‘off-diagonal probabilities’ Pij and Pji will also receive non-vanishing contributions (due to conditional
independence), which is not allowed by (A.10). To make this argument more carefully, it can be shown, from
(A.9), that for all i, j,k ∈ {1, . . . ,C},

PijPji ⩾ P[x ∈ Xi] P[y ∈ Yi] P[x ∈ Xj] P[y ∈ Yj]

×
Ex∈Xi

[
α

′(k)
x (x)

]
Ey∈Yi

[
α

′(k)
y (y)

]
Ex∈Xj

[
α

′(k)
x (x)

]
Ey∈Yj

[
α

′(k)
y (y)

]
w ′2
k

.
(A.12)

Using (A.10) and (A.12), we can show that for all i, j,k ∈ {1, . . . ,C} with i ̸= j,

Ex∈Xi

[
α

′(k)
x (x)

]
Ey∈Yi

[
α

′(k)
y (y)

]
w ′
k

Ex∈Xj

[
α

′(k)
x (x)

]
Ey∈Yj

[
α

′(k)
y (y)

]
w ′
k

⩽
[
ϵ

C∑
k=1

w−1
k

]2
. (A.13)

This equation captures the constraint that no component k of the primed CIMM instance can have
non-vanishing contributions in two different regions (x,y) ∈ Xi×Yi and (x,y) ∈ Xj×Yj with i ̸= j. On the
other hand, each of the ‘diagonal regions’ must receive a non-vanishing contribution from at least of the
components of the primed instance. More concretely, from (A.9) and (A.11), one can see that for all
i ∈ {1, . . . ,C}, there exists a k ∈ {1, . . . ,C} such that

Ex∈Xi

[
α

′(k)
x (x)

]
Ey∈Yi

[
α

′(k)
y (y)

]
w ′
k

⩾ (1− ϵ)2

Cwi
. (A.14)

From (A.13) and (A.14) and the fact that both the original and the primed CIMM instances have the same
number of components, one can see that as ϵ is made arbitrarily small, there exists a permutation σ of the

component indices such that f (i)x -s are observationally equivalent to the corresponding f ′σ(i)x -s in the region

x ∈
C⋃
i=1

Xi, and similarly f (i)y -s are observationally equivalent to f ′σ(i)y -s in the region y ∈
C⋃
i=1

Yi.

The equality of the weights wi and w ′
σ(i) and the equivalence of the distributions f

(i)
x and f ′σ(i)x in the

entire sample space Ωx follows from the fact that both the original and primed CIMM instances have
observationally equivalent distribution P(x,y) in the region (x,y) ∈ Ωx×Yi—note that Y i has a non-zero

measure for all ϵ> 0. A symmetric argument establishes the equivalence of the distributions f (i)y and f ′σ(i)y in
the entire sample space Ωy. This completes the proof of theorem 2 for C⩾ 2 components.

Appendix B. Functional gradient of neg_ctc_cost

In this section we will discuss a strategy that can speed-up and improve the training of InClass nets using the
neg_ctc_cost of (24b)

neg_ctc_cost =−EP∗

 log



C∑
i=1

[
V∏

v=1

β(i)
v

(
EP∗

[
β(i)
v

]) 1−V
V

]
C∑
i=1

[
V∏

v=1

(
EP∗

[
β(i)
v

])1/V]


 . (B.1)

Note that there are multiple expectations EP∗ in the expression for the cost function. The outermost
expectation is similar to the one in a cost function which can be written as an expectation over a
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per-datapoint loss function. For such cost functions (which only have an outermost expectation), one can
use stochastic or mini-batch gradient descent for faster or more efficient training of the network. However,

the presence of the inner expectations φ(i)
v ≡ EP∗

[
β
(i)
v

]
in our cost function means that the batch size used

in the training should be large enough to estimate the pseudo weights φ(i)
v well. In particular, the batch size

should be large enough to pick up subtle changes in the value of φ(i)
v caused by changes to the network

weights θ. The need for large batch sizes will only be exacerbated as the number of components increases.
However, we can overcome this difficulty, and facilitate the use of stochastic gradient descent to optimize

the neg_ctc_cost as shown below. We will begin by deriving the expression for the functional derivative of
the cost function with respect to the NN outputs. For convenience, let is define N and D as

N≡
C∑
i=1

[
V∏

v=1

β(i)
v

(
EP∗

[
β(i)
v

]) 1−V
V

]
, (B.2a)

D≡
C∑
i=1

[
V∏

v=1

(
EP∗

[
β(i)
v

])1/V]
. (B.2b)

This lets us write

neg_ctc_cost =−EP∗

[
log

(
N

D

)]
. (B.3)

Taking the functional derivative with respect to β( j)
u (x ′u), one gets
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Using this, we can write the gradient of the cost function with respect to the NN weights θ as

∇θ neg_ctc_cost =
C∑
j=1

V∑
u=1

ˆ
dx ′u

δneg_ctc_cost
δβ

( j)
u (x ′u)

∇θ β
( j)
u (x ′u) (B.6)
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This expression allows us to approximate the gradient of the cost function as

∇θ neg_ctc_cost≈−
∑
j,u

EP∗


∇θ β

( j)
u

β
( j)
u

V∏
v=1

β( j)
v

(
φ̂( j)
v

)(1−V)/V

C∑
i=1

[
V∏

v=1

β(i)
v

(
φ̂(i)
v

)(1−V)/V
]


−
∑
j,u

EP∗

[
∇θ β

( j)
u

]
φ̂
( j)
u

× aux( j)

+
∑
j,u

EP∗

[
∇θ β

( j)
u

]
φ̂
( j)
u

V∏
v=1

(
φ̂( j)
v

)1/V
C∑
i=1

[
V∏

v=1

(
φ̂(i)
v

)1/V] , (B.8)

where φ̂(i)
v represents a moving estimate of EP∗

[
β
(i)
v

]
maintained throughout the network training process

and aux( j) represents a moving estimate of

EP∗


V∏

v=1

β( j)
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(
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Maintaining the moving estimates φ̂(i)
v and aux( j) is comparable to maintaining a discriminator in the

training of a Generative Adversarial Network (GAN). The discriminator can be used to evaluate (and
improve) the generator using mini-batches of data, instead of evaluating the (gradient of the) statistical

distance between the training dataset and the GAN-dataset from scratch at every training step. Likewise, φ̂(i)
v

and aux( j) faciliate the use of stochastic or mini-batch gradient descent for the neg_ctc_cost using
(B.8)—all the expectations in that expression are amenable to replacement with stochastic or mini-batch
estimates. We note that this strategy was not needed for the studies performed in this paper.

The strategy employed in this section to facilitate the use to stochastic gradient descent for optimizing
neg_ctc_cost is applicable to a number of cost functions which cannot be written as expectations of
per-datapoint loss functions. We will expand on this idea in future publications, and may implement it in
future versions of RainDancesVI.

Appendix C. Surrogate cost functions

For the cost function neg_ctc_cost from (24b), we can define a surrogate cost function neg_ctc_cost as

unnorm_neg_ctc_cost =−EP∗

[
log

{
C∑
i=1

[
V∏

v=1

β(i)
v

(
EP∗

[
β(i)
v

])(1−V)/V
]} ]

. (C.1)

This surrogate cost function is an alternative cost function whose minimization will also lead to the
minimization of the neg_ctc_cost. More concretely, if the true distribution P∗ does correspond to a
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CIMM, then the surrogate cost function will be minimized only when the network outputs (pseudo

classifiers) β(i)
v match the classifiers α(i)

v that correspond to a best fitting CIMM instance. This can be proved
as follows: From (24b) and (C.1), we have

neg_ctc_cost = neg_ctc_cost− EP∗

[
log

{
C∑
i=1

[
V∏

v=1

(
EP∗

[
β(i)
v

])1/V]}]
(C.2a)

⩾ neg_ctc_cost− EP∗

[
log

{
1

V

C∑
i=1

V∑
v=1

(
EP∗

[
β(i)
v

])} ]
(C.2b)

= neg_ctc_cost . (C.2c)

In (C.2b), we have used the inequality of arithmetic and geometric means and in step (C.2c), we have

used the constraint
C∑
i=1

β(i)
v (xv) = 1 satisfied by the NN outputs. Note that setting the pseudo classifiers β(i)

v

to be equal to the classifiers α(i) corresponding to a best fitting CIMM instance both a) minimizes
neg_ctc_cost, and b) satisfies the condition for equality in (C.2b). This completes the proof that the
unnorm_neg_ctc_cost is a suggogate cost function for the neg_ctc_cost when the data does correspond
to some CIMM. The bivariate special case unnorm_neg_cmi_cost which is a surrogate cost function for the
neg_cmi_cost can be explictly written as

unnorm_neg_cmi_cost =−EP∗

 log


C∑
i=1

β
(i)
x β

(i)
y√

EP∗

[
β(i)
x

]
EP∗

[
β(i)
y

]

 . (C.3)

These surrogate cost functions are also implemented in the RainDancesVI package.
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