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Abstract
We introduce a multi-tasking graph convolutional neural network, HydraGNN, to simultaneously
predict both global and atomic physical properties and demonstrate with ferromagnetic materials.
We train HydraGNN on an open-source ab initio density functional theory (DFT) dataset for
iron-platinum with a fixed body centered tetragonal lattice structure and fixed volume to
simultaneously predict the mixing enthalpy (a global feature of the system), the atomic charge
transfer, and the atomic magnetic moment across configurations that span the entire
compositional range. By taking advantage of underlying physical correlations between material
properties, multi-task learning (MTL) with HydraGNN provides effective training even with
modest amounts of data. Moreover, this is achieved with just one architecture instead of three, as
required by single-task learning (STL). The first convolutional layers of the HydraGNN
architecture are shared by all learning tasks and extract features common to all material properties.
The following layers discriminate the features of the different properties, the results of which are
fed to the separate heads of the final layer to produce predictions. Numerical results show that
HydraGNN effectively captures the relation between the configurational entropy and the material
properties over the entire compositional range. Overall, the accuracy of simultaneous MTL
predictions is comparable to the accuracy of the STL predictions. In addition, the computational
cost of training HydraGNN for MTL is much lower than the original DFT calculations and also
lower than training separate STL models for each property.

1. Introduction

Material discovery and design of new materials relies heavily on predicting material properties directly from
their atomic structure. There are many physics-based computational approaches to model and predict the
behavior of materials at the atomic scale from first principles, such as density functional theory (DFT) [1, 2],
quantumMonte Carlo (QMC) [3, 4] and ab initiomolecular dynamics (MD) [5, 6]. While these methods
have been instrumental in predictive materials science, they are extremely computationally expensive. The
advent of data-driven modeling techniques has provided new methodologies to produce inexpensive and
accurate predictions of material properties which helps enable rapid screening of large material search spaces
to select potential material candidates with desirable properties [7–10]. Among all data driven models, deep
learning (DL) models have the highest potential to accurately represent complex relations between input
features and target quantities, but require large volumes of data to attain high accuracy. Data collected in
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Figure 1. Computational workflow that compares the standard procedure to predict material properties with DFT calculations
and the DL-driven methodology that uses the lattice structure as input for HydraGNN to estimate the material properties. Once
HydraGNN is trained, it is much faster than DFT.

material science is most often small in volume due to expensive experiments and time-consuming numerical
simulations, which challenges, but does not preclude, the use of DL models in the field [11]. Recent efforts
have proposed transfer learning [12] and injecting the model with pre-existing physical knowledge [13–15]
to overcome this data constraint.

Multi-task learning (MTL) consists of using one DL model to perform several training tasks at the same
time [16]. All training tasks mutually influence each other, acting as inductive biases and thus improving
each other’s predictive performance. When multiple target quantities are correlated with each other, MTL
can be used to identify and learn features that are common to all the quantities of interest and transfer
knowledge through these common features from one quantity to another. This not only helps to counteract
the challenge of data scarcity, but also significantly reduces the computational effort with respect to
single-task learning (STL) because only one MTL model is used to predict all properties simultaneously,
rather than several distinct STL neural networks. MTL is a specific type of physics informed DL when
applied to material science data, because it leverages correlations between multiple material properties
dictated by the physics [17–19]. The total number of properties being predicted, the degree to which all
properties are correlated, and the difficulty of predicting each property (for a given neural network
architecture) all play a role in determining the effectiveness of MTL.

Graph convolutional neural network (GCNN) models extract information from local interactions
between nodes of a graph, and transfer the learnt interactions from one local neighborhood to another, to
alleviate the computational burden of DL training. Currently, GCNN models are extensively used in material
science to predict material properties from atomic information by directly mapping the atomic structure
input to graphs, with atoms as graph nodes and chemical bonds as edges [20, 21]. Bond angles [22] and
crystallographic information [23] have also been directly included in GCNNmodels to improve predictive
accuracy. GCNNs not only reduce the cumbersome and expensive data pre-processing, but can also naturally
transfer the learning across lattices of different structures and sizes.

Recently, MTL has been combined with GCNNmodels to strengthen the TL property along with the
ability to inject physics knowledge [24] in the DL model. In particular, the MT-CGCNNmodel [25] has been
trained on DFT-calculated ordered compounds to simultaneously predict multiple total material properties
including mixing enthalpy, Fermi energy, and band gap. Separately, GCNN models have been used to predict
per-atom quantities, as with GNNFF which directly predicts atomic forces for MD [26]. However, to the best
of our knowledge, no existing work in the literature has used multi-task GCNNs to simultaneously predict
both global and atomic material properties. In addition, existing approaches that combine MTL with GCNN
focus on one specific graph convolutional layer, without allowing the user to flexibly switch among different
aggregation policies to customize the convolutional kernel to the nature of the data.

We present a novel multi-tasking GCNN, HydraGNN, to simultaneously predict multiple physical
properties and demonstrate its predictive ability for binary solid solution magnetic alloys. We consider
mixing enthalpy, atomic charge transfer, and atomic magnetic moment as target material properties. Once
the HydraGNN model is trained, it can simultaneously produce accurate predictions of multiple material
properties substantially faster than DFT calculations. As shown in figure 1, HydraGNN inputs each atomic
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structure, converts it into a graph, and predicts the same properties as DFT with a GCNNmodel. We train
HydraGNN on open-source DFT data for iron-platinum (FePt) [27] with a fixed body centered tetragonal
(BCT) structure and fixed volume, generated with the LSMS-3 code [28]. Numerical results show that
HydraGNN learns the dependency of the three material properties with respect to the configurational
entropy over the entire compositional range.

2. HydraGNN architecture

HydraGNN directly inputs atomic structure and converts it into a graph, where atoms are interpreted as
nodes and interatomic bonds are interpreted as edges, and outputs total (graph-level) and atomic
(node-level) physical properties. The architecture of HydraGNN is characterized by two sets of layers: the
first set of layers learn features that are common to all the material properties and the last set of layers are
separated into multiple heads to learn features that are specific to each material property, shown
schematically in figure 2. The shared graph convolutional layers are used to extract common relevant features
from pairwise neighbor interactions and, through multiple layers, also represent many-body interactions.
The following separate layers are fully connected (FC) and learn mappings between extracted features and
the physical properties of interest.

We have implemented HydraGNN using Pytorch [29, 30] as both a robust NN library, as well as a
performance portability layer for running on multiple hardware architectures. This enables HydraGNN to
run on CPUs and GPUs, from laptops to supercomputers, including ORNL’s Summit. The Pytorch
Geometric [31, 32] library built on Pytorch is particularly important for our work and enables many
GCNNmodels to be used interchangeably. HydraGNN is openly available on GitHub [33].

2.1. Graph convolutional layers
A graph G is usually represented in mathematical terms as

G= (V,E) (1)

where V represents the set of nodes and E represents the set of edges between these nodes [34]. An edge
(u,v) ∈ E connects nodes u and v, where u,v ∈ V, E ∈ V×V. The topology of a graph can be described
through the adjacency matrix, A, an N ×N square matrix where N is the number of nodes in the graph,
whose entries are associated with edges of the graph according to the following rule:{

A[u,v] = 1 iff (u,v) ∈ E
A[u,v] = 0 otherwise.

(2)

The degree of a node u ∈ V is defined as:

du =
∑
v∈V

A[u,v] (3)

and represents the number of edges connected to a node. Every node u is represented by a a-dimensional
feature vector x ∈ Ra containing the embedded nodal properties and also a label vector y ∈ Rb in tasks
related to node-level predictions. In order to take advantage of the topology of the graph, many DL models
include both the number of neighbors per node, as well as the length of each edge between nodes.

GCNNs embed the interactions between nodes without increasing the size of the input by representing
the local interaction zone as a hyperparameter that cuts-off the interaction of a node with all the other nodes
outside a prescribed local neighborhood. This is identical to the approximation made by many atomic
simulation methods, including the LSMS-3 code used to generate the DFT training data, which ignore
interactions outside a given cutoff range. GCNNs [35, 36] are DL models based on a message-passing
framework, a procedure that combines the knowledge from neighboring nodes, which in our applications
maps directly to the interactions of an atom with its neighbors.

The typical GCNN architecture is characterized by three different types of hidden layers: graph
convolutional layers, graph pooling layers, and FC layers. The convolutional layers represent the central part
of the architecture and their functionality is to transfer feature information between adjacent nodes (in this
case atoms) iteratively. In the kth convolutional layer (k= 0,1, . . . ,K), message passing is performed in
sequential with the following operations:

(a) Aggregate information from neighbors: the node u collects the hidden embedded features of its neighbors
N(u) as well as the information on the edges (if available) via an aggregation function:

hk+1
N(u) = AGGREGATE

(
mk

v,∀v ∈ N(u)
)
, (4)
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Figure 2. HydraGNN architecture when used as a surrogate model for DFT calculations of mixing enthalpy, atomic charge
transfer, and atomic magnetic moment.

where mk
v =MESSAGE(hkv,h

k
euv) is a message obtained from neighboring node v and the edge euv that

connects them. The vector hkv (h
k
v ∈ Rpk) is the embedded hidden feature vector of node v in the kth

convolutional layer. When k= 0, the hidden feature vector is the input feature vector, h0v = x.
(b) Update hidden state information: with hk+1

N(u) collected, the nodal feature of node u is updated as in:

hk+1
u = UPDATE

(
hku,h

k+1
N(u)

)
(5)

where UPDATE is a differentiable function which combines aggregated messages hk+1
N(u) from neighbors

of node u with its nodal features hku from the previous layer k.

Through consecutive steps of message passing, the graph nodes gather information from nodes that are
further and further away. The type of information passed through a graph structure can be either related to
the topology of the graph or features assigned to the nodes. An example of a topological information is the
node degree, whereas an example of nodal feature in the context of this work is the proton number of the
atom. A variety of GCNNs, e.g. principal neighborhood aggregation (PNA) [37], crystal GCNN [20] and
GraphSAGE [38], have been developed, differing in the definitions of functions
AGGREGATE,MESSAGE,UPDATE for message passing. One simple example of the function combination
is:

hk+1
N(u) =W

(k+1)
neighborhood

∑
v∈N(u)

hkv + b
k,

hk+1
u = σ

(
W(k+1)

self hku +h
k+1
N(u)

)
, (6)

whereW(k+1)
self ,W(k+1)

neighborhood ∈ Rpk+1×pk are the weights of (k+ 1)th layer of GCNN and σ is an activation
function (e.g. ReLU) that introduces nonlinearity to the model.

PNA is used in this work and is one of the convolutional layers available in HydraGNN through Pytorch
Geometric; PNA combines multiple aggregating techniques to reduce the risk of classifying two different
graphs as identical. Batch normalizations are performed between consecutive convolutional layers along with
a ReLU activation function. Graph pooling layers are connected to the end of the convolution-batch
normalization stack to gather feature information from the entire graph. Global pooling layers aim at
collapsing the node feature associated with each atom across a graph into a single feature. This is achieved by
summing the local interactions of each atom with its neighbors and use the result to estimate global
properties. For atom (node) level features such as the atomic charge transfer and atomic magnetic moment,
collapsing the information from all atoms into a total system feature is not needed. FC layers are positioned
at the end of the architecture to take the results of pooling, i.e. extracted features, and provide the output
prediction.
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Larger sizes of the local neighborhood lead to a higher computational cost to train the HydraGNN
model, as the number of regression coefficients to train at each hidden convolutional layer increases
proportional to the number of neighbors. Further details on the behavior of HydraGNN with different sizes
of the local neighborhood have been previously reported [39].

2.2. Multiple heads with FC layers for MTL
MTL utilizes a NN to simultaneously predict multiple quantities [16] when those predicted quantities are
mutually correlated and can act as inductive biases for each other. The improvement of an MTL model
depends on how strongly the quantities to be predicted are mutually correlated in a particular application.
This type of field specific inductive bias has been defined as knowledge-based, for which the training of a
quantity can benefit from the information contained in the training signal for other quantities. Ultimately,
MTL allows a direct and automated incorporation of physics knowledge into the model by extracting
correlations between multiple quantities, with manual intervention by a domain expert only needed in
determining which quantities to use.

In HydraGNN, each predicted quantity is associated with a separate loss function and the global objective
function minimized during NN training is a linear combination of these individual loss functions. Formally,
let T be the total number of physical quantities, or tasks, we want to predict. A single task identified by index
i focuses on reconstructing a function fi : Ra → Rbi defined as

yi = fi(x), i= 1, . . . ,T, (7)

where x ∈ Ra, yi ∈ Rbi . The MTL makes use of the correlation between the quantities yi, where the functions

f i in (7) are replaced by a single function f̂ : Ra → R
∑T

i bi that can model all the relations between inputs and
outputs as follows: y1...

yT

 = f̂WMTL(x), (8)

whereWMTL represents the weights to be learned.
The global loss function ℓMTL : RNMTL → R+ to be minimized in MTL is a linear combination of the loss

functions for the single tasks:

ℓMTL(WMTL) =
T∑

i=1

αi∥ypredict,i − yi∥22, (9)

where ypredict,i = f̂WMTL,i (x) is the vector of predictions for the ith quantity of interest and αi (for i= 1, . . . ,T)
are the mixing weights for the loss functions associated with each single quantity. The values of the αi’s in
equation (9) are hyperparameters of the surrogate model and thus can be tuned. In this work we assigned an
equal weight to each property being predicted because we are equally interested in all of them; however, this
definition of the loss function enables one to modify the values of the αi to purposely favor the training
toward one property of interest.

As mentioned above, the multiple quantities in MTL can be interpreted as mutual inductive biases
because the error of a single quantity acts as a regularizer with respect to the loss functions of other
quantities. In order to clarify why MTL can be seen as a regularizer, let us start with the formulation of a
regularized training as a constrained optimization problem:argmin

w
∥ypredicted(w)− y∥22

c(w) = g
, (10)

where w ∈ RN is the vector of regression coefficients of the model, y are the target values, ypredict(w) are the
predictions produced by the DL model, c(w) ∈ Rc and g ∈ Rc are quantities used to express a constraint. The
formulation in (10) imposes the constraint c(w) = g in a strong form. The values of c(w) depend on the
model configuration identified by the parameter vector w, whereas the reference values g are assumed to be
given. The constrained optimization problem in (10) can be reformulated so that the constraint is
incorporated in the definition of the objective function itself as follows:

argmin
w

{
∥ypredicted(w)− y∥22 +λ∥c(w)− g∥∗

}
, (11)
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where ∥·∥∗ may denote the ℓ1-norm or ℓ2-norm as explained below. The objective function to be minimized
in (11) interprets the constraint as a penalization term with the penalization multiplier λ. This is a weak
formulation of the constraint added to the original objective function. Standard ℓ1 or ℓ2 regularizations
correspond to choosing c(w) = w and g= 0, and they recast the constraint term in (11) from the strong
formulation to the weak formulation using the ℓ1-norm and the ℓ2-norm, respectively. In MTL, c(w) are the
predictions of additional target properties whose target values are stored in g, which allows to recast the global
objective function used in equation (11) as the global loss function for MTL defined in equation (9). For a fair
comparison and to determine the benefit of using other tasks as a mutual regularizer, we do not use
additional ℓ1 and ℓ2 regularizers for the STL training in this work.

Figure 2 shows the topology of an HydraGNN model for multi-tasking learning to model mixing
enthalpy, atomic charge transfer, and atomic magnetic moment. The architecture of HydraGNN for MTL is
organized so that the first hidden layers are shared between all tasks, while keeping several task-specific
output layers. This approach is known in literature as hard parameter sharing.

3. Solid solution binary alloy dataset

In this work we focus on a solid solution binary alloy, where two constituent elements are randomly placed
on an underlying crystal lattice. We use a dataset for FePt alloys available through the OLCF
Constellation [27] which includes the total enthalpy, atomic charge transfer, and atomic magnetic moment.
Each atomic sample has a BCT structure with a 2 × 2 × 4 supercell. The dataset was computed with LSMS-3
[28], a locally self-consistent multiple scattering) DFT application [40, 41]. The dataset was created with
fixed volume in order to isolate the effects of graph interactions and graph positions for models such as
GCNN. This produces non-equilibrium alloy samples, with non-zero pressure and positive mixing enthalpy,
shown as a function of composition in figure 3.

The input to HydraGNN for each sample includes the three components of the atom position and the
proton number. The predicted values include the mixing enthalpy, a single scalar for each sample (graph), as
well as the charge transfer and magnitude of the magnetic moment, both scalars per atom (node). Although
the magnetic moment is a vector quantity, we treat it as a scalar because all the atomic magnetic moments in
the dataset are co-linear (all magnetic moments point in the same direction).

The dataset consists of 32 000 configurations out of the 232 available, sampled every 3 atomic percent. For
this work, if the number of unique configurations for a specific composition is less than 1000 all those
configurations are included in the dataset; for all other compositions, configurations are randomly selected
up to 1000. This results in a final dataset of 28 033 configurations. In order to ensure each composition is
adequately represented in all portions of the dataset, splitting between the training, validation, and test sets is
done separately for each composition.

At the ground state, the total enthalpy H of an alloy is

H=
E∑

i=1

ciHi +∆Hmix, (12)

where E is the total number of elements in the system, ci is the molar fraction of each element i, Hi is the
molar enthalpy of each element i, and∆Hmix is the mixing enthalpy. We predict the mixing enthalpy for each
sample by subtracting the internal enthalpy from the DFT computed total enthalpy as a value more relevant
to materials science (more directly related to the configuration). The chemical disorder makes the task of
describing the material properties combinatorially complex; this represents the main difference from open
source databases that have very broad elemental and structural coverage, but only include ordered
compounds [42–44].

The range of values of the mixing enthalpy expressed in Rydberg is (0.0,65.92), the range of atomic
charge transfer in electron charge is (−5.31,−0.85), and the range of atomic magnetic moment in
magnetons is (−0.05,3.81). Since different physical quantities have different units and different
orders of magnitude, the inputs and outputs for each quantity are normalized between 0 and 1 across
all data.

Both atomic and global properties arise from complex relations to the lattice structure. However, the
relations between lattice structure and atomic properties are not fundamentally different from the relations
between lattice structure and global properties for perfect lattice structures as those considered in this work.
There are limitations to the amount of configurational entropy present in the small atomic systems
considered here. This could be improved by increasing the size of the lattice.

6



Mach. Learn.: Sci. Technol. 3 (2022) 025007 M Lupo Pasini et al

Figure 3. Configurational mixing enthalpy of solid solution binary alloy FePt with BCT structure as a function of Fe
concentration. The color map indicates the relative frequency of data.

4. Numerical results

We present numerical results that predict the mixing enthalpy, atomic charge transfer, and atomic magnetic
moment for the binary FePt alloy. Specifically, we compare the predictive performance of multiple separate,
single-headed HydraGNN models for STL with multi-headed HydraGNN models for MTL. The output of
DFT calculations is considered as the exact reference for the DL model to reconstruct.

4.1. Training setup
The architecture of the HydraGNN models has 6 PNA [37] convolutional layers with 20 neurons per layer. A
radius cutoff of 7 Å is used to build the local neighborhoods used by the graph convolutional mask. Every
learning task is mapped into separate heads where each head is made up of two FC layers, with 50 neurons in
the first layer and 25 neurons in the second. This choice for the GCNN architecture is driven by the following
considerations. On the one hand, using a small GCNN architecture leads to underfitting because the neural
network is not sufficiently complex to learn all the relevant features described in the dataset. On the other
hand, an overly complex neural network may trigger overfitting, especially when the dataset is relatively
small in volume, as it is for this work. Moreover, a complex MTL neural network would result in similar
training to STL because it separates too much the quantities of interest. However, the goal of the MTL is to
extract physics correlations, which requires the quantities to overlap sufficiently within the architecture. The
DL models were trained using the Adam method [45] with a learning rate equal to 0.001, batch sizes of 64,
and a maximum number of epochs set to 200. Early stopping is performed to interrupt the training when the
validation loss function does not decrease for several consecutive epochs, as this is a symptom that shows
further epochs are very unlikely to reduce the value of the loss function. The training set for each of the NN
represents 70% of the total dataset; the validation and test sets each represent half of the remaining data. As
discussed in section 3, compositional stratified splitting was performed to ensure that all the compositions
were equally represented across training, validation, and testing datasets. Equal loss function weights were
used for all properties to define the global loss function for MTL. The training of each DL model was
performed on Summit with one model per NVIDIA V100 GPU across two nodes, resulting in ensembles of
12 models per MTL/STL setup discussed in the next section.

4.2. Model accuracy and reliability
We compute and analyze not only the accuracy (root mean-squared error (RMSE)) of each model, but also
the standard deviation of RMSE for an ensemble of 12 models. This simple metric enables some
quantification of the uncertainty associated with each MTL or STL prediction and an understanding of the
reliability of the GCNN models. Note that the RMSE for MTL may be higher compared to STL for two

7



Mach. Learn.: Sci. Technol. 3 (2022) 025007 M Lupo Pasini et al

Figure 4. Prediction of FePt test set in MTL, HCM. Scatter plots of mixing enthalpy (left), atomic charge transfer (center), and
atomic magnetic moment (right) for multi-task predictions obtained with HydraGNN (y-axis) against DFT calculations (x-axis).
The color map indicates the relative frequency of data for each predicted property.

Table 1. Test RMSE of HydraGNN to predict physical properties for an FePt alloy. The training method states whether multi-tasking
(MTL) or single-tasking (STL) was used and which quantities were predicted: mixing enthalpy (H), charge transfer (C), and/or
magnetic moment (M).

Training method

Test RMSE

Mixing enthalpy Charge transfer Magnetic moment

MTL, HCM 7.54× 10−03 ± 8.70× 10−04 6.77× 10−03 ± 3.59× 10−04 1.04× 10−02 ± 4.94× 10−04

MTL, HC 7.33× 10−03 ± 4.77× 10−04 7.36× 10−03 ± 3.23× 10−04 −
MTL, HM 6.64× 10−03 ± 5.08× 10−04 − 1.02e− 02± 5.23× 10−04

MTL, CM − 5.94e− 03± 3.02× 10−04 9.30× 10−03 ± 4.12× 10−04

STL, H 1.02× 10−02 ± 1.16e− 03 − −
STL, C − 5.94× 10−03 ± 4.39× 10−04 −
STL, M − − 8.77× 10−03 ± 3.18× 10−04

reasons. First, the number of graph convolutional layers and the number of nodes per layer are the same for
MTL and STL, but MTL forces these parameters to be shared among the multiple predicted quantities (STL
and MTL differ only in the split hidden layers for the heads). Second, MTL introduces an inductive bias in
the predictions of a quantity under the influence of other quantities simultaneously predicted.

We first show figure 4 parity plots for the predictions generated by HydraGNN against the DFT data
when MTL is used to simultaneously predict mixing enthalpy, charge transfer, and magnetic moment.
HydraGNN with MTL predicts all three properties well for most of the samples over the entire dataset, as
shown by the alignment of data near the diagonal. The colormap highlights that more sample points for all
three properties are tightly clustered near zero, with larger variations as the property magnitudes increase. As
expected, this non-uniform concentration of values for the target properties across the data affects the
predictive performance of the HydraGNN models, with more accurate predictions in regions with higher
concentration of data.

In table 1, we compare the predictive accuracy of HydraGNN used to simultaneously predict mixing
enthalpy, atomic charge transfer, and atomic magnetic moment with MTL, MTL with each pair of
properties, and STL for each individual property. The table shows the average RMSE and the standard
deviation from 12 independent runs with random initialization on the test set. Figure 5 shows the probability
distribution functions (PDFs) of the results from table 1 for each combination of properties. The lines mark
the average values and the filled area indicates one standard deviation. Models with a lower average RMSE
are interpreted as more accurate and lower standard deviation as more reliable, as the model predictions are
similar across different trainings due to more relevant features extracted that better characterize the dataset.
The results show that adding the magnetic moment as a physical constraint improves the both the predictive
accuracy and reliability of MTL models over the STL predicting mixing enthalpy only. Addition or
replacement of magnetic momement for charge density somewhat reduces the accuracy or reliability, but
much less than using STL.
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Figure 5. Comparison between prediction error of FePt test set in STL and MTL. PDF profiles of prediction errors for mixing
enthalpy (left), atomic charge transfer (center), and atomic magnetic moment (right). The lines are mean values and the filled area
indicates the range of standard deviation from 12 independent runs with random initialization. The capital letters are associated
with the quantities predicted (H stands for mixing enthalpy, C stands for charge transfer and M stands for magnetic moment).

Figure 6. Scatter plot of total magnetic moment against concentration of iron (left) and scatter plot of mixing enthalpy against
total magnetic moment (right).

These results suggest that there is a strong correlation between mixing enthalpy and magnetic moment,
which has also been documented in the literature for ferromagnetic materials from DFT calculations and
experiments [46–48], as well as previous DL studies using multilayer perceptrons for MTL on the same
dataset [49]. The total magnetization of the binary alloy FePt is strongly correlated with the concentration of
Fe in the alloy, as shown in figure 6 to the left, because only the Fe atoms have a non-negligible magnetic
moment. This results in a strong (albeit nonlinear) correlation between the mixing enthalpy and the total
magnetization of the alloy, as shown in figure 6 to the right. While this correlation between total properties is
useful in determining whether the MTL training should be useful in this case, we note that the correlations
between the global and atomic properties of the system are much more complex. The HydraGNN results
indicate this correlation indeed helps the MTL predict the enthalpy with the addition of magnetic moment,
as well as charge density.

The error distributions for MTL are slightly skewed and not centered at zero because the physical
properties operate as mutual inductive biases, but this does not affect the accuracy of MTL. While MTL
stabilizes the training and prediction and improves accuracy of the global graph mixing enthalpy, the same is
not true of the atomic-level properties. The STL models for charge density and magnetic moment are slightly
more accurate (as discussed at the beginning of the section), but also slightly more reliable for magnetic
moment. The difference in terms of stabilization and accuracy obtained by MTL on the mixing enthalpy and
atomic-level properties is possibly due to the different dimensionality of each property (scalar vs.
high-dimensional vector).

We finally note that while our results for the mixing enthalpy are less accurate than the best reported
GCNN results for DFT data (∼0.21 eV atom−1 in this work versus 0.022–0.067 eV atom−1 [22, 23]). This is
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Figure 7. Training time for HydraGNN models in wall-clock seconds to simultaneously predict all three material properties (red),
two properties (green) and one property (blue). The bars indicate average training time and the vertical black segments indicate
the range of one standard deviation from 12 independent runs with random initialization. Each letter corresponds to one
predicted quantity: mixing enthalpy (H), charge transfer (C), and magnetic moment (M).

partially due to the model used, as PNA does not explicitly include bond angle or crystallographic
information, as well as the highly non-equilibrium nature of this dataset (although that the literature results
include a much more broad range of chemistries should be taken into account). However, the focus of this
work is on the MTL capabilities of HydraGNN and comparisons with STL.

4.3. Model training time
In figure 7, we report the average wall-clock time and standard deviation to train all the MTL and STL
models for the same 12 averaged runs from section 4.2 for each combination of properties. In general, STL
takes approximately 10% less time to train than MTL for two properties, which in turn takes approximately
10% less than MTL to predict all thee material properties. This is due to the fact that each head introduces
additional parameters into the neural network, increasing the total computational cost. However, the
training for MTL to simultaneously predict all three material properties is still more than 2.2x faster than to
train three separate HydraGNN models using STL.

5. Conclusion and future work

We have presented a new DL surrogate model for atomic calculations, HydraGNN, to predict both global and
atomic properties, available on GitHub [33]. The multi-tasking GCNNmodel was jointly trained on mixing
enthalpy, charge transfer, and magnetic moment to take advantage of physical correlations in a highly
non-equilibrium DFT dataset. Each predicted quantity acts as a physical constraint on the other quantities,
allowing the shared convolutional layers to extract features that describe local interatomic interactions and
use them across different material properties.

Although the numerical experiments presented here show that MTL can use strong correlations between
physical properties to reduce the uncertainty associated with the DL predictions, imposing too many
constraints can be counterproductive. Simultaneously predicting too many quantities may lead to a decrease
of the predictive power, particularly when the quantities are less correlated. Therefore, the choice of different
physical properties to be predicted simultaneously must be done judiciously.

The use of HydraGNN reduces the time needed to predict the material properties by a factor of hundreds
compared to the original DFT calculations. Moreover, the computational time in training a multi-headed
HydraGNN model is comparable to that of a single-headed GCNNmodel, resulting in further
computational savings (near the order of the number of material properties).

We envisage two primary future applications of HydraGNN. First, the surrogate enables extremely fast
estimation of atomic properties once the model has been trained, replacing DFT as long as some reduction in
accuracy is acceptable. To further improve the usability for this case, we plan to integrate uncertainty
quantification methods with HydraGNN to identify situations where the model requires additional training
data. Second, rather than completely replace DFT we intend to integrate physics-based and data-driven
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models together in scenarios where the trained HydraGNN surrogate model can act as an initial guess for a
further refined DFT calculation. In computational workflows such as QMC, this could substantially reduce
the total simulation time without any change in the final accuracy.
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