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ABSTRACT 
 

Program files damage and other computer virus symptoms has become a very threatening issue to 
computer performance. This paper considered an ������ model with incidence of infected and 

program files damaged computers and saturated incidence of vaccination and treatment function. 
Two control functions have been used; one for vaccinating the susceptible computer population 
and the other for the treatment of the program files damaged computer population. The 
Pontryagin’s Maximum Principle has been used to characterize the optimal control whose 
numerical results show the positive impact of the two controls used for controlling the infection 
dynamics of computer virus. Actually the intention of this study is to minimize the number of 
infected and program files damaged computer systems and at the same time minimize the cost 
associated to the controls. Efficiency analysis is also studied to determine the best control strategy 
among vaccination and treatment. Numerical simulations were carried out in this model to 
demonstrate the analytical results and it was revealed that combination of vaccination and 
treatment is the most successful way to minimize the incidence of program files damage.   
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1. INTRODUCTION 
 

With the constant upgrading and rapid 
development of the information technology, the 
efficiency and speed of network information 
transmission has been improved a lot to a certain 
degree. Information stability and security 
following has been paid attention to by the 
network experts and people gradually [1]. 
However, as is known to all, the highly developed 
internet brings people all sorts of convenient life 
while at the same time with many problems 
following which one of them is the computer virus 
infection and its spread.  
 

A computer virus is a man-made destructive 
computer program or code. One of the 
fundamental characteristics of a virus is that it 
replicates its code to other programs or 
computers. This process of replication is called 
infection. A typical virus generally (although not 
in all the cases) adds itself to the end of a 
program and in that case the size of the host 
program increases because of the addition of this 
extra (viral) code. In order to execute this viral 
code, the virus overwrites the first bytes of the 
file with a “jump” instruction which makes the 
execution jump to the viral code. After the viral 
code is executed, the virus repairs the first few 
bytes overwritten by the virus in order to return 
control to the original file. Thus a typical virus 
(not in case of a worm or Trojan) has to depend 
on a host program to survive and operate [2]. 
 

During the process of infection the contact of the 
host file (or the file that is infected) has to change 
in order to include the virus code. As there are 
different types of the viruses, their methods of 
infection are also different. Some viruses infect 
the boot sector and partition table (boot sector 
viruses). Some viruses remain in memory all the 
time (memory resident viruses) since the 
computer is switched on. Some viruses remain in 
the body of executable files (file viruses), or 
document files (macro viruses) or other types of 
files. Some viruses infect email (email viruses) 
and travel through computer networks. Some 
viruses are complete programs and work 
independently without depending on other files 
(worms, Trojans). Some viruses take over 
actions of operating systems (rootkits) thereby 
causing the system to malfunction [2].  
 

Every infection does not cause same level of 
damage. Some infections cause very minor 

disturbance while other infections cause 
moderate to high level of damage. The 
dangerous viruses may cause serious damage 
like formatting the hard disk or destroying the 
data etc thereby making the computer unusable. 
Almost all viruses are attached to an executable 
file, which means the virus may exist on your 
computer but it cannot attack your computer 
unless if run or open the malicious program. 
Therefore, it is important to note that a virus 
cannot be spread without a human action (such 
as running an infected program) to keep it going 
[3].   
 
A biological virus like HIV or HBV cannot 
reproduce on its own, rather there must be a 
favorable viral – host interaction before it can 
replicate [4,5,6]. Similarly, malware is not a 
standalone program rather a code snippet that 
insert itself into other applications. When that 
application executes the malware code 
unknowingly, the results range from irritation to 
disastrous. As the infected application executes 
(usually at the request of the user), and the 
malware is loaded into the CPU memory before 
any of the legitimate executes. Computer 
Malware is not keen to alert their presence in a 
computer system. Just as biological virus wants 
to keep its host alive so that it will continue to use 
it as a vehicle to reproduce and spread, so too 
does computer malware attempt to do its 
damage in the background while the computer 
still limps along [7]. 
 
Under appropriate conditions, computer virus 
spreads to uninfected computers from the 
infected computer through many kinds of ways. It 
enters the computer and gets executed, thereby 
searching for other programs or storage media in 
line with the conditions of their infection and 
target to insert the code. This is to enable it to 
achieve the purpose of replication. Once the 
computer is infected and not promptly treated, 
the virus will spread speedily on the computer 
and maybe a large number of executable files 
will be infected. These infected files become a 
new source of infection and when data are 
exchanged with other computers that are not 
vaccinated over the network, they will be 
infected. Computer malware can enter any 
computer through different means such as; an 
email attachment, file downloads from the 
internet, connection to a website, mobile hard 
disk. Since the network has no permanent 
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immunity to the computer malware, they are 
prone to be infected [8]. 
 
To prevent computer viruses from causing 
program file damage and other computer virus 
symptoms, like slowing down of operating 
system, computer applications and internet 
speed; crashing; hard drive malfunction; running 
out of storage space; etc, an anti-virus software 
program is installed and constantly updated.  An 
anti-virus software program is a computer 
program that can be used to scan files to identify 
and eliminate computer viruses and other 
malicious software (malware) [9]. Anti-virus 
software does up to three tasks which include: 
 
 Detecting whether or not a code is a virus or 

not (detection). 
 

 Once a virus is detected, the identification 
process distinct from detection by classifying 
which virus it is. 

 
 The computer is disinfected. Disinfection is 

the process of removing detected viruses, 
and is sometime called cleaning.  

 
There are different performance indicators 
identified for measuring the performance of 
antivirus software which are as follows: Virus 
Definition Update, Antivirus Upgrades, On-
Access Scanner, On-Demand Scan, Scheduled 
Scanning, Auto Clean infected File Scanning, 
Scanning Compressed Files, Email Shield, Web 
Shield and Antivirus Technical Support.  

 
Although an antivirus aims at preventing any 
virus attack there are chances that some files are 
infected earlier to antivirus installation or during a 
period when the virus signatures are not 
updated. In that case, the antivirus must disinfect 
the infected files. This is one of the difficult and 
most important functions of any antivirus 
program. The antivirus has to apply various 
methods in order to remove the virus code from 
the infected file and restore the file in its original 
form. An antivirus first tries to detect the 
presence of viruses using different detection 
methods. Signature detection being the most 
popular method may be applied first. If no 
signature is found then the antivirus applies other 
methods like heuristic scanning. If no suspicion is 
raised on a file, then the file is deemed to be 
uninfected. 

 
The first attempt of any antivirus product is to 
repair the damaged files or sector of the disk. 

However, if the antivirus does not know the 
method of repairing the infection, then it isolates 
the infected file to quarantine for a possible 
repairing in future. If a virus is found to be too 
dangerous or the file is severely damaged then 
the antivirus may decide to delete the infected 
file. Thus, the actions are generally configured in 
a sequential order, such as, repairing the file (if it 
cannot be repaired) and deleting the file (least 
preferred). Our aim in this paper is to highlight 
the seriousness of computer virus infection and 
prevent program files damage with other 
symptoms using vaccination and treatment. 
 

2. RELATED LITERATURES 
 
Associating computer virus with biological virus 
we formulate a compartmental epidemic model 
for the optimal control of viruses in a computer 
network with vaccination and quarantine being of 
great significant.  
 
Mishra and Singh [10] formulated an SEIQR 
(Susceptible, Exposed, Infectious Quarantined, 
and Recovered) models for the transmission of 
malicious objects with simple mass action 
incidence and standard incidence rate in 
computer network. Threshold, equilibrium and 
their stability are discussed for the simple mass 
action incidence and standard incidence rate. 
They showed the global stability and asymptotic 
stability of endemic equilibrium for simple mass 
action incidence. 
 
Zhang et al, [11] proposed and analyzed a 
computer virus spread model concerning 
impulsive control strategy. They proved that 
there exists globally attractive infection – free 
periodic solution when the vaccination rate is 
larger than ��. Moreover, they showed that the 
system is uniformly persistent if vaccination rate 
is less than ��. 
 
Dong et al, [12] in their paper stated that the 
development of antiviral software always lags 
behind the emergence of a new virus and the 
point-to-group information propagation mode, a 
new computer virus model  with point to group 
and discontinuous antivirus strategy is 
presented. From their model, they found that in 
the case that the equilibrium is asymptotically 
stable, the convergence to the equilibrium can 
actually be achieved in finite time, and the time 
can be estimated in terms of the model 
parameters, the initial number of the uninfected 
computer and latent computer and the initial 
antivirus strength, which means the virus in the 
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network can be controlled or eliminated in finite 
time by increasing the antivirus strength. 
 

Kazeem et al, [13] in their study formulated a 
deterministic computer virus model, incorporating 
removal devices. They studied the basic 
properties of the model, calculated the 
reproduction number and the steady state which 
was found to be stable. Time optimal control was 
included and Pontryagin’s Maximum Principle 
was used to characterize all the necessary 
conditions for controlling the spread of computer 
virus. They showed that the most effective 
strategy for controlling computer virus is through 
the combination of the three control, that is, 
intensive public education on the use of 
removable devices, public campaign on 
computer virus free and treatment of infected 
computers. 
 

Nwokoye et al, [14] motivated by the epidemic 
theory proposed the Q-SEIR and Q-SEIRV 
models to present the dynamics of the pre-
quarantining of nodes in wireless sensor 
networks. They established that the disease free 
equilibrium is asymptotically stable. Runge Kutta 
–Fehlberg Method of order 4 and 5 was used to 
solve and simulate the proposed systems of 
equation. They showed that the impact of pre-
quarantine compartment in the proposed model 
is very strong on the recovery nodes. 
 
Shahrear [15] proposed a compartmental model 
SAEIQRS (susceptible – Antidotal – Exposed – 
Infected –Quarantined – Recovered – 
Susceptible), of virus transmission in a computer 
network. They applied the differential 
transmission method (DTM) to obtain an 
approved solution of each compartment. An 
accuracy of order �(ℎ�) was achieved the result 
of DTM was validated with fourth order Runge 
Kutta (RK4) method. The local stability of their 
model was analyzed based on the basic 
reproduction number for virus free and endemic 
equilibrium. Lyapunov Function was used to 
demonstrate the global stability of virus free 
equilibria. 
 
On the optimal control of a malware propagation 
model, Guillen et al [16], stated that the important 
way to control malware epidemic process is to 
take into account the security measures that are 
associated to the systems of ordinary differential 
equations that govern the dynamic of such 
systems. Here they considered two types of 
control measures, that is the analysis of the basic 
reproduction number and the study of control 
measure functions. They used the theory of 

optimal control that is associated to the systems 
of ordinary equations in order to find a new 
function to control malware epidemic through 
time.    
 
Al – Tuwairqi and Bahashwan [17], build a 
mathematical model to study the impact of 
external removable devices on a network with 
weakly and strongly protected computers. Their 
model, describes the dynamics between weak, 
strong, infected computers and susceptible, 
infected removable media. Analytical 
investigations of the model produce two 
equilibrium points: virus free and endemic 
equilibria.  They also investigated the local and 
global stability conditions of the equilibrium 
points depending primarily on the basic 
reproduction (��) of the model. Their observation 
was that user awareness plays an essential role 
in limiting the spread of viruses. 
 
Chinebu et al [8] considered the problem which 
computer malware cause to personal computers 
with its control by proposing a compartmental 
model SVEIRS (Susceptible Vaccinated-
Exposed-infected-Recovered-Susceptible) for 
malware transmission in computer network using 
nonlinear ordinary differential equation. Through 
the analysis of the model, the basic reproduction 
number �� were obtained, and the malware free 
equilibrium was proved to be locally asymptotical 
stable if ��  is less than unity and globally 
asymptotically stable if ��  is less than some 
threshold using a Lyapunov function. Also, the 
unique endemic equilibrium exists under certain 
conditions and the model underwent backward 
bifurcation phenomenon. Their results showed 
that vaccination and treatment is very essential 
for malware control.  
 
A large number of mathematical models have 
been developed to simulate, analyse and 
understand computer virus in a related work, 
none have considered vaccination and treatment 
in preventing program files damage. In this 
research, we proposed an optimal control model 
in computer network considering effective 
vaccination and treatment on the virus infection. 
The proposed model consists of five 
compartments of susceptible, exposed, infected, 
program files damaged and recovered 
computers. 
  

3. MODEL FORMULATION 
 
Mathematical modeling is very significant in 
providing quantitative insights into the 
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mechanism of various diseases which lead to 
designing better prediction, management and 
control policies. In analyzing and controlling 
computer viruses to reduce program files 
damage and other symptoms progression and 
complications, we develop a mathematical model 
and introduce two control variables in it. Here, we 
construct a model which considers the feature of 
program files damage and other computer virus 
infection symptoms due to virus transmission and 
then apply optimal control theory to minimize the 
progression or complications of the computer 
virus.  
 

Let the total population of computers (nodes) at 
time � be denoted by � (�). The computers that 
are not affected by virus attack, but are prone to 
become affected by this virus infection are 
denoted by �(�) . The virus transmission 
progression is very important in the dynamics of 
program files damage and other symptoms, 
since viruses are not standalone program but a 
code snippet that insert itself into other 
applications and develop over some time 
progression. Observe that once computer viruses 
are not diagnosed initially in a computer system, 
it infects other programs in the system during its 
incubation (latent) period and is denoted by �(�). 
In this case, �(�)  is the number of infected 
computers that are not actually infectious at time 
�. There are also some computers  �(�) that are 
affected by virus and can transmit the infection at 
any time. When these infectious computers 
remain undiagnosed for long time, they become 
horrible, then, each time a user starts a computer 
that is already infectious by a virus, they may be 

launching a series of programs that can damage 
program files and exhibit other computer virus 
symptoms. Some infected computers (nodes) 
remain in the infected class while they are 
infectious and then move to the recovered class 
after the run of antivirus software. Since long 
time progression of these viruses leads to 
program files damage and exhibition of other 
computer virus symptoms, most infected 
computers that were not recovered, whose 
program files has been damaged or were 
exhibiting other computer virus symptoms are 
quarantined while they are infectious and then 
moved to the recovered class after their 
treatment. We now consider these set of 
computers as ��(�). The computers that have 

recovered with temporal immunity are denoted 
by �(�). We represent the flow chart of the 
compartmental model of preventing computer 
virus infection and reducing program files 
damage with other symptoms in Image 1 below. 

 
Let 
 
�(�)= �(�)+ �(�)+ �(�)+ ��(�)+ �(�)            (1) 

 
Let the force of infection associated with 
computer virus be denoted by � and is given by 
 

� = ���(�)+ ��(�)�                                                     (2) 

 
where � is the effective contact rate for computer 
virus attack through nodes and other means, and 
the parameter � is the modification factor for the 
program files damage with other symptoms. 

 
 

Image 1. The flow diagram of the model 
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To formulate the optimal control model, we made 
the following assumptions 
 

i. All the newly connected computers are 
virus free and susceptible. 

 
ii. Both old and newly connected computers 

are vaccinated (installed with antivirus 
software). 

 

iii. Vaccinated computers become exposed to 
computer virus due to waning and none 
updating of the antivirus software. 

 

iv. Recovered computers may move to ��(�) 

due to relapse (waning) and lack of 
antivirus update. 

 
The above formulations, assumptions and flow 
diagram, leads to the formulation of the following 
set of non linear differential equations 
 
��(�)

��
= Λ − ��(�)− � ��(�)+ ���(�)��(�)− ���(�) 

 

 
��(�)

��
= ���(�)+ ���(�)��(�)− (� + �)�(�)          

 
��(�)

��
= ��(�)− (� + ��)�(�)− (� + �)�(�)        (3) 

 

 
���(�)

��
= ��(�)+ ���(�)− (� + �� + �)��(�)− ����(�) 

 

 
��(�)

��
= ��(�)+ ��(�)+ ���(�)+ ����(�)− ��(�)

− ���(�)        

With the initial conditions �(0)> 0, �(0)≥
0, �(0)≥ 0,��(0)≥ 0, �(0)≥ 0. 

 
From model system (3), we have assumed that 
all newly connected computers at the rate Λ are 
virus free and susceptible. Death rate other than 
virus attack is constant and denoted by �, while 
�� is the virus attack induced death rate. � is the 
transmission rate and � is the infectiousness of 
the infectious computers relative to program files 
damage and other symptoms. Exposed 
computers become infectious at a rate � . 
Infections computers are cured (treated) at a rate 
� or can progress to program files damage and 
other symptoms at a rate � . �  is the recovery 
rate of computers who’s program files has been 
damage or who exhibits’ other computer virus 
symptoms. Portion of the recovered program files 
may be damaged or may show other               
symptoms of computer virus infection again at a 
rate ��. 

 
Here, we considered two control variables 
(��, ��): (i) before infection antivirus is used to 
prevent the infection, that is vaccination; after 
infection, (ii) treatment is based on repairing the 
infected files, restoring original files from a 
backup or putting into quarantine. So that ��(�) 
and ��(�)  denotes the vaccination and the 
treatment control respectively. 

 
Now model system (3) as an optimal control 
model and the set of control variable 
���(�), ��(�)� ∈ Γ is a Lebesgue measurable,  

 
Where,   

 
Τ = ����(�), ��(�)�: 0 ≤ �� ≤ ��(�)≤ �� ≤ 1,    � = 1,2�  ∀   � ∈ �0, ��� 

 
Considering these two control variables, the performance index is given by 

 

��� �(��, ��)= � ��(�)+ ��(�)(�)+
��
2
��
� +

��
2
��
�� ��

��

�

                                                                             (4) 

 
We can reformulate model system (3) as an optimal control problem with the performance index (4) 
as 
 

(��)

⎩
⎪⎪
⎨

⎪⎪
⎧ �������� �(�, �)= � ���, �(�), �(�)�

��

�

��

������� ��                                                          

�̇(�)= ���(�)� + ���(�)�(�)�, ∀ � ∈ �0, ���  

�(�)∈ Τ(�), ∀ � ∈ �0, ���                                   

�(0)= ��                                                             

                                                                                             (5)� 
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Where, 
 

�(�)=

⎝

⎜
⎛

�(�)

�(�)

�(�)

��(�)

�(�)⎠

⎟
⎞
, �(�)=

⎝

⎜
⎛

−� 0
0 0
0 0

0 −��
� �� ⎠

⎟
⎞
, �(�)=

⎝

⎜⎜
⎛

Λ− �(� + ��)� − ��

�(� + ��)� − (� + �)�

�� − (� + ��)� − (� + �)�

�� + ��� − (� + �� + �)��
�� − �� + (1− �)�� ⎠

⎟⎟
⎞
, �(�)= �

��(�)

��(�)
� 

 
are the integrand of the performance index and is denoted by  
 

�(�, �)= �(�)+ ��(�)+
��
2
��
� +

��
2
��
�                                                                                                              (6) 

 

3.1 Existence of the Optimal Control 
 

To prove the existence of the optimal control, we have to show the existence of the state variables 
and the existence of the objective functional. A state variable is one of the variables used to describe 
the state of the dynamic system. The objective functional is a mathematical equation that describes 
the control output target that corresponds to the minimization of the progression or complication of the 
computer virus infection with respect to control.   
 

3.2 Existence of the State Variables 
 

Theorem 1: The biologically feasible region Ω = ���(�)+ �(�)+ �(�)+ ��(�)+ �(�)� ∈ ℝ�
� : � ≤

Λ

�
� is 

positively invariant and attracts all the solutions in ℝ�
� . 

 

Proof: The state equation (3) with the initial condition can be written in the following form as  

 

��(�)

��
= Λ − ����(�)+ ���(�)� − ���(�)+ (0)�(�)+ (0)�(�)+ (0)��(�)+ (0)�(�)                        

 

��(�)

��
= ���(�)+ ���(�)��(�)− (� + �)�(�)+ (0)�(�)+ (0)��(�)+ (0)�(�)                                  

 

��(�)

��
= ��(�)− (� + �� + � + �)�(�)+ (0)�(�)+ (0)��(�)+ (0)�(�)      (7)  

 

���(�)

��
= ��(�)− (� + �� + �)��(�)+ ���(�)+ (0)�(�)+ (0)�(�)+ (0)�(�)                                  

 

 
��(�)

��
= ���(�)− ��(�)+ �(1 − �)�(�)+ (0)�(�)+ (0)�(�)                                                                

 

Since system (1) is written as � (�)= �(�)+ �(�)+ �(�)+ ��(�)+ �(�), then system (7) can be 

represented thus 
 

�� (�)

��
=
��(�)

��
+
��(�)

��
+
��(�)

��
+
���(�)

��
+
��(�)

��
                                                              (8) 

 

Therefore, if we substitute the right hand side of system (7) into system (8), we have  
 

�� (�)

��
= Λ − ����(�)+ ���(�)� − ���(�)+ ���(�)+ ���(�)��(�)− (� + �)�(�)+ ��(�)

− (� + �� + � + �)�(�)+ ��(�)− (� + �� + �)��(�)+ ���(�)+ ���(�)− ��(�)

+ �(1 − �)�(�) 

 

� ′(�)= Λ − μ ��(�)+ �(�)+ �(�)+ ��(�)+ �(�)� − ����(�)+ �(�)� 
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So that we have 
 

� ′(�)≤ Λ − μN(t) 

 

Since at disease free equilibrium, �� = 0 implies 

����(�)+ ��(�)� = 0. we now have that 
 

� (�)≤
Λ

μ
+ Ce�μ�

 

 

Using a standard comparison theory by 
Lakshmikanthan et al,[18], Zhang [19], it can be  
 

Shown that 
 

� (�)≤ �(0)e�μ� +
Λ

μ
(1 − e�μ�)= �� ∈ ℝ�

�  

 
And 
 

lim
�⟶∞

��� � (�)≤�� 

 
which conclude 
 

�(�), �(�), �(�), ��(�), �(�)≤ �� �� � ⟶ ∞. 

 
Then, we can rewrite system (7) in the following   
 

∅� = �∅ + �(∅)                                                 (9) 
Where 
 

∅ =

⎣
⎢
⎢
⎢
⎡
�(�)

�(�)

�(�)

��(�)

�(�)⎦
⎥
⎥
⎥
⎤

, ∅� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
��(�)

��
��(�)

��
��(�)

��
���(�)

��
��(�)

�� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, �(∅)=

⎣
⎢
⎢
⎢
⎢
⎡
−���(�)+ ���(�)��(�)

���(�)+ ���(�)��(�)

0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

   

 

And 
 

 

 

�(∅�)− �(∅�)=

⎣
⎢
⎢
⎢
⎢
⎡
−���� + �������

���� + �������
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎢
⎡
−���� + �������

���� + �������
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎤

                                                                      (10) 

 

Equation (9) is non linear system with a bounded coefficient. We have   

 
ℋ(∅)= ∅� = �∅ + �(∅) 

 
For the existence of optimal control and optimality system, the boundedness of solution of the system 
for finite time is needed and we assume for � ∈ Τ there exists a bounded solution. 

 
�(∅�)− �(∅�)= │ − ���� + ������� + ���� + �������│ + │���� + ������� − ���� + �������│ 

≤ 2��│��││�� − ��│ + │�� − ��││�� + ����│ + │���││��� − ���│� 

≤ 2��│���� + ������│ − │���� + ������│� 

≤ Β│∅� + ∅�│ 

V



0

0

0

0

0

 ( )



0

0

0

0

 
1
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0

0

0
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Where Β = 2���. 
 
Also, we get  
 

│ℋ(∅�)+ ℋ(∅�)│ ≤ ││�│││∅� + ∅�│ + Β│∅� + ∅�│ ≤ �│∅� + ∅�│ 

� = Max�Β,││�││� 

 
Thus, it follows that the function ℋ is uniformly 
Lipschitz continuous. From the definition of the 
control Τ(�)  and the resection on 
S(�), �(�), �(�), ��(�) ��� �(�)≥ 0, we see that a 

solution of the system (9) exists. 

 
3.3 Existence of the Objective Functional   
 
To prove the existence of the objective 
functional, we use the following theorem Fleming 
and Rishel [20]. 

 
Theorem 2: Let 

 

��(�)=

⎣
⎢
⎢
⎢
⎢
⎡
��(�)

��(�)
.
.
.

��(�)⎦
⎥
⎥
⎥
⎥
⎤

 

 
be a system of � state variables, and let �(�) be 
a control variable with a set of admissible control 
Τ, that satisfy the following differential equation 

��
′(�)= ���, ��(�), �(�)� ��� � = 1, 2, … , � . With 

associated objective functional  
 

�(�)= ����, ��(�), �(�)��� 

 
There exists an optimal control which minimizes 
�(�) if the following conditions are satisfied: 
 

1. � is non empty. 
 

2. The control set Τ  must be closed and 
convex. 

 

3. The right hand side of the state system is 
continuous, is bounded above by a linear 
combination of the control and state and 
can be written as a linear function of � with 
coefficients defined by the time and the 
state.   

 

4. The integrand of the objective functional is 
convex on Τ  and is bounded below by  
−�� + ��(�)

� with �� > 0 ��� � > 1. 

We define �  as a class of (��, ��, ��, ��, ��, �) 

such that � is a piecewise function on �0, ��� with 

values in Τ. In order to prove that � is nonempty, 
we use a simplified version of an existence result 
in Boyce and Di Prima [21], which is stated 
below. 
 
Theorem 3: Let each of the functions ��, ��, ��,
… , ��  and the partial derivatives 
���

���
, … ,

���

���
, … ,

���

���
, … ,

���

���
 be continuous in a 

region ℝ  of �, ��,��, ��, … , ��  space defined by 
� < � < �, �� < �� < ��, �� < �� < ��, �� < �� <
��,… , �� < �� < ��  and let the point (�,
��
�, ��

�, ��
�, … , ��

�) be in ℝ. Then there is an interval 
[� = ��] < ℎ in which there exist a unique solution 
�� = ��(�), �� = ��(�), �� = ��(�)… , �� = ��(�)  
of the system of differential equations. 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
��

′ = ��(�, ��, ��, ��, … , ��)

��
′ = ��(�, ��, ��, ��, … , ��)

��
′ = ��(�, ��, ��, ��, … , ��)

.

.

.
��

′ = ��(�, ��, ��, ��, … , ��)

�                            (11) 

 
That also satisfies the initial conditions 

 
��(��)= ��

�, ��(��)= ��
�, ��(��)= ��

�, … , ��(��)
= ��

�                                                                        (12) 

 
Theorem 4: Let �� = ��(�, ��, ��, ��, … , ��) ��� � ∈
[1, �] be a system of � differential equations with 
initial conditions  ��(��)= ��

� ��� � ∈ [1, �]. if each 
of the functions ��, ��, ��, … , �� and the partial 

derivatives 
���

���
, … ,

��

���
, … ,

���

���
, … ,

���

���
 are 

continuous in ℝ���  space, then there exists a 
unique solution �� = ��(�), �� = ��(�), �� =
��(�),… , �� = ��(�) , that satisfies the initial 
conditions. 
 
With the help of the above two theorems 
(theorem 3 and theorem 4) we try to prove the 
existence of the objective functional. We show 
that there exists an optimal control �∗  that 
minimizes �(�) over the control set Τ. 
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Proof of condition 1: we consider  
 

��(�)

��
= ����, �, �, �, ��, ��                                  

 
��(�)

��
= ����, �, �, �, ��, ��                                   

 
��(�)

��
= ����, �, �, �, ��, ��                             (13) 

 
���(�)

��
= ����, �, �, �, ��, ��                                  

 
��(�)

��
= ����, �, �, �, ��, ��                                  

 
Where ��, ��, ��, �� ��� �� build up the right hand 
side of the equation (3). Let �(�)= �  for some 
constants � .  ��, ��, ��, �� ��� ��  must be linear 
and they are also continuous everywhere. 
Moreover the partial derivatives of 
��, ��, ��, �� ��� ��  with respect to all states are 
constants and they are also continuous 
everywhere, so by the above theorem 4, there 
exists a unique solution � = ��(�), � = ��(�), � =
��(�), �� = ��(�) ��� � = ��(�)  which satisfies 

the initial conditions. Therefore, the set of 
controls and corresponding state variables                 
is non empty. Hence the condition 1 is              
satisfied.  
 
Proof of condition 2: By definition, Τ is closed. 
We take two controls (��, ��)∈ Τ and � ∈ [0, 1] 
such that 0 ≤ ��� + (1 − �)��. We also observe 
that ��� ≤ � ���(1 − �)�� ≤ (1 − �) . Then, 
 

��� + (1 − �)�� ≤ � + (1 − �)= 1 
 
Hence, 
 
0 ≤ ��� + (1 − �)�� ≤ 1 ��� ��� (��, ��)∈ Τ and �

∈ [0, 1]. 
 
So, Τ  is convex and therefore, condition 2 is 
satisfied. 
 

Proof of condition 3: if we consider,  
 

�� ≤ Λ − ���  
 

�� ≤ ��� 
 

�� ≤ �� − ���   
 

�� ≤ �� − ���� − ����   
 

�� ≤ ��� + ��� + ��� + ���� 
 

Then system (13) can be written as 
 

����, ��, �� ≤ ��

⎝

⎜
⎛
�,

⎣
⎢
⎢
⎢
⎡
�
�
�
��
� ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞
��(�)+ ��

⎝

⎜
⎛
�,

⎣
⎢
⎢
⎢
⎡
�
�
�
��
� ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞
�(�) 

 

Where 
 

��

⎝

⎜
⎛
�,

⎣
⎢
⎢
⎢
⎡
�
�
�
��
� ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞
=        (14) 

 

And 
 

��

⎝

⎜
⎛
�,

⎣
⎢
⎢
⎢
⎡
�
�
�
��
� ⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞
=                               (15) 

 

Which gives the linear function of the control � 
defined by time and state variables. Then we can 
find out the bound of the right hand side. It is 
noted that all parameters are constant and 
greater than or equal to zero. Therefore we can 
write, 

│����, ��, ��│ ≤ ││��│││�� │ + │��││��(�)│ + │���││��(�)│ ≤ ��│�� │ + │Τ(�) │� 
 

Since �� ��� ���  are bounded and �  includes the upper bound of the constant matrix. Hence, we say 

that the right hand side is bounded by a sum of the state and the control. Therefore, condition 3 is 
satisfied. 
 
Proof of condition 4: Let us consider that the integrand of the objective functional be 
 

��� = �(�)+ ��(�)+ ��� 
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Where 
 

��
2
��
� +

��
2
��
� = �� 

 
We take two controls (��, ��)∈ Τ ��� 0 < � < 1, then we can write,  
 

��
� − 2���� + ��

� = (�� − ��)
� ≥ 0 

⟹ �(1 − �)��
� + �(1 − �)��

� ≥ �(1 − �)2���� 
⟹ (� − ��)��

� + [(1 − �)− (1− ��)]��
� ≥ 2�(1 − �)���� 

⟹ ���
� + (1 − �)��

� ≥ ����
� + (1 − ��)��

� + 2�(1 − �)���� 
⟹ ���

� + (1 − �)��
� ≥ [��� + (1 − �)��]

�  
⟹ �(�)+ ��(�)+ ���

� + (1 − �)��
� ≥ �(�)+ ��(�)+ [��� + (1 − �)��]

� 

⟹ ��(�)+ ��(�)�[� + (1 − �)] + ���
� + (1 − �)��

� ≥ ��(�)+ ��(�)� + [��� + (1 − �)��]
�  

⟹ ���(�)+ ��(�)� + (1 − �)��(�)+ ��(�)� + ���
� + (1 − �)��

� ≥ ��(�)+ ��(�)� + [��� + (1 − �)��]
� 

⟹ ��(��)+ (1 − �)�(��)≥ �(��� + (1 − �)��) 
 
Which implies that �(�) is convex on Τ. 
 
Now we can show that  
 

�(�)≥ −�� + ��(�)
� 

 
with � > 1, �� ≥ 0. Here, 
 

�(�)= �(�)+ ��(�)+
��
2
��
� +

��
2
��
� 

= �(�)+ ��(�)+ ��  

�����   
��
2
��
� +

��
2
��
� = �� 

�(�)≥ −��(�)+ ��(�)� + �� = −�� + ���
� 

 
where �� > 0 which depends on upper bounds of �(�), ��(�). We can also see that � = 2 > 1, �� > 0. 

Therefore, condition 4 is also satisfied. From the above discussion the existence of the objective 
functional has been established. 
 
3.4 Characterization of the Optimal Control 
 
By applying Pontryagin’s Maximum Principle (PMP) to the Hamiltonian (H) we can derive the 
necessary conditions for the optimal control. Therefore, using PMP, to find the optimal vaccination 
and treatment term the standard Hamiltonian function (H) with respect to (��, ��) can be defined as 
follows: 
 

���, �(�), �(�), �(�), �(�)� = ��(�), ���(�)� + ���(�)��(�)� − ����(�), �(�)�, � ∈ ℝ 

 

Where � = ���, ��, ��, ���, ��� ∈ ℝ� denotes the adjoint variables. Suppose that the pair (�∗, �∗) is the 

optimal solution of the above optimal control problem. Then, the maximum principle asserts the 
existence of a scalar �� = 0, an absolutely continuous function �(�), such that the following conditions 
are satisfied:  
  

1. max�│�(�)│: � ∈ �0, ���� + �� > 0 ; 
 

2. �̇(�)= ���[�] − ��[�], ��[�] + ��[�]�
∗(�)� ; 

 

3. �(�)= (0, 0); 
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4. ���∗(�), �∗(�), �(�)� = max�����
∗(�), �(�), �(�)��  �ℎ���  �� ≤ �� ≤ ��, �� ≤ �� ≤ ��          

  
where time argument [�] denotes the evaluation along with the optimal solution. Then, from condition 
2, adjoint equations in normal form (i.e., � = 1) are explicitly given by 
 

�� ′ = −
��

��
= −���−��� + ���� − � − ��� − ������ + ����� − ���� 

= ��� + ����(�� − ��)+ ��(� + ��)− ���� 

�� ′ = −
��

��
= ��(� + �)− ��� = ��� + �(�� − ��) 

�� ′ = −
��

��
= 1 + ���� − ���� + (� + ��)�� + (� + �)�� − (� + ��)��� − (1 − �)��� 

= 1 + ��(�� − ��)+ (� + �� + � + �)�� − (� + ��)��� − (1 − �)��� 

��� ′ = −
��

���
= 1 + ����� − ����� + (� + �� + �)��� + ����� − (� + ��)�� 

= 1 + ���(�� − ��)+ (� + �� + � + ��)��� − (� + ��)�� 

�� ′ = −
��

��
= ��� 

 

With transversality condition ������ = 0, � = 1, 2, 3, 4 ��� 5. 
 

Now by applying Pontryagin’s Maximum Principle Lenhart and Workman [22] we have the following 
theorem and proving theorem 5, we show he existence of controls.  
 

Theorem 5: There exist optimal control (��
∗, ��

∗) that minimizes the objective functional � over Τ given 
by 
 

��
∗ = max

��,���
�0,min �1,

(�� − ��)�
∗

��
�� ��� ��

∗ = max
��,���

�0,min�1,
���� − �����

∗

��
��  

 

��

���
= ���� − ��� + ��� = 0 ⟹ �� =

(�� − ��)�

��
= �̂�; 

 

��

���
= ���� + ���� − ����� = 0 ⟹ �� =

���� − �����

��
= �̂� 

 

According to the property of Τ, the two controls (��
∗, ��

∗) are bounded with upper bound 1 and lower 
bound 0. Therefore, 
 

��
∗(�)=

⎩
⎨

⎧
0                                 �� �̂� ≤ 0 
(�� − ��)�

��
                   �� 0 <

1                                  ���̂� ≥ 1

� �̂� < 1 

 

This can be written in compact form as  
 

��
∗ = max

��,���
�0,min �1,

(�� − ��)�

��
�� 

 

Similarly  
 

��
∗(�)=

⎩
⎪
⎨

⎪
⎧

0                                 �� �̂� ≤ 0 

���� − �����

��
                   �� 0 <

1                                  ���̂� ≥ 1

� �̂� < 1 
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In the same way, this can be written in compact form as  
 

��
∗ = max

��,���
�0,min �1,

���� − �����

��
�� 

 
Thus we get optimal solutions as 
 

(��
∗, ��

∗)= �max
��,���

�0,min �1,
(�� − ��)�

��
�� , max

��,���
�0,min�1,

���� − �����

��
���. 

 
And this completes the proof. 
 

Table 1. Parameter description and value 
 
��������� ����������� ����� 

Λ Recruitment rate into susceptible class 0.30 
� Natural death rate 0.10 
�� Computer virus induced death rate 0.65 
� Contact rate 0.30 
� Modified factor for program files damage 0.10 
� Progression rate from exposed class to infected class 0.45 
� Treatment rate of infected computers  0.0021− 1.80 
� Program files damage rate 0.02 
� Recovered rate of program files damage 0.0021− 0.80 
�� Rate at which recovered damaged program files show virus 

infection again 
0.0025 − 0.025 

 

4. NUMERICAL SOLUTIONS AND 
EFFICIENCY ANALYSIS 

 
To justify the impact of optimality control 
strategies, we conducted numerical simulation to 
confirm the theoretical predictions discussed in 
the previous sections using Runge Kutta Method 
of order four (RK4) written in MATLAB 
programming. We used a set of logical 
parameter values and the initial values for the 
susceptible, exposed, infected, program files 
damage and recovered were (0)= 65, �(0)=
10, �(0)= 0, ��(0)= 0, �(0)= 5  . We also 

considered the initial values �(0)= 65, �(0)=
10, �(0)= 6, ��(0)= 2, �(0)= 5 as in [23]. All the 

parameters with their values are shown in Table 
1. 

 
The simulations are performed with time 12 
months. Firstly, we numerically simulated the 
optimality system when no control is applied (i.e., 
vaccination control �� = 0 and treatment control 
�� = 0). The result is presented in Fig. 1. We also 
conducted numerical simulation of the optimality 
system when either of the controls is applied 
(i.e., �� ≠ 0 ���  �� = 0, (Fig. 2); �� = 0 ���  �� ≠

0, (Fig. 3). Further we simulated the optimality 
systems where both control strategies are 
applied (i. e. , �� ≠ 0 ���  �� ≠ 0); Fig. 4. 
 

We also solved the optimality systems for each 
of the compartments using either of the control 
strategy and both to compare their effect on the 
compartments to when there is no control. So we 
take the control variable �� ≠ 0 (i.e., treatment 
control �� = 0 ). The simulation results in the 
presence of vaccination only are shown in Figs. 
5–9. Again, we run the program of the optimality 
system when only treatment control is employed 
and we take �� ≠ 0  (i.e., vaccination control 
�� = 0). We presented the simulation results in 
Figs. 10 – 14. Finally, numerical simulations of 
the optimality systems are performed considering 
both control strategies i.e., vaccination control 
(�� ≠ 0) and treatment control (�� ≠ 0)  and the 
results are presented in Figs. 15–19. Here, 
vaccination and treatment control was 
considered at a greater extent, that is, �� =
1 ��� �� = 1. 
 

Since in this paper, we have considered two 
controls, in which one is vaccination control �� 
and the other is treatment control �� . If one of 
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these controls is to be used, it will be necessary 
to determine which of them is more efficient to 
reduce program files damage in computer 
system. Based on this we performed an 
efficiency analysis [24,25,26], which will allow us 
to determine the best control strategy. Here, we 
distinguish two control strategies STR-1 and 
STR-2 where STR-1 is the strategy where 
�� ≠ 0, �� = 0  and STR-2 is the strategy where 
�� = 0, �� ≠ 0 . To determine he best control 
strategy among these two, we have to calculate 

the efficiency index (�. �)= �1 −
��

��
� × 100 , 

where ��  and ��  are the cumulated number of 
program files damaged computers with and 
without control, respectively. The best strategy 

will be the one whom efficiency index will be 
bigger [24,25]. It can be noted that he cumulated 
number of program Files damage computers 
during the time interval [0, 12] is defined by 

� = ∫ ��(�)��
��

�
. We evaluated the value of 

integration and we have �� = 0.025425 . The 
value of �� and the efficiency index (E.I) for STR-
1 and STR-2 are given in Table 2.  
 
It can be seen from Table 2 that STR-2 is the 
best strategy among STR-1 and STR-2, and this 
permits the reduction of the number of incident 
cases. Therefore, treatment is more effective 
than vaccination to minimize program files 
damage in computer system. 

 

 
 

Fig. 1. Simulation of the dynamics of the compartments, when no control measure is applied 
 

 
 
Fig. 2. Simulation of the dynamics of the compartments, when only vaccination control (��) is 

applied as optimal control 
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Fig. 3. Simulation of the dynamics of the compartments, when only treatment control (��) is 
applied as optimal control 

 

 
 

Fig. 4. Simulation of the dynamics of compartments, when vaccination control (��)  and 
treatment control (��) are applied as optimal control 

 
The effect of vaccination as a control measure on 
the susceptible, exposed, infected, program files 
damaged and recovered computer for 12 months 
timeline is represented in Figs. 5-9. We observed 
that the control measure to a little extent 
influenced the susceptible computers, but 
appreciably control the exposed, infected, 
program files damage and recovered computers. 
As anticipated, both the infected and program 
files damaged computers have increased in the 
absence of vaccination than the computers that 
are having the control measure. Conversely, the 
number of recovered computer systems 
increases at the time vaccination control is 

applied when compared to the computer systems 
without optimal control. 
 

Figs. 10 -14 represents the effects of treatment 
as a control measure on the susceptible, 
exposed, infected, program files damaged and 
recovered computer systems over the period of 
12 months. It has been noticed that the control 
actually influenced the susceptible, exposed, 
infected, program files damaged and recovered 
computer systems to a greater extent. We also 
saw hat infected and program files damaged 
computers decreases significantly in the 
presence of treatment control than computers 
without control measure. 
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Fig. 5. Simulation of the dynamics of susceptible computers, when only vaccination control 
(��) is applied as optimal control 

 

 
 

Fig. 6. Simulation of the dynamics of exposed computers, when vaccination control (��) is 
applied as optimal control 

 

 
 

Fig. 7. Simulation of the dynamics of infected computers, when only vaccination control (��) is 
applied as optimal control 
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Fig. 8. Simulation of the dynamics of program files damaged computers, when only 
vaccination control (��) is applied as optimal control 

 

 
 

Fig. 9. Simulation of the dynamics of recovered computers, when only vaccination control (��) 
is applied as optimal control 

 

 
 

Fig. 10. Simulation of the dynamics of susceptible computers, when only treatment control (��) 
is applied as optimal control 
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Fig. 11. Simulation of the dynamics of exposed computers, when only treatment control (��) is 
applied as optimal control 

 

 
 

Fig. 12. Simulation of the dynamics of infected computers, when only treatment control (��) is 
applied as optimal control 

 

 
 

Fig. 13. Simulation of the dynamics of program files damaged computers, when only treatment 
control (��) is applied as optimal control 
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Fig. 14. Simulation of the dynamics of program files damaged computers, when only treatment 
control (��) is applied as optimal control 

 

 
 

Fig. 15. Simulation of the dynamics of susceptible, when vaccination control (��)  and 
treatment control (��) are applied as optimal control 

 

 
 

Fig. 16. Simulation of the dynamics of exposed computers, when vaccination control (��)  and 
treatment control (��) are applied as optimal control 
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Fig. 17. Simulation of the dynamics of infected computers, when vaccination control (��)  and 
treatment control (��) are applied as optimal control 

 

 
 

Fig. 18. Simulation of the dynamics of program files damaged computers, when vaccination 
control (��)  and treatment control (��) are applied as optimal control 

 

 
 

Fig. 19. Simulation of the dynamics recovered computers, when vaccination control (��)  and 
treatment control (��) are applied as optimal control 

Table 2. Strategies and their efficiency Indices 
 

�������� �� �. � 
STR − 1 0.002230 91.23 
STR − 2 0.001507 94.07 
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More so, we shall observe that the number of 
recovered computer systems increased as the 
treatment control is applied when compared to 
the computer systems without optimal control. 
The effects of vaccination and treatment control 
measures on the susceptible, exposed, infected, 
program files damaged and recovered computers 
over the period of 12 months were shown in Figs. 
15 -19. It was seen that the control measure 
slightly influences the susceptible computer 
population, but significantly controls the exposed, 
infected, program files damaged and recovered 
computers. As anticipated, both infected and 
program files damaged computers have 
decreased for the presence of both control 
measure than the computers without having the 
optimal control. As a matter of fact, the number 
of recovered computers increases as we applied 
the control measure when compared to the 
computers without optimal control. 
 
For vaccination and treatment controls, we used 
the maximum level of the control measures on 
the five compartments of the model for 12 
months interval and we observed that the 
extreme level of the control measure 
considerably controls the five compartments; as 
both the infected and program files damaged 
computers decreases drastically.  
 
5. CONCLUSION 
 
In this paper, we have analyzed the qualitative 
behavior and optimal control strategy of a 
������ model. Two control functions have been 

used, one for vaccinating the susceptible 
computer population and the other for controlling 
the treatment efforts to the program files damage 
computers. We formulated the optimal control 
model considering the two control variables by 
using the most well-known Pontrygin’s Maximum 
Principle. The analysis results were 
demonstrated using numerical simulation. 
 
Our analysis showed that the application of only 
one of the control measure have the ability of 
reducing the exposed, infected and program files 
damaged computer population, but the 
combination of optimal vaccination and treatment 
are much more effective for reducing the 
exposed, infected and program files damaged 
computer population, to maximize the recovered 
computer in the population and also minimize the 
cost of the two control measures. In view of the 
fact that there are vaccination strategy available 
for computer virus infection (which eventually 
leads to program files damage), therefore from 

the simulation, it is shown that the optimal 
combination of vaccination and treatment is 
effective to control computer virus infection 
progression and program files damage. 
 
Consequently to reduce computer virus infection 
from the population, strong anti-virus software 
should be installed (vaccination). In cases were 
some files are infected earlier to anti-virus 
installation or during a period when the virus 
signature are not updated, a strong anti-virus 
must be used to disinfect the infected file, 
thereby recovering the damaged program files 
(treatment). Finally, computer virus infection is a 
significant cause of program file damage and 
other symptoms worldwide, therefore, it is time to 
get rid of this serious problem.   
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