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ABSTRACT

To properly characterizing and modelling a hydrocarbon bearing reservoir is not an easy
task because the reservoir properties vary spatially due to reservoir heterogeneities which
occur at all scales, from pore scale to major reservoir units. The level of reservoir
complexities under study determines the quantity and quality of data requirements for 3D
reservoir modelling activity. An adequate understanding of the limitations imposed by the
data, associated uncertainty, or the underlying geostatistical algorithms or approaches and
their input requirements for the 3D reservoir models are absolutely necessary to obtain
reasonable production forecasts. Generally, industry look-backs continue to show the
difficulty of achieving a production forecast within an uncertainty band (P90 and P10) for
both “Greenfield” projects with limited data and “Brownfield” projects with abundant data.
Some of the identified key factors affecting production forecasts are: sparse and non-
representative data, biased estimates of Original Hydrocarbon In-Place, non-
representative inputs distribution in the reservoir models, inadequate static and dynamic
models, poor use of seismic data, use of improper analogs, non-unique history matching
calibration processes for brownfields and inappropriate use of uncertainty workflows and
tools. This paper briefly discusses some of these factors which affect 3D reservoir
interpretation and modelling outcomes for the conventional reservoirs, to provide better
understanding, propose effective and practical solutions to improve production forecasts
based on lessons learned from 3D reservoir modelling studies, authors and industry
experiences. In recent years, the industry has developed and used some high-level fit-for-
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purpose workflows with a closed loop between 3D static and dynamic reservoir modelling
under uncertainty with use of appropriate geo-statistical techniques and history look-backs
approach which assist capturing the uncertainties in production forecasts and improving
the project risks assessment. The evolution of closed loop modelling process will continue
as new techniques and technologies are developed and implemented, enhancing our
ability to capture the physical realities of the real subsurface world, generate better
production forecasts to reduce the risk associated with field developments.

Keywords: Reservoir characterization; modelling, facies; petrophysical parameters;
simulation; production forecasts; uncertainty; risks.

ACRONYMS AND ABBREVIATIONS

2D/3D SEM — 2D-3D Scanning Electron Microscopy; 3D — Three Dimension; APl —
American Petroleum Institute; ASHM — Assist or Semi Automatic History matching; Bbls —
Barrels; CPU — Central Processing Unit; E&P — Exploration and Production; EOR —
Enhanced Oil Recovery; FIB —Focused lon Beam; GOR — Gas Oil Ratio; HM — History
Matching; LPM — Lithotype Proportion Matirx; m — meter; MBO — Millions Barrels of Oil;
Micro-CT — MicroComputed Tomography; MPS — Multiple Points Simulation; N/G — Net to
Gross Ratio; OHIP — Original-Hydrocarbon-In-Place; OOIP — Original-Qil-In-Place; OTC —
Offshore Technical Conference; OWC - Oil Water Contact; P90, P50 and P10 — 90%, 50%
and 10% probabilities; P, — Capillary Pressure; PGS — Pluri-Gaussian Simulation; PVT —
Pressure Volume Temperature; QA-QC — Quality Assurance Quality Control; SGS -
Sequential Gaussian Simulation;, SIS — Sequential Indicator Simulation; Tl — Training
Images; TSGS — Truncated Sequential Gaussian Simulation; TVDSS — true Vertical Depth
Sub Sea; V, - Compressional (P) Wave Velocity; Vs — Shear (S) Wave Velocity; X-Ray CT —
X-Ray Computed Tomography.

1. INTRODUCTION

Finding and developing oil and gas assets has always been a risky business. The industry
has a history of technological advances that have helped to reduce the risk, even as
reservoirs and the way they are produced have grown in complexity. However, risk has not
been fully reduced due to inherent uncertainties in the workflows used to generate
production forecasts of the oil and gas fields [1-4]. According to Rose [5], in the last 20 years
of the 20th century, E&P companies delivered only about half of the predicted reserves.
Merrow [6] reported in his study that since 2003, the rate of success for E&P megaprojects
(>1 Billion US$) has declined from 50% to 22%. The main reason for industry
underperformance is attributed to use of evaluation methods that do not account for the “full
uncertainty”. More importantly, a disappointing 64% of these projects experienced serious
and enduring production attainment problems in the first 2 years after first oil or gas.

3D reservoir models are constructed for various purposes in the E&P business and support
value-based decisions including: (1) development planning, estimation of reserves,
commerciality decisions, acquisitions or farm-in opportunities, re-development of old fields
and (2) asset management throughout the production period, execution and monitoring,
water flood / EOR planning, production cessation/ abandonment. The reservoir modelling
process is cyclic and never really ends (new data, new technology or new analogs). Industry
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experience clearly shows that production forecasts obtained from these 3D reservoir models
are often highly uncertain for “Greenfield” as well as “Brownfield” projects [7,8].

There are highly visible efforts in the industry to improve development planning and
production forecast accuracy which are mainly driven by the E&P business needs,
exponential growth in advances of computing since the early 90’s and advances in software
(Fig. 1a). Today, existing computers can easily deliver teraflops (10'%) to petaflops (10').
Improved parallel networking algorithms have significantly decreased the Central Processing
Unit (CPU) run time by building large computers of distributed memory of up to 500 CPU
machines [9]. These rapid developments of CPU and technologies in computing advances
have lead to:

e The mathematical transformation of 10’s to100’s of terabytes of seismic data
recorded in a modern 3D seismic survey into high resolution subsurface images that
geoscientists can interpret with higher confidence [10, 11].

e Convert 3D seismic data into rock properties (Lithology, VP, VS, density, porosity,
permeability, saturation, etc.) realizations through full wavefield and general
inversion which require intense computing resources [12, 13].

e An exponential increase in cell counts since the 1990’s (from few thousands cells in
1990’s to billions of cells in 2012) in 3D reservoir models (Fig. 1b). This is
associated with a significant decrease in the 3D reservoir model cell size from 300 -
600m in 1990’s to 5 - 10m in 2012 as can be seen in Fig. 1c [14]. These 3D
reservoir models have allowed better capture of geological heterogeneities.

e The reduced CPU run time for dynamic simulation which has significantly reduced or
eliminated up-scaling of large size 3D static reservoir models (Fig. 1d). Higher
numerical solution accuracy and flexibility to handle fully integrated Giga-Cell 3D
reservoir models, in-turn, has improved production forecasts predictability under
uncertainty [15-17].

However, there are still several major issues in 3D reservoir modelling that need to be
addressed.

Some of these issues, related to the conventional clastic/carbonate reservoirs without
fractures, are discussed along with effective and practical solutions proposed based on
lessons learned from 3D reservoir modelling studies, authors’ and industry experiences. The
presence of fractures in different reservoirs further adds the level of complexities on these
issues which are not considered in this paper. It is emphasized that if data QC, geological
rules, mapping principles and geostatistics are not handled properly, the resulting model will
be less appropriate, regardless of the sophistication of the software and algorithms
deployed. Therefore, in-depth understanding and incorporation of these aspects and use of
subject experts’ knowledge from different disciplines in the 3D integrated reservoir modelling
process is critical and will continue to improve reservoir modelling outcomes as new state-of-
the-art techniques and technologies are developed and implemented. This in turn will
enhance our ability to capture the physical realities of the real subsurface reservoirs and
reduce the risk associated with field developments.
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Fig. 1. (a)Increase in computation since 1993 based on top 500 computers (b) Increase
in cell counts over the period 1991-2012) (Modified after Dogru, 2011) (c) Variation of
geological model size (decrease in cell size over the period 1991-2012) and (d)
Reduction in computing time for a giga-cell model (Source: Dogru, 2011)

2. FACTORS CONTRIBUTING TO PRODUCTION FORECAST UNCERTAINTY

How can one interpret reservoir behaviours and trust production forecast capabilities of a 3D
reservoir model to be used for critical investment and decisions? To properly answer this
question, one must characterize and quantify all of the main uncertainties e.g. raw data
measurements, processing and interpretation, structure, stratigraphy, facies and
petrophysical modelling, transmissibility calculations and flow simulation inherent in the 3D
static and dynamic models. Techniques are used by calibrating models to available
measurement data and by propagating model inputs uncertainties to model outputs with
highest expected accuracy. Interpolating the models prediction is meant to improve the
confidence of a given simulation that has some predictive capability. The predictability and
confidence of these models are validated using some of the wells not used in the modelling
or with of new wells drilled to prove the modelling outcomes. Some of the identified possible
causes for production forecast uncertainty are:
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e Lack of tools that properly integrate all the data. Improper use of 3D reservoir
modelling and uncertainty workflows. Geostatistics failed to provide a solution for
modelling many complex reservoirs and is very limited on the use of multiple seismic
attributes. Modelling porosity with impedance as a soft constraint does not work in
many complex geologic settings because porosity is controlled by many other
factors some of which are not represented by the impedance. Poor porosity models
affect the OHIP, 3D static and dynamic models. Usually, there is an incomplete
evaluation of reservoir uncertainties and their impact on production forecasts is not
fully analyzed.

e Original or remaining Hydrocarbon In-Place generally too high due to:
% Sparse data.

« Non-representative data: Biased to better reservoir quality.

% Inadequate or improperly analogs use.

*

e Geological (static) models are inadequate due to:

o,
°n

Data limitation, quantity and quality.

Failure to adequately model uncertainty.

Optimistic N/G ratio distribution (reservoir versus non-reservoir).
Inconsistent facies and reservoir properties distribution.

Unidentified permeability contrasts-baffles/barriers, thief zones (reservoir
complexities not captured).

o,
°n

o,
°n

o,
°n

o,
°n

e Simulation (dynamic) models are inadequate due to:

o,
°n

Data limitation, quantity and quality.

Poor link between static and dynamic models.

s Poor and simplified up-scaling from fine to coarse grid used for history
matching & production forecasts (grid size). This is particularly critical when
secondary and tertiary recovery mechanisms (e.g. water flooding and gas
injection) are implemented.

% Simplistic History matching procedures.

o,
°n

As part of the Quality Assurance-Quality Control (QA-QC) process within our company to
improve the technical quality of the portfolio of projects and reduce investment risk, a total of
around fifty QA-QC events were carried out over a 5 years period. Around 47% of the
findings (recommendations for improvement) were related to 3D static and dynamic reservoir
modelling improvement opportunities (Fig. 2). These identified issues during the QA-QC
process in different projects were very similar to those identified by the industry globally [7].
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Fig. 2. Findings from QA-QC events in 3D reservoir modeling
2.1 Issues Related to Integrated 3D Reservoir Modelling Workflows

An efficient data management system for the vast amount of input data and software
integration is a critical component of the 3D reservoir modelling process. In a typical high
level reservoir modelling and forecasting workflow (fast-track) used in the industry, the static
and dynamic models are built, honouring the limited available well data and may be a single
seismic attribute in the best case scenario, with no consideration of uncertainty. In this
process, typically, geological insights and seismic data are first interpreted and the results
are combined with petrophysical interpretation and used to construct a static model. During
this process, most often, geostatistical techniques are misused due to lack of their good
understanding, proper application and lack of time to generate multiple realizations. As a
result, a single static model is then exported into the dynamic domain where a single
forecast is generated without any feedback between static and dynamic models. The data
interpretation involved in this process requires multiple assumptions to be made and the
feedback loops used to verify them are often very limited or non-existent. Another
shortcoming of the typical workflow is little or no focus on delivering uncertainty at each step
of the process related to dynamic outcomes. Typically, each discipline tries to pass a
deterministic answer to the next one. Uncertainty is usually investigated at each step to
explore volumetric ranges and obtain history matches without any integrated QC of the
adjusted ranges. This sequential modelling often makes it difficult to investigate the impact of
static model uncertainty in the dynamic realm, because the static parameters variability and
its impact have effectively been predetermined. Interdependencies cannot be properly
identified and history matches often lead to manipulation of dynamic parameters or arbitrary
modifications of permeabilities, without consistent changes to the precursor properties (such
as porosity, facies, saturation) from which they were derived.

To address these limitations of conventional modelling workflows, in recent years, the
industry has started using a closed loop modelling workflow in which the impact of all
modelling parameters and their uncertainties on a particular decision outcome are being
represented, i.e., the so called “high level closed-loop modelling and forecasting workflow”
keeping in view the input data, modelling objectives and project timelines. In this workflow,
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all the model components are simultaneously tested against an outcome, thereby quantifying
the potential impact on uncertainty on development decisions. There are several papers and
text books that discuss the uncertainty assessment using different methodologies: (1)
experimental design [18-24]; (2) Monte Carlo simulation [1,25] and; (3) stochastic approach
[26-28].

The most significant aspect of the experimental design workflow is that a probabilistic
forecast is made which respects uncertainty and allows identification of the critical
parameters that may have significant impact on the hydrocarbon in-place, recoverable
resources and production forecasts. The workflow allows closer and faster collaboration
between the different disciplines involved in the reservoir study. The feedback coming from
the dynamic modelling and history match can be incorporated into the structure for the 3D
static model and its impact on the 3D dynamic model. The implementation of this closed-
loop with feedback between static and dynamic models is iterative in nature. It has proven to
be very useful in integrating the expertise of various team members to synchronize a team
effort to a common goal. The iteration within model development is motivated by the
evolution of simple models to more advanced models when additional data is collected
during field development and as more information and understanding of a particular model is
developed. A schematic closed-loop modeling workflow used in the industry is shown Fig. 3
which includes uncertainty assessment steps as well as experimental design based workflow
steps to generate a set of probabilistic (e.g. P90, P50 and P10) static and dynamic models
used to generate probabilistic production forecasts.
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Fig. 3. Currently used probabilistic closed-loop 3D reservoir modelling workflow

For exploration and production, Rose [29] has illustrated the several advantages of
probabilistic methodology over deterministic methods which include:
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Accuracy of estimates can be measured, so estimator can be accountable.

Use of statistical tools improves the estimates.

Predrill reality checks can detect errors before drilling.

Reserves/resources estimation is faster, more efficient and avoids false precision.
Realistic communication of uncertainty to decision makers and investors is
facilitated.

¢ Results are immediately usable in modern portfolio measurement.

However, there are several shortcomings in the normally used tools (e.g. stochastic,
probabilistic, Monte Carlo simulation results) for uncertainty and impact assessments. Some
of the important quotes for these statistical tools by the industry experts [30] are as follows:

e “The crucial weakness of the stochastic approach is in the inability to assign
probabilities with any degree of certainty”.

e “Monte Carlo simulation results are only as good as the subjective input
assumptions of the user”.

¢ “Assigning probabilities to the decision tree branches requires technical expertise as
well as considerable domain knowledge, and specialists from many disciplines have
to be called in for subjective judgement about critical parameters”.

e “Apparent capture of uncertainty through probability distributions encourages
intellectual laziness”.

e “Simulation lacks the ability to incorporate a wide range of knowledge - key to
decision making - from analog fields and studies”.

o “Real reservoirs are so complex that the available elegant mathematical tools used
to quantify uncertainty and risks are only of limited use”.

In many ways these shortcomings are still valid. Therefore, understanding the basic
assumptions, input requirements for the specific statistical technique used in the 3D
reservoir modelling process, use of expert knowledge from different disciplines with their
skills, selection of appropriate workflows and quality checking of the data as well as the
results at every step of the process are critical to achieve the defined objectives of 3D
reservoir modelling.

2.2 Impact of Limited Data (Quantity and Quality) on Ohip Estimation in
Greenfields (Appraisal and Early Development Phases)

Often during exploration and appraisal stages of different projects, relatively safe wells are
drilled with the focus to obtain data that will confirm the presence of significant amount of oil
and gas. The data obtained from these wells is used along with analog data/information to
support the technical evaluation (OHIP, recoverable resources/reserves, well productivity,
production forecasts, etc.) and further E&P activities. Authors experience on different E&P
projects continue to show the difficulty of achieving hydrocarbon-in-place estimates within
the evaluated uncertainty band (P90 and P10). This is usually due to the uncertainties of
different input parameters and their ranges which are often not estimated properly. This is
mainly due to two problems: (1) Need of more data to be acquired as the project moves from
one stage to the next during the early asset life and (2) suboptimal or limited use of existing
data/information.

There are very limited examples available in public domain database (Journals/conferences)
where history look-backs shows the evolution of different input parameters range (gross rock
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volume, porosity, N/G ratio, permeability, saturation, fluid contacts, etc.) and hydrocarbon-in-
place estimates over time and the impact of additional data on reduction of uncertainties
[31]. When available, they demonstrate that the hydrocarbon-in-place uncertainty look-back
approach has been highly useful in tracking the impact of new data.

There is a need for comprehensive assessment of uncertainties upfront and developing an
understanding of their impact from the existing data/ information and how these uncertainties
evolve with time as new data/ information is acquired. The importance of new data has been
demonstrated in this section and the optimal use of existing data/information with different
techniques and appropriate workflows have been elaborated in the next sections.

The example shown here is from a carbonate field in which a total of 6 wells have been
driled so far including the discovery well which demonstrates the value of new
data/information. The field is a 4-way dip closure (interpreted based on 3D seismic data)
bounded by the east and west side normal faults. The reservoir depth at different well
locations is in the range of 4300-4500m TVDSS. Currently, this field is producing around
30,000 Bbls/day oil from 5 producers.

The predrill mean resources for this prospect were around 190 MBO. The discovery well-A
encountered a gross reservoir thickness of around 128m, a net pay of 72m and a well-
defined oil water contact. The well test confirmed a daily production of around 5000 Bbls/day
of 30° API oil with GOR of 700scf/Bbl. Second well-B drilled, close to the eastern fault,
encountered a gross reservoir thickness of around 242m, a net pay of 190m and lower OWC
as compared to Well-A but indicated more reservoir heterogeneity than assumed after
discovery. Well-C drilled in the centre part of the structure between two wells and it went dry.
Well-D drilled towards to the west of Well-B encountered oil bearing reservoir but with a
different OWC. Well-E drilled in the western part of the structure up-dip to well-A
encountered oil with similar OWC as found in well-A. Well-F drilled towards the north part of
confirmed the OWC of Well-B.

The primary pore system in this carbonate reservoir comprises inter-particle porosity that
coexists with a highly variable secondary system of dissolution voids. As a consequence, the
reservoir heterogeneity (from pore to reservoir scale) and its variability pose significant
challenges to data acquisition, petrophysical evaluation, and reservoir description. The
conventional petrophysical evaluations that exclusively use reservoir zonation based on the
lithology/mineralogy have very limited application. For identifying the distribution of micro-
porosity and its connectivity with macro-porosity, advanced down-hole technologies such as
high-resolution imaging, magnetic resonance logs with advanced core analysis have proven
to be very useful.

The reservoir and fluid parameters were estimated after the drilling of each well integrating
previously available data (Table 1). The Original-Oil-In-Place (OOIP) for different categories
(P90/P50/P10) was estimated using probabilistic approach. The OOIP uncertainty index and
2P recoverable resources were computed after each well following similar workflow of
evaluation. Fig. 4 shows the summary of hydrocarbon-in-place and uncertainty changes over
the appraisal and early development period. The history look-backs approach used here
clearly demonstrates the effective value addition from each drilled well and the evolution of
OOIP, recoverable resources including reduction in OOIP uncertainty.
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Table 1. Summary of reservoir and fluid parameters estimated after each drilled well

Key parameters Predrill Well-A Well-B Well-C Well-D Well-E Well-F
Reservoir Top (m) 4350 4404 4363 4456 4414 4394 4497

Gross Interval (m) 80 128 242 24 120 138 189

Net Pay (m) 56 72 190 0.0 81.5 76 87

N/G 0.70 0.56 0.78 0.00 0.68 0.55 0.46
Porosity (av.) 10% 9.5% 12.9% 6% 12% 10% 13%

Water Saturation 36% 18.3% 27% 39% 36% 22% 25%
Formation Volume Factor 1.38 1.37 1.25 1.25 1.25 1.25 1.25

Oil Water Contact (m) - 4532 4572 None 4505 4532 4572
Cut-offs (Vcl/Phi/Sw) 0.5/0.05/0.5 0.5/0.05/0.6 0.5/0.05/0.6 0.5/0.05/0.6 0.5/0.05/0.6 0.5/0.05/0.6
Oil API Gravity 25-30° 30° 30° 30° 30° 30°

GOR (SCF/Bbl) 500 750 670 - 700 740 740
CO./H,S Content (%) 2-5% / none  2-5% / none 2-5% / none 2-5% / none 2-5% / none 2-5% / none 2-5% / none
Gas Gravity 0.90- 1.06 0.90- 1.06 0.90- 1.06 0.90- 1.06 0.90- 1.06 0.90- 1.06 0.90- 1.06
Reservoir Pressure (psi) 6800-7648 7225 7310 - 7268 7242 7344

OOIP (P90/P50/P10) 120/635/2450 425/1874/4850 765/2450/4750 810/1890/3458 800/1503/2650 756/1070/1700 789/926/1185
(Millions BO)

RF 30% 30% 25% 18% 18% 18% 18%

P50 RR(Millions BO) 190 562 613 340 270 193 167
Uncertainty Index 1 20.42 11.41 6.21 4.27 3.31 2.25 1.50
(P10/P90)

Uncertainty Index 2 2.86 1.59 0.94 0.83 0.76 0.59 0.28

(P10-P50)/P50
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The slope of Ul curve indicates the delineation efficiency. The drilling of Wells E and F
provided relatively little new information and OOIP uncertainty reduced only slightly
as a result of additional data from these wells

2.3 Issues Related to Reservoir Inputs Estimation and their Distribution in 3D
Static Reservoir Models

2.3.1 Petrophysical property estimation

For recognising uncertainties “what is known” as well as “what is unknown” in petrophysical
parameters estimation, it is necessary to identify their basic sources of uncertainty:

2.3.1.1 Measurement accuracy

All measurements involve some degree of error or inaccuracy. The errors may be due to
imprecision of the instruments or borehole effects while making the measurement, or poor
calibration, or even human errors in performing the measurement. The random errors due to
the basic measurement precision differences can be minimised by repeated measurements.
However, identification of systematic errors or bias is critical before they can be corrected.

2.3.1.2 Incomplete or missing data

In almost every evaluation, there is missing information. Under such situations, judgment is
applied and “reasonable” assumptions are made to fill the gaps. This is the area where bias
effects the evaluation, which in turn reflects the personal competence and experience,
preferences and motivations of the evaluator(s). Some of these biases are:

e Displacement Bias: This leads to a shift of the distribution to higher or lower values.

o Variability Bias: This is the modification of the shape of the frequency distribution
curve.

e Motivational Bias: This is the conscious or subconscious adjustment of responses
motivated by a perceived connection to personal rewards or punishments for certain
responses.

e Cognitive Bias: This depends on an individual’s mode of judgment and arises from
factors such as knowledge base, mode of processing information and ability to
assess the reasonableness of analogs or other inputs.
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2.3.1.3 Computational approximations

Approximations inherent in the workflows and methodologies used for estimating
petrophysical properties such as Vcl, effective porosity, permeability, saturation, cut-offs, and
in defining the electrofacies/facies based on petrophysical properties.

To illustrate these aspects, four separate studies were performed for estimating the effective
porosity in a carbonate reservoir using same log data, core data and software following
similar approach shown by Meddaugh et al. [7]. These are: Study A: focused on overall
match between core and log data for full field, Study B: Best overall match by well, Study C:
Best match in higher porosity zones and Study D: Artificial intelligence methods using
multiple logs for all the wells.

A crossplot of effective porosity values is generated between study C and other studies to
show the variances (Fig. 5) for this reservoir. Porosity of around 14% will be known typically
only within an error of + 2 units. The solid line shows the 1:1 line and the dashed lines show
+ 2 porosity units relative to the 1:1 line. Each approach could be technically acceptable but
the variation does bring into focus the potentially large uncertainty associated with what is
typically regarded as a “known” in reservoir uncertainty assessments.

Porosity Comparison (Stratigraphic Unit Averages by well (6 Wells)
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Fig. 5. Porosity comparison between three studies A, B, C and D using same data and
software

The lessons drawn from this example are valid for other petrophysical properties (e.g.
saturation, permeability, net reservoir and fluid contacts), although not discussed here.
Therefore, it is recommended to determine uncertainties for the critical petrophysical
parameters including raw data, its processing and interpretation. Most often, the largest
uncertainty in petrophysical evaluation may be the interpretation model itself. The knowledge
of possible ranges of petrophysical properties will improve the 3D reservoir modelling
results; enabling better data gathering and study decisions.

2.3.2 Facies identification and rock typing

Most often, simple sand / carbonate shale models are generated without facies analysis.
Core data is one of the critical inputs for facies classification. In absence of core,
electrofacies can be used as a basis for facies identification. Well log data provide very
useful information on geological concepts, stratigraphic details and petrophysical properties.
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Most often, capillary pressure (Pc) curves are used in dynamic modelling as input for
defining oil-in-place and vertical distribution of fluids in a reservoir. These Pc curves can
have significant influence on fluids movement within a model, if not designed adequately.
For a displacement process that is controlled by gravity, Pc curves control vertical saturation
distribution. These Pc curves also allow definition of the top of the transition zone and its
thickness which affects to control water/gas breakthroughs time and trends. Often it has
been observed that these Pc curves have failed to match initial water saturation at well
locations if they are not analyzed and incorporated based on proper facies / rock typing
using core and log data (Figs. 6a, b and c) in the 3D reservoir models. The impact of using
single rather than several rock types for water saturation can be clearly seen in Fig. 6d. In
order to ensure proper fluids in place volume estimation from simulation models
initializations, it is necessary to obtain an acceptable level and trend of matching between
water saturation log profiles with simulation models profile for each interval within the
reservoir to reduce the gap between static and dynamic models. Integration of the capillary
pressure, water saturation and resistivity index results, together with the basic petrophysical
data including porosity, permeability, NMR, CT scans, mercury injection and thin section
images confirm the validity and consistency of the collected data and allows a more robust
evaluation of the facies and rock typing.

Electro-facies
Coarse Sand

2 Medium Sand

3 Finesand

Silt

Shale-silt

4
&5

Fig. 6. (a) Electrofacies typing based on log data, (b) Rock typing based on Core data,
(c) Rock typing based on Log data and (d) Comparison of capillary pressure curves
derived versus log derived initial water saturation

2.3.3 Reservoir facies and property distributions

The rock and fluid properties control the volume of Original-Hydrocarbon-In-Place (OHIP)
and the recoverable oil gas. Different techniques are used for populating the reservoir facies
and properties in the 3D reservoir models besides geostatistics which require different types
of input parameters and work under different basic assumptions. Therefore, the simulation
results obtained from these techniques are highly dependent on a geomodeler’s
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geostatistical knowledge and geological experience. For better understanding we group
them in two categories:

e Variogram based techniques.
e Variogram-free techniques.

2.3.3.1 Variogram based techniques

The variogram models play an extremely important role in representing the geological
knowledge in 3D static reservoir model building and in analyzing flow behaviours through
dynamic simulation. Variogram, a statistical device to store patterns in a mathematical form,
is a “measure of geological variability with distance” (reservoir geometry, continuity and
properties) and is developed using two point statistic correlation functions [32,33]. AiImost
90% of the reservoir characterization studies use variogram based geostatistical modelling
methods (e.g. Sequential Gaussian Simulation (SGS), Sequential Indicator Simulation (SIS),
Truncated Sequential Gaussian Simulation (TSGS), Pluri-Gaussian Simulation (PGS), etc.).
These algorithms (SGS, SIS, TSGS, PGS) create a 3D model constrained to local data and
the variogram model [34-36].

The SGS technique distributes reservoir properties (facies, porosity and permeability) within
3D model while honouring data at the wells and corresponding vertical and lateral correlation
lengths using variograms. This technique does not constrain reservoir properties using
explicit geological facies information. The variogram cannot be calculated directly from raw
data of reservoir properties because SGS needs inputs to be in a normal distribution.
Variograms are calculated using normal score variables. The normal score variables are
later transformed back to reproduce their original distribution. Experimental variograms are
calculated from the well data for normal score variables for the reservoir properties in vertical
and lateral directions. This technique is most commonly used for facies distribution but does
not guarantee honouring of boundary conditions and requires variograms.

The SIS technique for continuous variables divides the continuous distribution of a particular
variable into a number of discrete categories. Each category represents a specific range
within the continuous distribution of the attribute. The categories are distributed within the
fine scale grid cell using SIS. Similar to SGS, the SIS technique does not constrain reservoir
properties using explicit geological facies information. However, SIS groups similar property
values together. SIS requires an indicator variogram for each category of property which are
calculated for vertical and lateral directions using well data for all indicators. This technique
lacks ability to honour facies boundary conditions and requires a user defined trend
(variograms) to impose non-stationarity. SIS is most commonly used for petrophysical
properties distribution.

The TSGS technique is used to generate the underlying geological framework of the facies.
This facies framework together with SGS, is then used to distribute reservoir properties
values separately within each facies. This technique honors the explicit geological facies
information at the wells, vertical and lateral correlation lengths for each facies, vertical
stratigraphic facies trends, reservoir properties from well data, as well as vertical and lateral
correlation length of reservoir properties for each facies. This technique allows integration of
both geological and petrophysical data to generate reservoir description. It works well for
grain size transitions and ordered facies (e.g. carbonate environments, shoreface deposits,
progradational fluvial sequences) and requires variograms as input. The TSGS technique,
also known as transition modelling, allows for only strict facies boundary conditions and it
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becomes very unstable in the presence of high density (closely spaced) wells. Non-
stationarity further compounds the problem as introduction of simple trends is often not
sufficient.

The Plurigaussian simulation is an extension of the truncated (mono) Gaussian method
[37,38] allowing for more complex facies relationships under a strict stratigraphic sequence.
The geological information is added to the model by: number of Gaussian functions,
correlation coefficient among them, facies proportion to calculate thresholds, direct and
cross indicators covariances, facies data at conditioning points transformed into Gaussian
rules and truncation strategy (rock type rule). There are numerous advantages of PGS over
other facies simulation methods. PGS handles non-stationarity through use of multiple
vertical proportion curves in the construction of a lithotype proportion matrix (LPM). The LPM
consists of hundreds of high resolution trend maps accounting for vertical and lateral non-
stationarity. The trends for each facies within each layer and every reservoir interval in the
model are calculated. This technique is capable of capturing most inter- and intra-facies
relationships including post depositional overprinting, such as diagenesis. As a pixel based
method, PGS can work in the presence of closed spaced or sparse well control but is more
suitable for high density well controls. However, it is important to note that PGS results are
highly dependent on a geomodeler’s geostatistical knowledge and geological experience.

Depending upon the particular simulation algorithm, different types of variogram models
(Nugget, Linear, Logarithmic, Gaussian, Spherical, Elliptical, Exponential, Power, etc.) are
selected which require different data inputs for computing the variogram parameters (sill,
nugget and range) to be used for facies and property distribution in 3D reservoir models.

However, variogram modelling and interpretation are often performed hastily or even
skipped altogether. There is very little or no emphasis on understanding the variogram
behaviour. Proper variogram modelling is a key factor to obtain a geologically sound
reservoir characterization model. The link between geological variations and observed
variogram behaviour must be understood properly for reliable variogram interpretation and
modelling. After carrying out a detailed QC of input data and its distribution analysis,
variogram behaviour should be related to the geological principals from direction variogram
to represent the heterogeneities present in the reservoir. Some of the primary variogram
behaviours are: randomness or lack of spatial correlation, decreasing spatial correlation with
distance (geometric anisotropy), geological / areal trends (zonal anisotropy), stratigraphic
trends and geologic Cyclicity over geologic time, etc. Real variograms almost always reflect
a combination of these different variogram behaviours (Fig. 7). If the input data shows such
systematic geologic trends, these trends must be modeled and removed before generating
variogram models and associated input parameters to be used for geostatistical simulation.
Therefore, the selection of an appropriate variogram model becomes critical for incorporating
the spatial variability of geobodies, their properties and true heterogeneity present in the
reservoir. For limited data cases, analog data can be used to establish variogram models
[39, and references there in].

Some recommendations to develop a reasonable variogram model are:

o Perform classical statistical analysis on the data set to identify dataset issues and
multiple populations. Compute mean, ranges, standard deviations, coefficient of
variations etc., and create cumulative frequency distribution plots, histograms, and
scattered plots of the data as necessary to gain an understanding of the nature of
the element.

¢ Clean the data set, if required, to remove scatters and erroneous values.
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Fig. 7. Variogram behaviours of permeability data for different reservoir units showing
presence of geological trends or their combinations which affect the facies and
property distribution if not accounted for properly. The actual data points are
connected with dotted red line to show the trend. The indices 1 to 6 indicate different
stratigraphic units of a carbonate reservoir. The data points for each unit show the
combination of variogram behaviours
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e Analyse the spatial distribution of the data to determine the suitability for
geostatistical analysis. If the data is not suitable, then perform a statistical analysis
using interpolation techniques to prepare it as input for variogram modelling.

¢ Analyse only one variable per lithologic unit at a time and ensure that this variable is
stationary over the domain of the study. If the input data has mixed population split it
into subsets with unique population parameters because variogram analysis using
mixed populations can produce misleading results.

o Check if the data has the same sample length i.e., sample of different size should be
separated as a different groups of variogram.

e Visualise samples for irregular distributions to ensure approximately uniform sample
distribution for variography.

e Transform data to standardized normal distribution (zero mean and unit variance). It
simplifies the data handling and allows the comparison between different data sets.

e Follow a three step process to combine qualitative geological knowledge with
quantitative variogram modelling: (1) Generate detailed interpretation of geological
aspects of the reservoir, including environment, sequence stratigraphy, pore space
characteristics, iso-chores, iso-porosity, and iso-permeability maps. Using these
inputs, generate a summary table that includes the major continuity direction, lateral
extension and anisotropy index of each attribute, (2) Calculate experimental
variogram using averaging technique and (3) Model the variogram considering the
information summarised in the first step.

¢ Generate omnidirectional / multidirectional experimental variograms and variogram
maps using the procedure mentioned in the previous point to identify the nugget, sill,
anisotropy and major direction of the variogram analysis. Use relevant seismic
attributes to compute areal variograms, if seismic data quality is acceptable and well
data to compute vertical variograms.

2.3.3.2 Variogram free techniques

Variogram based simulation techniques (e.g. SGS, SIS, TSGS, PGS) allow construction of
facies and properties model conditioned to well, seismic and production data. However,
simulated depositional elements do not look geologically realistic as two point statistical
correlation functions are not sufficient to model curvilinear or long range continuous
geological bodies. Some other techniques, which do not use variograms, are either object
based or use other numerical techniques: Multiple Point Simulation [40]; Simulated
Annealing [41,42,13]; Artificial Neural Networks [43,44,12]; Genetic Algorithms [45-47];
Fuzzy Logic [48-50]. Some of them are briefly described below:

2.3.3.2.1 Multiple point simulation (MPS)

The MPS technique, a pixel as well as an object based algorithm, aims at characterising
patterns using several points (does not require variogram models), typically between 20 and
100, instead of two, thus providing more realistic representation of geological patterns. The
MPS technique requires various parameters for facies dimension and geometries (thickness,
length, width, orientation, etc.) and is capable of handling many wells, seismic data, facies
proportion maps and curves, variable azimuth maps and interpreted geobodies. It works well
for complex facies relationships but requires a large number of wells, training images (TI),
outcrop mapping or any other source that produces a high resolution exhaustive model at
the same scale as the simulation to capture the spatial patterns for facies and properties [51-
55]. The use of Tl is not compulsory for the MPS technique; the statistics can come from
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other sources. Nevertheless, a training image is the most convenient way of deriving the MP
statistics as most desired statistics can be extracted directly with no need to fit them with
positive definite models. The largest stumbling block that prevents the rapid spread of MPS
in reservoir simulation tasks is the difficulty of creating TI's for each definite modelling case.
A Tl is a 3D conceptual model or pattern that defines the basic laws of property alternation
across space and is a bridge between geological knowledge of the reservoir and the
numerical model. TI's have the following requirements:

e Three dimensional spaces.

e Stationary, i.e., invariability of the statistical parameters of the Tl throughout its
volume. Although, now some modern MPS techniques also work with non-stationary
TI’s.

e Recurrence, i.e. repeated use of the same structure elements;

e Aperiodicity, i.e., no part of the TI may be an identical copy of another part of this Tl;
the structure elements must vary in different combinations to cover all the possible
variants.

o Relative simplicity, i.e., the TI must not abound in complex structures that may not
be reproduced in the realizations.

e The scale and orientation of the TI measured in grid cells are to be set according to
the field being simulated.

e Statistical parameters, such as mean, variograms, unit compartmentalization (per
number of cells) and dimensions of geological bodies are matched against well data
and target values.

However, the implementation of the MPS technique is quite difficult. Several different
approaches have been used in the industry: single and extended normal equations, neural
network iterative approach, simulated annealing. As an example, the training images of
porosity obtained from integration of wells and seismic data using different techniques (e.g.
krigging, multi-attribute transforms using linear regression, neural networks, combination of
geostatistics and neural networks), will lead to different spatial distributions, uncertainty
ranges and errors [12,44], if used in MPS. Therefore, each of these methodologies has their
own limitations which affect the simulation results. The MPS techniques are still an emerging
area of research and require further R&D efforts to supplement the currently used traditional
two-point statistics (e.g. krigging, stochastic simulations).

2.3.3.2.2 Seismic guided techniques (e.qg. multi-attribute regression, principal component
attributes analysis, artificial neutral networks, simulated annealing, fuzzy logic,
genetic algorithms)

Currently, the industry is also using some techniques separately which allow generating
lithology, porosity and permeability 3D cubes using post- and pre-stack seismic attributes
derived from 3D seismic data. These 3D cubes are directly transformed into the 3D reservoir
models grid and used as inputs for defining reservoir stratigraphy, populating the reservoir
and nonreservoir facies along with their properties particularly away from the well locations.
All these techniques use validation process through use of blind wells and newly drilled
results to prove their ability to predict reservoir properties at unknown locations but
comparison between them shows that level of errors and uncertainty ranges are entirely
different in each technique. Therefore, proper understanding of these techniques, their
assumptions and limitations are critical before using them to generate inputs for 3D reservoir
modelling. Most often it has been observed that seismic data quality does not allow
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extracting meaningful seismic attributes which limits the use of these techniques. The details
of these algorithms are beyond the scope of this paper.

It is important to note that each simulation algorithm (variogram based, non-variogram based
and others) has specific input requirements, work under own basic assumptions and
boundary conditions, some advantages as well as disadvantages which need to be properly
understood. Under these circumstances “which one to use” or “use their combination”. In
practice, a geomodeler often chooses one algorithm before another based on personal
experience or competences, software capability, or some technical requirements. It is often
difficult to obtain inputs for these algorithms due to limited subsurface data. Facies
interpreted from well logs and core data have very high vertical resolution but very poor
lateral resolution. Choosing input parameters is often subjective and the problem becomes
especially severe in the lateral directions if seismic attributes are not meaningful. Several
published studies have shown that use of different techniques with the same input data (well
and core) provide significantly different production forecasts [7,40,53,56-58]. Therefore, a
thorough understanding of the assumptions and boundary conditions for each simulation
algorithm is necessary before they are used in 3D reservoir modelling.

2.3.4 Permeability measurements and upscaling

The efficient recovery of hydrocarbons relies on an accurate prediction of the fluid
displacement efficiency parameters of reservoir rocks, including permeability. The
description of highly homogenous reservoirs is a very simple task, as measuring reservoir
properties at any location permits full description of the reservoir. However, it is not so
simple for heterogeneous reservoirs, as the reservoir properties vary as a function of spatial
location. For proper heterogeneous reservoir description, it is necessary to predict variation
of reservoir properties of rock facies including porosity, permeability, saturation, faults and
fractures as a function of spatial locations. Reservoir heterogeneity (areal and vertical)
occurs at all scales from pore scale variation to major reservoir units within a field, and every
scale in between. Proper identification and knowledge on various scales of reservoir
heterogeneities is necessary because different scale of heterogeneities have different impact
on reservoir performance, production forecasts and hydrocarbon recovery. Kelkar and
Godofredo [59] have defined the scale of reservoir heterogeneities at four levels of
complexities (Table 2).

Table 2. Scale of reservoir heterogeneities

Scale of Reservoir heterogeneities

Type Scale Measurements Effect on reservoir
performance
Microscopic 10-100 um Pore and throat Displacement efficiency
(Pore level) distribution, grain size (trapped oil)
Macroscopic (Core 1-100 cm Permeability, porosity, Sweep efficiency
Level) saturation, wettability (Bypassed oil)
Megascopic 10-100m Log properties, residual Sweep efficiency
(Simulation grid level) oil, seismic (Bypassed oil)
Gigascopic > 1000m Well test, geological Extraction efficiency
(Reservoir level) description (Untrapped Oil)
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In 3D reservoir models, the permeability variation is represented on a block-centred grid
using a permeability value measured directly from core-plugs or estimated indirectly from
wireline log data using predictive algorithms that relate core data intergranular permeability
to porosity including some other predicting variable. The key issue is how to use micorscopic
(pore throat and grain size)) and macroscopic (core) measurements without introducing
artifacts due to indiscriminate transgression of scale as the volume of a typical model grid
block (> 108 cm3) is several orders of magnitude greater than that sampled by a core-plug
or wireline log (30-30,000 cm3). It is therefore necessary to upscale the permeability values
from measurement scale to grid-block scale [60,61]. In order to fully understand the effect of
sample volume on the effective single phase permeability of a heterogeneous clastic
reservoir, Jackson et al. [62] have carried-out direct measurements using a large rock
specimen (38x32x10 cm). They carried out measurements of permeability in different sizes
of samples (starting from 1x1x1 cm to 38x32x10 cm) and observed that both individual and
averaged effective permeability values vary as a function of sample volume, which indicates
that permeability data obtained from core-plugs will not be representative at the scale of a
reservoir model grid-block regardless of the number of measurements taken. At small
sample volumes, the distributions of horizontal and vertical permeability are very broad. As
the sample volume increases, both the horizontal and vertical permeability distributions
narrow and converge upon the effective permeability of the entire rock specimen. They also
noted that the average permeability estimated from different samples do not correspond to
the effective permeability of the entire rock specimen.

To understand the permeability upscaling for highly heterogeneous carbonate reservoirs,
which hosts around 50% of the world’s hydrocarbons, several laboratory measurements of
porosity and permeability between whole core samples and plugs drilled from the same
samples have been carried out. More recently, the heterogeneity of carbonates at the pore
scale using powerful image registration techniques (e.g. micro-CT, 2D SEM, 3D SEM/FIB, X-
ray-CT, etc.) have been studied to characterize the fine scale structural framework of
carbonates [61,63-65]. These studies indicate that permeability differences between whole
core and plugs vary greatly sample to sample but whole-core permeability tends to be higher
in cases where large differences (two orders of magnitude) are observed.

Different averaging upscaling algorithms (Arithmetic mean, Harmonic mean, Geometric
mean) used for permeability upscaling give different results but perform reasonably well
when applied to a field of permeability value covering full core-plug. The permeability
upscaling becomes more critical where reservoir units have high property contrasts and is
not fully represented by the available standard core-plugs. However, the error introduced by
averaged data may be minimised using an appropriate averaging scheme for a given facies
type and flow direction. Conventionally, the arithmetic mean is used to average the
permeability measurements in the horizontal direction (parallel to the bedding), while
geometric or harmonic mean is used to average permeability measurements in vertical
direction (perpendicular to the bedding). This approach is based on the assumptions that
each core-plug does sample only one lithology (or permeability class). In many geological
systems, core-plugs generally sample a mixture of lithologies (or permeability classes) and
the variations in lithology are not simply layered or uncorrelated. The most suitable
averaging technique in such cases is the one which minimises the variation in mean
permeability with sample volume rather than the one which yields the effective permeability
of a layered or uncorrelated system. Well test data is one of the important inputs for
calibrating the upscaled permeability model as well test represents the large scale
permeability. However, the quality of well test data and its interpretation should always be
kept in mind before using it for calibration as it is an effective permeability. The permeability
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upscaling from pore to reservoir and field scales in different types of reservoirs is still a
challenging task and require further R&D efforts to fully understand and establish the
suitable methodology.

2.4 Issues Related to 3D Dynamic Modelling

The objectives of dynamic reservoir modelling are to simulate the reservoir dynamic
behaviour, forecast reservoir parameters for undrilled locations and field productivity for
different development scenarios using 3D static reservoir model as an input. The simulation
studies directly integrate geological parameters with engineering data (e.g. production tests,
pressure data) but this integration of data requires time and an understanding of reservoir
mechanisms. A basic workflow of 3D dynamic modelling consists of 5 steps: (1) data
acquisition, (2) model design, (3) initialization, (4) history matching and (5) forecast. Most
often, the 3D dynamic models are built separately without proper use of a 3D static model or
using 3D static model that rely-on only well data and ignore the lateral and vertical
heterogeneities revealed in the key seismic attributes or with a poor link between static and
dynamic models. The main inputs for the dynamic models can be classified as follows:

e Petrophysical data:- Absolute/relative permeability, porosity, water saturation, N/G
ratio, capillary pressure, rock types.

e PVT Data:- Oil properties (density, formation volume factor, gas-oil solution ratio,
viscosity and saturation pressure), gas properties (gas gravity, compressibility factor,
formation volume factor, viscosity) and water properties (density, formation volume
factor, viscosity, compressibility).

e Reservoir Data:- Depth of fluid contacts, initial pressure at a given depth,
temperature and aquifer parameters.

e Production Data:- Production / Injection fluid rates, bottom hole and tubing head
flowing pressure measurements, static bottom hole pressure values.

e Completion Data:- Well productivity and injectivity index, wellbore diameter skin
factor (i.e. permeability reduction near wellbore due to drilling and completion mud
invasion).

e Well and / or field constraints:- Target (maximum) production / injection rate,
maximum water rate, maximum gas-oil ratio, minimum flowing bottom hole and
minimum tubing head pressure.

e Economic Requirements:- Minimum oil and gas production rates, maximum
production rate.

Dynamic simulation workflows for Greenfield and Brownfield projects are discussed
separately.

2.4.1 Greenfield 3D dynamic modelling

The uncertain production forecasts obtained from 3D dynamic simulation are particularly
critical for offshore “Green Fields” where capital intensive investment decisions are taken for
the field development. The risk of such decisions is that the whole development program, in
many cases, is decided based on deterministic or probabilistic models built with a very
limited amount of available data / information, inadequate workflows and the impact of
reservoir uncertainties on predicted production forecasts is not properly captured (Figs. 8-
and 8-Il). As a result, this leads to either over or under-sizing of the production facilities,
impacting overall project value [66]. Depending upon the geological complexities, the
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appropriate methodology for dynamic simulation should use the fit-for-purpose workflow [67]
shown in Figs. 8-l and 9 which allows capturing of the full spectrum of possible outcomes at
an early project phase by addressing both the static and dynamic uncertainties to improve
the interpretation of production forecasts.

2.4.2 Brownfields 3D dynamic modelling

History matching is a process that adjusts the model until it closely reproduces the past
behaviour of a reservoir. In Brownfield projects, history matching has been identified as one
of the most critical problems to affect production forecast accuracy due to uncertainty in the
(1) 3D static model built using well and seismic data; (2) dynamic data (relative permeability,
capillary pressure, fluid properties etc.); (3) mathematical model for flow of the fluid in the
porous media particularly away from the wells and (4) production allocation (comingled
production or no measurements from individual producer). It further gets complicated due to
non-unique nature of the history matching solutions. Our experience in actual fields shows
that in-spite of having good history matching; the production forecast hardly matches with
actual production of the reservoirs. Currently, several methodologies are applied to perform
a simulation model history match. Traditionally, history matching (Fig. 10-1) was performed
manually through adjusting a few reservoir model parameters by a trial-and-error procedure
to reproduce field performance. This process often took several months to achieve a single
history matched model. For large and complex fields it was almost impossible to investigate
relationships between the model responses and variations of different reservoir input
parameters. Furthermore, the success of the method was largely dependent on the reservoir
engineer’s experience in the specific field. The manual history match did not allow a proper
assessment of the effects of uncertainties and their interaction with all the data including
model assumptions used in the numerical flow model for the production forecasts.
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Fig. 8. Production forecast from single 3D deterministic static Model (I) using P50
OOIP without realization, (lI) using P50 OOIP with realizations and (lll) using P90, P50
and P10 OOIP’s with realizations
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In order to improve the shortcoming of traditional history matching, the industry has shifted to
other methods such as an Assisted or Semi-automatic History Match (ASHM) process [17] to
find multiple matched models, instead of a single set of model parameters that match the
data (Fig. 10-1l). This helps to assess the production forecast uncertainty. ASHM is a
process to compare historical and dynamic data by means of a misfit function [68]. It uses a
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misfit function as objective function to bind the problem with the model constraints and can
generate multiple calibrated models. The major problem with ASHM is the lack of robustness
and it requires different algorithms for different kinds of reservoir models. It is almost
impossible to use a unique algorithm or workflow to provide an accurate match of any
reservoir. ASHM technology will require some more time to become a mature technology
which is more users friendly and flexible (to generate more reliable production forecasts in
less time). Most of the existing algorithms have only proved to be very efficient with specific
synthetic cases. But the majorities have failed or were only partially successful with real
complex reservoirs.

Although, the history match process helps to understand the interactions between
heterogeneity and fluid flow and gives better reliability to the static and dynamic model, a
good history match does not guarantee a more accurate production forecast. Some of the
recommended best practices for a good history match are:

o Know data quality, quantity and its limitations.

o Establish dynamic simulation objectives clearly and demonstrate how history match
variables correspond to objectives

e Perform well and reservoir diagnostics before model construction. Diagnostics
should identify reservoir vs. operational effects on production signature.

e Keep changes to a minimum, if possible. Minimum changes give higher confidence
level in results.

e Larger changes can be used as an indicator for revision of the current geological
model.
Preserve geological realism using available 3D seismic and well data.
Avoid arbitrary and ad-hoc changes. Understand the interaction between different
components.

o Identify key uncertainties, rank them and analyse their impact on results. Do not
smooth extremes without analyzing them in detail.

e Developing a reservoir model capable for generating a reliable production forecast
of higher confidence requires a multidisciplinary team with appropriate technical
skills and broad experience.

3. CONCLUSIONS

Robust integrated geological models (integrating data, process, technology and experience)
following “a closed loop modelling workflow including history look-backs approach” allow
close interaction between static and dynamic models to capture the full range of
uncertainties in both “known” and “unknown” and their impact on production forecasts. The
construction of a 3D reservoir model should be regarded as a dynamic process, subject to
repeated updates as new data is made available and subject to frequent modifications when
inconsistencies are found between the understandings that different specialists have about
the same model. Identification, quantification and incorporation of uncertainties in 3D static
and dynamic reservoir models to quantify subsurface risks are critical for improved modelling
outcomes and better decision makings.

Use of an experimental design based workflow can be very helpful in identifying and ranking

of the key reservoir uncertainties based on their impact at the preliminary stage of the
reservoir characterization and modelling activities.
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Use of more rigorous application of geostatistics (well, model), associated de-biasing
techniques (analog comparison, third party reviews) and detailed QC is important to increase
the confidence of the available data. Selection of appropriate variogram models
incorporating zonal / geometric anisotropy, trends and cyclic geologic variations to preserve
geological heterogeneities is critical for facies and property distribution in 3D static reservoir
models. To assess the importance of the variogram assumptions, a sensitivity analysis of the
variogram parameters should be considered as an integral part of the 3D modelling
workflow.

Other simulation techniques (e.g. Multiple-Point Statistics) use trend maps/training images
(instead of variogram models) to reproduce complex structures featuring curvilinearity or
intricate relationship between facies, require more number of well control points to capture
the spatial “patterns” of the facies and properties to be distributed within the 3D reservoir
model framework. Moreover, the application of these simulation techniques is highly
dependent on the geomodeler’'s knowledge/ geological experience and is still an emerging
area of research which requires further R&D efforts.

Use of 3D seismic attributes, if rock properties are favourable (seismic friendly), to constrain
the geological models (e.g. facies and properties), particularly for fields with sparse well
control points, should be considered as a part of the 3D reservoir modelling workflow. The
conceptual geological model bridges the gap between reservoir geology and stochastic
simulation practices. They can improve the reliability of 3D reservoir models as a prediction
tool for robust production forecasts predictability and hence development concepts.

Use of upscaling QC and selection of appropriate averaging algorithms from core to
reservoir scale model is important to minimize errors due to averaging. Retaining static
reservoir (geological) heterogeneities in the dynamic model and considering different
reservoir model scenarios for each static model (P90, P50 and P10) allows to fully capture
production forecast uncertainties. Assisted history match technology is not yet fully matured
despite significant progress. To obtain reasonable results, good reservoir engineering
knowledge and its integration with the history match process is critical. It is important to note
that simulation models are simplified representations of the highly complex geology and
physics of actual hydrocarbon accumulations.

There is also a need to adopt a History Look-Backs approach for volumetric and
resources/reserves evaluation to understand impact of acquired additional data/information
on identified uncertainties and way forward to efficiently reduce uncertainty. These history
look-backs allow calibration and continuous improvement of the quality of production
forecasts over the time. The petroleum industry is, in general, moving away from an “honour
the data” paradigm to “honour the data and respect uncertainty” paradigm for 3D Reservoir
Modelling.
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