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Abstract
Aims/ objectives: A protein-protein interaction network is considered as a simple indirected graph,
weighted or non weighted. A partition of the vertex set, into connected, eventually overlapping,
clusters having an edge density larger than the whole graph, is searched. Such a cluster is denoted
as a module. The cellular functionality of proteins is predicted from this network decomposition. To
improve the prediction quality, we need to evaluate the robustness of these modules.
Methodology: We propose a new method which consists in :

• selecting a non deterministic algorithm for graph partitioning into separate clusters
(optimizing a modularity criterion);

• applying this algorithm several times to generate a set of close partitions;

• calculating a consensus partition from this set.

Results: This set of partitions permits to evaluate the robustness of any class as the average
percentage of partitions joining any protein pair in this class. This robustness function can be
applied to compare the consensus partition resulting of this procedure to the usually single partition
computed from the graph.
Then, we develop a simulation protocol selecting random graphs having a more or less strong
community structure. We show that the multi-clustering method provides modules closer to the
communities which are more robust than those of a single partition.
Finally, we present a simple procedure to extend a strict partition into an overlapping class system,
making multi assignment for proteins that could be placed equally into several modules, because
their contributions to modularity are similar.
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1 Introduction
Assessing the quality of partition’s clusters, or the quality of a whole partition, appeared with the
beginning of the clustering methodology and still remains an open subject. It has often been reduced
to the seek for a partition that optimizes some criterion. However, these criteria are very diverse, and
none of them can be retain to compare partitions computed according to different principles especially
for graphs. Furthermore, they do not indicate the reliability of the computed classes and/or partition.

For undirected simple graphs, weighted or not, in which ”natural classes”, called communities
exist, one can measure the cluster quality by edge density or by the percentage of intra/inter edges.
More recently a modularity criterion has been largely adopted [1]. It is defined for any partition and it
is based on modularity values for any pair of vertices. The maximum modularity value of a partition
is high when the community structure is strong. It is an additive function of the cluster values and
permits to detect those which have a large contribution and so a good quality.

To quantify the class robustness, we adopt the following strategy. Given a weighted graph G =
(V,E,A), using a non deterministic algorithm, we build a series of q partitions (Pi)i=1,...q of the vertex
set V , making a profile. The first one, usually the single computed partition, is denoted Pini in the
following. From this profile, we calculate a consensus partition Pcons. Thus, one can measure for
any pair of joined vertices the percentage of partitions in the profile joining them. Some robustness
coefficients for classes and partitions can be deduced easily.

This multi-clustering approach, is not new. It follows a least two similar methods denoted Bootstrap
clustering [2] and Consensus clustering [3]. The common part consists in generating several partitions
of V . But this contribution differs from the first one, which needs to establish q graphs similar to G to
realize the partition set, and from the second one which uses, as we do, other stochastic partitioning
algorithms but never made the connection to robustness.

Our method needs to
• Select a fast partitioning algorithm, because it must be applied q times to graphs having

several thousands of vertices. We have defined the TFR method, similar to TFit (Gambette &
Guénoche, 2011), which determines the number of classes, not necessarily the same for each
partition ;

• Use again our consensus of partitions method (Guénoche, 2010) which provides a median
partition for the profile. In fact it the same algorithm as before, with a stochastic optimization
final step.

A simulation protocol, based on random graphs having a graduated module structure, correspon-
ding to a seed partition Pseed, permits to assess that the consensus partition Pcons is much closer to
Pseed than Pini. More, the average robustness of the Pcons classes is much higher than the Pini’s
one. These results permit to quantify the efficiency of the Multi-Clustering method. More, it allows
to distinguish outliers that are vertices clustered irregularly in the q partitions, because they become
singletons in the consensus partition.

The paper is organized as follows. In section 2, we recall the modularity formalism for unweighted
and weighted graphs and we tackle the optimization problem introducing our non deterministic algori-
thm to establish a partition profile. In section 3, we come back to the consensus partition problem
and define the robustness of clusters and partitions. A simulation protocol, to prove the efficiency
of the multi-clustering procedure, is described in section 4. We add, in section 5, a new and simple
algorithm to extend a strict partition in separate clusters into an overlapping class system, allowing to
control the number of multi-assigned vertices.

2 Graph Partitioning
We don’t want to examine here the graph partitioning problem with its huge diversity. For recent
developments about the modularity optimization, we refer to Lancichinetti & Fortunato, 2012.
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2.1 Modularity optimization
Let G = (V,E) be a connected simple graph without loop, having |V | = n vertices and |E| = m
edges. We want to detect modules in G and so build a partition P = {V1, V2, ..Vq} with a high
modularity value. For a partition, this criterion quantifies the difference between the proportion of
internal edges in classes and this same quantity if there was no community and so edges were
selected at random with the same degree distribution. It is the gap between what is observed in a
given partition and what is expected by chance according to this null model. More formally, we refer
to the Newman formula :

W (P ) =
1

2m

n∑
x=1

n∑
y=1

(
Axy −

dxdy
2m

)
δP (x)P (y), (2.1)

where (Axy) is the adjacency matrix of G, dx is the degree of vertex x and δ is the usual Kronecker
symbol ; δP (x)P (y) is the square matrix of order n such that

δP (x)P (y) =

{
1 if vertices x and y belong to the same class in P ,
0 otherwise. (2.2)

The M(P ) modularity of partition P is proportional to the sum of the w(x, y) = Axy− dxdy
2m

values
on joined pairs in P . These are negative if (x, y) /∈ E otherwise positive when dxdy < 2m. The
modularity function can be rewritten :

M(P ) =

q∑
k=1

∑
x,y∈Vk

w(x, y). (2.3)

The modularity of partition P is high when there are many edges within classes making a large
density. To maximize the modularity function is a Clique partitioning problem for complete graph on
X weighted by the positive or negative values w.

This formulation can be extended to graphs weighted by A : E → R. The adjacency matrix is
now the matrix with A(x, y) = 0 iff (x, y) /∈ E. In equation (2.1) degrees are replaced by the row or
column sums of A (sx =

∑
y|(x,y)∈E A(x, y)) and function

w(x, y) = A(x, y)− sxsy
2m

always defines the positive or negative weights of a complete graph.

2.2 Optimization problem
To maximize M(P ) over the set PV of all the partitions on V is to build a set of separate cliques in
(Kn, w) having a maximum sum of weight. It is the Zahn problem [4] for weighted graphs, well known
to be NP-hard, and so no polynomial algorithm is known to give an optimal solution. Many authors
adopt this formulation : Given a partition P , they pose αxy = δP (x)P (y), and M becomes

M(P ) =
∑
x<y

αxyw(x, y) (2.4)

assuming P is an equivalence relation on V . The optimization problem is to find a matrix αmaximizing
M under constraints : {

∀(x < y), αxy ∈ {0, 1}
∀(x < y < z), αxy + αyz − αxz ≤ 1.

It is a discrete linear programming NP-hard problem with n(n−1)/2 variables andO(n3) constraints.
Optimal resolution methods exist establishing α, and so partition π, realizing the global maximum of
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function M over PV . But they cannot be applied to large problems. Recently [5], using column
generation technics, have proved modularity optimality for graphs with 512 vertices. For much larger
problems having several thousands vertices, heuristics must be used. We introduce the Randomized
Transfert-Fusion (RTF) algorithm derived from our TFit method validated for Bootstrap Clustering.

2.3 Randomized Transfert-Fusion method (RTF)
It starts from the atomic partition of V , each vertex being a singleton. RTF is a method which
iteratively applies the two following procedures :

• For the first one, called Atomic Transfer, the weight of the assignment of any vertex x to any
class k is first computed. Let K(x, k) =

∑
y∈Vk

w(x, y) be this weight. If x ∈ Vk, K(x, k)
is the modularity contribution of x to its own class, and so to M . For any other class Vk′ it
corresponds to the possible assignment of x to Vk′ . The difference K(x, k′) −K(x, k) is the
criterion variation after a transfer of x from class Vk to class Vk′ .
At each step, the transfer of a random vertex x is tested. If there is a gain (a positive variation)
x is assigned to the class for which this gain is maximum. So, x is placed either in another class
or creates a new supplementary class if its contribution to any class is negative. It that case,
x becomes a singleton and provide a contribution equal to 0, increasing M . This procedure
stops when after n consecutive unproductive trials, that is when no transfer has been made
and M does not increase during n steps.

• The second one, called Fusion transforms G into its quotient graph according to the final
partition at the end of the Atomic Transfer procedure. The new vertices are the classes, and
the new weight for any pair of classes is equal to the sum of the w(i, j) values of all the
interclass element pairs. At this time begins a transfer procedure of the classes, following the
same principle as before. Two random classes linked by a positive weight are merged, until
all the interclass pairs have negative weights. This lead to partition π = (V1, . . . , Vq) such that
any partition πij joining classes Vi and Vj has a lower modularity score : M(πij) < M(π).

This partition π is then proposed to the Atomic Transfer procedure. If there is no feasible transfer
TFR stops ; otherwise, the modified classes are proposed to the Fusion Procedure.

TFit is the non randomized identical algorithm, because vertices are examined in the label order.
It is very close to the Méthode de Louvain [6], except the Atomic Transfer procedure which is tested at
each level. This latter takes time and so RTF is less efficient but it gives better partitions on classical
benchmark graphs, after a few runs.

3 Consensus Partition
Former works on consensus partitions were motivated by clustering items described by nominal
variables. In his pioneer paper, Régnier [7] introduced the notion of partition centrale, defined as
the partition with minimum sum of distances to those in the profile. In other words, it is a median
partition. Indeed it has been empirically assessed that other consensus definitions, more strict or
formal, do not lead to satisfying practical results.

Given a profile Π = (P1, . . . , Pq) of partitions over V , the consensus partition problem consists in
finding π ∈ P minimizing the sum of symmetric difference distances to Π. Let Txy be the number of
partitions joining x and y in the same class. The score of a partition P relatively to profile Π is :

SΠ(P ) =
∑
x<y

(
αxyTxy + (1− αxy)(q − Txy)

)
= 2

∑
x<y

αxyTxy +
∑
x<y

q −
∑
x<y

αxyq −
∑
x<y

Txy
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Quantities
∑
x<y q and

∑
x<y Txy only depend on the profile Π and not on P . Thus, maximizing

SΠ(P ) is equivalent to maximize : ∑
x<y

αxyTxy −
1

2

∑
x<y

αxyq.

Let J(P )be the set of joined pairs in P . An equivalent criterion to SΠ(P ) is :

WΠ(P ) =
∑

(x<y)∈J(P )

(
Txy −

q

2

)
. (3.1)

Criterion WΠ can be intuitively understood as follows : for a partition P , a joined pair in J(P ) has a
positive (resp. negative) contribution when both elements are joined in more (resp. less) than half the
partition number in Π.

Let Kn be the complete graph on V , in which the pairs are weighted by w : V × V → R,
with w(x, y) = Txy − q/2 and let P be a partition into p classes P = (V1, . . . , Vp). The quantity
W (Vk) =

∑
(x,y)∈Vk

w(x, y) is the weight of all the pairs (a clique) in Vk. We have,

WΠ(P ) =
∑

k=1,..p

W (Vk) =
∑

k=1,..p

∑
(x,y)∈Vk

(
Txy −

q

2

)
. (3.2)

Thus the consensus partition problem, as it is detailed in (8), is also a Clique partitioning problem
on the complete graph on V , weighted now by w(x, y) = Txy − q

2
. The weights w(x, y) are positive or

negative, according to the number of times x and y are joined. We will use the same algorithm (RTF)
as before.

3.1 Robustness of Classes and Partitions
The score of a partition WΠ(π) is defined as the sum of joined pair weights. So the score of a
class is high when its pairs are frequently joined in the profile. One can evaluate the robustness
of a class by the percentage of partitions in the profile joining its elements. As Txy = |{P ∈ Π =
{P1, . . . , Pq} such that P (x) = P (y)}|, we set :

Rob(Vk) =
2
∑
x,y∈Vk

Txy

q × |Vk| × (|Vk| − 1)
. (3.3)

This quantity (between 0 and 1) is the average ratio of partitions joining pairs of elements in class Vk
over its maximum number. So, one can compare classes using Rob(Vk), the best ones containing
only pairs often joined in the profile.

This definition can be extended to partitions. Their robustness is the average, over joined pairs
(x, y), of the percentage of partitions joining them. Let us recall that J(P ) is the set of joined pairs in
P . We obtain

Rob(P ) =
1

q × |J(P )|
∑

(x,y)∈J(P )

Txy. (3.4)

4 Simulation Protocol
We have developed a simulation protocol with unweighted random graphs made of 200 vertices
distributed in 5 connected balanced communities defining a seed partition, Pseed. Each graph is
generated by an Erdös-Reyni procedure with two parameters, the internal density (intra-class edges)
di and the external density (inter-class edges) de. There are three families of graphs corresponding
to densities (di = .30, de = .10), (di = .20, de = .05) and (di = .10, de = .01). They generate more
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and more difficult problems, not because graph communities vanish, but the consensus classes do
not fit the seed partition when the average degree decreases.

The RTF algorithm is applied to obtain an initial partition Pini the first one and, to get a profile Π
containing q = 30 partitions (a larger value has been tested and does not provide any improvements).
Its consensus partition Pcons, is computed using RTF again, without applying any stochastic procedure.
The two partitions, Pini and Pcons, are compared to the seed partition Pseed by the way of the
corrected Rand index (9) and also their robustness values, as previously defined. The results corres-
ponding to 100 trials, that are 100 seed graphs with the same density values, are printed in Table
1.

Rand Robustness
di de Pini Pcons Pini Pcons
.30 .10 .825 .883 .883 .938
.20 .05 .689 .811 .745 .857
.10 .01 .615 .676 .715 .838

Table 1 - Corrected Rand index and robustness of initial and consensus partitions

According to the Rand index corrected by chance, problems are more and more difficult ; the
initial partitions becomes far from seed partitions. But the consensus partitions are much closer to
the seed ones. The robustness of the initial partition depends on the computed profile. Finally, Pcons
always has a robustness value larger than Pini, which can be expected by consensus definition.

What about the modularity value of the consensus partition and its number of classes ? Concerning
modularity, we observe small variations, around 1%. Concerning the number of classes, counting
clusters with at least 3 elements, the average number of such classes does not much vary and
consensus partition isolates unstable vertices that are differently clustered along the profile. In Pcons
they make singletons or very small classes.

5 From Strict Partitions to Overlapping Class System

In many practical problems of graph partitioning, a strict partition is not satisfying, because some
vertices can belong to several classes. It is clear for social networks, as co-author groups in bibliographical
lists or countries exchanging goods. It is the same for protein networks, an edge corresponding to a
contact, revealing a functional biological complex. But proteins can be expressed in several tissues
to make different complexes and so can belong to several classes.

5.1 Contribution of a vertex to its class and to the others

Given a partition P = {V1, V2, . . . , Vq} of the vertices of a graph G = (V,E,A) in q classes, the
contribution of vertex x to its class Vk has been denoted :

K(x, k) =
∑
y∈Vk

w(x, y). (5.1)

It is the sum of weights of the pairs containing x that are counted in the modularity values of class Vk,
and also in M(P ). For any other class Vk′ , this quantity corresponds to the possible assignment of x
to Vk′ . If partition P is computed optimizing modularity, each vertex is assigned to class Vk for which
K(x, k) is maximum.
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5.2 Multiple assignments

Differences between classes can be small or null and vertex x could be assigned to class Vk′ if
K(x, k′) is close to K(x, k). Let κ be the class index not equal to k such that K(x, k) − K(x, κ) is
minimum. Vertex x can be assigned to class Vκ if

τ(x) =
K(x, k)−K(x, κ)

K(x, k)

is small. This is the relative gap to the second best class for x.
To fix a threshold σ for τ(x) is difficult and can generate a large number of multi-assigned

vertices. Consequently, we choose to fix the rate of multi-assigned vertices, τm and to calculate
the corresponding threshold σ. If there are 1000 vertices and if τm is fixed to 10% the threshold is
equal to the 100-th largest value of τ(x) which defines σ.

Consequently, vertex x will be assigned to any class Vk′ such that

K(x, k)−K(x, k′)

K(x, k)
≤ σ. (5.2)

6 Conclusions

a It is clear that the Multi-Clustering method improves the quality of the computed partitions, especially
for graphs with a low rate of edges. Compared to the previous Bootstrap-Clustering method,
results are similar. But Multi-Clustering allows to avoid the ”graph like” definition and to
fix parameter values, as the elongation rate or the added edge rate. In the average, the
consensus partition is closer to the seed partition than the initial one, with a very close
modularity value. In any case, classes have a better robustness value and outliers are isolated
into singletons.

b The multi assignment procedure makes it possible to transform a strict partition of graph vertices
into an overlapping class system. It is very efficient since the K contribution table of each
vertex to each class is computed in O(n2). One of the major advantages of this procedure is
the possibility to make the number of multi-assigned vertices vary, which is not possible with
the OCG algorithm (10) and other methods to build overlapping classes in graphs.

.
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