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Abstract 
 

Despite the advances in medical research on its treatment and intensive public education on 
prevention and control, the Buruli ulcer (BU) continues to be a major public health problem 
that continues to overwhelm authorities in Ghana. Ghana is the second most endemic country 
after the Ivory Coast at the global level. While it is common knowledge in literature that the 
disease can affect people of all ages, the mode of transmission is still evasive. The studied 
model is expressed as a system of hyperbolic (first order) partial differential equations. We 
first, employ a representation from the method of characteristics and a fixed point argument 
and also prove the existence and uniqueness of solutions to the nonlinear system.  We establish 
the mathematical well-posedness of the time evolution problem using the semigroup theory 
approach. We then determine   the basic reproduction ratio R0. Then we present a numerical 
scheme to model the dynamics of BU. The simulation results showed that Mycobacterium 
ulcer has peak period of spread and reduced subsequently.  

Keywords: Buruli ulcer, SIR, hyperbolic transport, finite difference schemes, simulations. 
 

1 Introduction 
 
Buruli ulcer, also known as Bairnsdale ulcer is a chronic, indolent, and necrotizing disease of the 
skin tissue caused by Mycobacterium ulcerans (M. ulcerans) [1]. The disease usually begins as a 
painless nodule or papule and may progress to massive skin ulceration [2]. It also appears that 
different modes of transmission occur in different geographical and epidemiological setting [3]. 
Though the disease can affect people of all ages, children less the 15 years of age are particularly 
more vulnerable in many tropical and subtropical countries [4]. Buruli ulcer causes serious pain as 
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well as permanent physical damage. The physical signs visually mark the individual and deprive 
them of societal standards of beauty. Additionally, physical deformities may prevent the 
individual from participating in any economic and   social activities.  
 
The study of Buruli ulcer continues to be an important problem in mathematical epidemiology as 
outbreaks of M. ulcerans continues to pose a public health challenge [5]. The mode of 
transmission of the ulcer is not well understood, however residence near aquatic environment has 
been identified as a risk factor for the ulcer in Africa [4,6]. The modes of transmission vary with 
geographical and epidemiological settings [3]. In Africa, it is estimated that almost 30, 000 cases 
were reported between 2005 and 2010 [7]. Buruli ulcer is a severe, disfiguring disease which 
affects all age groups but particularly children less the 15 years of age in many tropical and 
subtropical countries [8]. The disease has emerged over the past two or more decades, especially 
in Central and West Africa and has been confirmed by laboratory test in 26 countries with reports 
in other countries around the world [3]. 
 
The known common of model for the spread of an infectious disease is the Susceptible-Infected-
Recovered (���) model, which is .based on the categorization of individuals in the classes of 
susceptible (those at risk of getting the infection), infected (those with the ulcer) and recovered 
(those cured of the ucler). The SIR models of Buruli ulcer developed at the moment are time 
dependent models which lead to system of ordinary differential equations (ODEs), see [9]. In 
order to model the pathway of infection clearly, we propose a model which considers the role of 
M. ulcerans introduced to the water reseviors by disturbed environment and stratify the population 
with age. 
 
Age is an important consideration in the modeling infectious disease that depends on age.   
Different age groups of populations may have different reproduction and survival capacities. A 
disease may vary with respect to infection and mortality for different age groups [10]. In reality, 
individuals of varying age groups may exhibit different behaviours and immunological 
competencies. Behavioural and immunological changes are vital in control and prevention of 
many infectious diseases and in particular the Buruli ulcer. Young individuals are known to be 
more active in interacting with or between populations, and the disease. This paper therefore, 
intends to use an age-structured model to study the spread of Buruli ulcer.  
 
At the heart of an age-structured model, is a coupled system of hyperbolic partial differential 
equations (PDEs). The introduction of a system of PDEs instead of a system of ODEs gives rise to 
the interconnectivity of the problem greatly. Although using age-structured models to study the 
spread of diseases is not something new, to the best of our knowledge, no such model has been 
proposed for the Buruli ulcer. The equations which account for the growth of the M. ulcerans will 
not be age structured and therefore, will remain as ordinary differential equations. 
 
Further background of age-structured models, we entreat readers to see [11,12]. The earliest 
models of age structured populations, due to [11,12] developed a foundation for a partial 
differential equations approach to modeling continuum age structure in an evolving populations. A 
new drive of research in age structured models came up with the pioneering work of Gurtin and 
[13] for nonlinear age structured models.  Barbu [14] developed mathematical theory behind age-
structured populations [10] and studied nonlinear age-dependent population and predator prey 
dynamics. 
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The increasing mathematical complexity of biological issues, nonlinearities and age structure in 
biological models, has brought about new dimension of analyzing them. One of these powerful 
tools is method semi-groups of linear and nonlinear operators in Banach spaces. 
 
This paper sought to develop an age-structured BU model and provide some theoretical and 
numerical analysis of the model. The system differential equations along with initial and boundary 
conditions that form the disease model will be discussed. We will further prove the existence and 

uniqueness of the solutions in 1L  and L∞  to our PDE system using the fixed point theory on a 
representation derived from the method of characteristics. Finally the numerical simulations and 
its implications will be discussed. 
 

2 The Model and Its Analysis 
 
2.1 Model Formulation 
 
We consider the human population divided into three subgroups: the susceptible individuals who 
are do not have Buruli ulcer but are at risk of getting it, infected individuals with the ulcer and the 
recovered, who would have been treated of the disease. Within each category, the age and 
population changes over time are taken into account. The number of people in each subgroup are 
expressed as ( , )S S a t= , ( , )I I a t=  and ( , )R R a t= , each variable is a function of age a  

and time t . In order to use a dimensional approach in this model, we formally apply units of 
weeks for the age of humans a  and days for the simulation time t . However, conventional units 
of years are also used in some instances to elucidate the age of human population. The number of 

susceptible people between, say age 1a , and 2a  at a time t  is expressed as 
2

1

( , )
a

a

S a t da∫ applying 

convectional understanding that all humans from 0a a= year to 0 1a a= + year taken 0a  year 

old. A similar approach is also used for the infected and recovered humans ( , )I a t and ( , )R a t
respectively. There is one water bug compartment of infective M. ulcerans denoted by

( )H HB B t= . The four quantities , , , HS I R B are dependent variables of the model. Buruli ulcer 

is considered a water-borne disease and in most cases, transmission of the disease is through 
contact with contaminated water bodies ([15], [16]). To put in various factors that influence the 
dynamics of a BU epidemic, we have put in the model an extra coefficient function which maybe 
constant or may vary with age or time (or both). A disturbed environment is taken into account in 
the model formulation. We include a human demographic recruitment term ( , )a tΛ alongside 

natural death rate ( )H aµ . 

 
The possible interrelations between humans, the M. ulcerans are represented by the schematic 
diagram below (Fig. 1). 
 
The susceptible individuals become infected through interacting with the environment with M. 

ulcerans at rate ( ) ( ) /( ( ) ( ))H H H Ha B t k a B tβ +    with M ulcerans concentration measured with 

respect to infectious dose denoted byg. The human population is suffers a natural per capita 
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mortality rate ��(�). Individuals recover from BU at a rate ( )aθ  which depends on age. M. 

ulcerans bacteria experience a natural removal rate of Vδ  due to death or predation. A strategy 

( , )g a t that can help reduce the spread of BU that represent antibiotic treatment was included in 
the model. This reduces the duration and quantity of infected humans concentration to the 
concentration of M.ulcerans bacteria in the environment. We study the age-time domain 

(0, ) (0, )P A W= ×  with intervention ( )g a . With the above notations, we study the following 
infected-age- structured model with Mycobacterium ulcerans transmission. See Table 1 for a 
complete description of the model quantities and their units. 
 
                                  ( )aθ  ( , )R a t  
 
 
                                                                     
                                                                                         

( , )atΛ                          λ(a,t) ( , )S a t                                  ρ ( , )I a t  
 
 
                                                                    
                    ( )H aµ                                         ( )H aµ                                  ( )H aµ  
 
  
   
                   η        η δV 
      
 

Fig. 1. Proposed transmission dynamics of the Buruli ulcer between humans and M. 
ulcerans in the environment 

           
( )

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )
( ) ( )

H
H H

H H

B tS S
a t a S a t a S a t a R a t

t a k a B t
α β µ θ∂ ∂+ = Λ − − +

∂ ∂ +
,     (2a) 

 

1 2

( )
( ) ( , ) ( ) ( , ) (1 ( , )) ( , ) ( , ) ( , )

( ) ( )
H

H H
H H

B tI I
a S a t a I a t g a t I a t g a t I a t

t a k a B t
α β µ ρ ρ∂ ∂+ = − − − −

∂ ∂ +
, (2b) 

 

1 2(1 ( , )) ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , )H

R R
g a t I a t g a t I a t a R a t a R a t

t a
α ρ ρ µ θ∂ ∂+ = − + − −

∂ ∂
, (2c)  

                 

0

( , ) ( )H
V H

dB
I a t da B t

dt
η δ

∞

= −∫  .                                                                                              (2d)  

( , )S a t  ( , )R a t( , )I a t

M. ulcerans 
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For the above equations 
1

7

week

days
α =  is the coefficient introduced to balance the units of age a  

in weeks and time t  in days.  With respect to infected class, the multiplicative factors 1(1 )gρ −
and 2gρ  represent the rates of recovery for the individuals who have had no antibiotic treatment 

and those who have undergone such treatment respectively.   
 
2.1.1 The boundary and initial conditions 
 
Buruli ulcer disease does not transmit vertically from parent to infants and therefore we can infer 
that children have some immunity. In this regard, newborns will appear in the R  class in SIR 
model. This is significantly different from most , ,S I Rmodel. We translate this consideration to 
state the boundary conditions. 

(0, ) 0,S t = (0, ) 0I t = , 
0

(0, ) ( ( , ) ( , ) ( , )) ( ) ,
A

R t S a t I a t R a t f a da= + +∫   (2e)          

where the fecundity function   f is stated as    

        

21 ( 15)
sin   15 40

( ) 5 30

0   otherwise 

a
if a

f a
π −  ≤ ≤  =  


  

 
The fecundity function  (.)f  is stated here in units of per year for easier readability and assumes 
that from age 15 to 40 years a woman will give generally give birth to three children, since   

0

( ) 3
a

f a da
+

=∫ , where   60a+ =  is the largest age allowed for the simulation [17].    

  
 The initial conditions are stated as 
 

            0( ,0) ( )S a S a= , 0( ,0) ( )I a I a= , 0( ,0) ( )R a R a= and 00 HB B≤ ≤  .  (2f) 

 
2.2 Abstract Cauchy Problem Formulation 
 
We assume that all the parameters are nonnegative, i.e 0, 0, 0, 0H H V Hµ δ βΛ > > > > .  

The parameters fulfil the following assumptions. 
 

       (1)   The functions 1 2( ), ( ), ( ) (0, ),  where 1,2,3a a a L iρ ρ η ∞∈ ∞ = . 

       (2)   The function ( )aϕ is nonnegative and integrable. 
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2.2.1 Abstract cauchy problem 
 
In this section we seek to deal with quantitative properties of (2a)-(2d) as in [17,18].  In order to 
undertake this, we consider the Banach spaces. Characterize the space of functions        

1 1 1(0, ) (0, ) (0, )Y L L L= × ∞ × × ∞ × × ∞ℝ ℝ ℝ ,  

 

Endowed by the norm  1

3

1

;iY L
i

φ φ
=

=∑  

where  1 2 3( , , ) Yφ φ φ φ Γ= ∈ . Let us denote Y+ the positive cone of Y . It is well known that 

( , . )
Y

Y  is a Banach space. Let  : ( )A D A Y Y⊂ →  be a operator defined by 

' ,HAφ φ µ φ= − − with the domain  

 
Table 1. Model parameters and the state variables 

 
Quantity Descriptions 

( , )S a t  Susceptible humans of  age a  at time t  divided uniformly over all 
ages 

( , )I a t
 

Infected humans of age a  at time t  

( , )R a t  Removed and immune humans of age a  at time t  

( )HB t  
Mycobacterium ulcerans population 

( , )a tΛ  Recruitment rate of human population of age a  at time t 

( , )g a t  Antibiotic treatment rate for humans of age a  at time t  

Hβ
 

Contact rate of MU at age a  
 

( )f a
 

Maternity rate 

( )aθ
 

Rate of waning immunity of human at age   

Hk
 

Saturation constant of MU at age a  

�
 Natural mortality rate of human at age a  

1ρ  
Recovery rate of untreated Buruli ulcer 

2ρ  
Recovery rate of treated Buruli ulcer 

� Age – specific contribution of infected humans to the environment 
�
 Clearance rate of MU in the environment 
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[ ]

1

1,1 3
1 2 3 2

3
1 2 3

0

(0) 0

( ) ( , , ) (0, , ) and (0) 0

(0)
( ) ( ) ( ) ( )

a

D A W a

f a a a a da

φ
φ φ φ φ φ

φ
φ φ φ

+

+

  
  

   
    = = ∈ =      

   + +    
∫

ℝ . 

the function :F DA Y→ defined  by  
 

1 1 3

1

1 2 1 2 1 2 2 2

3
1 2 2 2 3

(1 )

(1 ) ( )

H
H H

H H

H
H H

H H

H

B

k B

B
F g g

k B

g g

β φ µ φ θφ
φ
φ β φ µ φ ρ φ ρ φ
φ

ρ φ ρ φ µ θ φ

 Λ − − + +
  
   = − − − −   +   

   − + − +
 
 

. 

2 1

0

F daηφ
+∞

= ∫  

 
Let us consider that  

0DA X= . 
 

Now by carefully observing ( ( ,.), ( ,.), ( ,.), ( ))HS t I t R t B t  in (2a)-(2d) together with  

( ) (0,0,0, ( ,.), ( ,.), ( ,.), ( )) ,Hu t S t I t R t B t Γ=
 

 
One obtains that ( )u t  satisfies the following abstract Cauchy problem 

                           ( ) ( )), t >1,
du

Au t F ut
dt

= +     (2.21a) 

together with the initial data 0 0 0 0(0) (0,0,0, , , , ) .u y S I R YΓ= = ∈  

We also take into account the positive cones 
 

3 31
+ 0+ 0 +Y (0, ) ,  Y Y Y .L+

+   = × ∞ = ∩   ℝ
 

 
Theorem 1: There exists a continuous semiflow ( ){ }

0
( )

t
U t

≥
on 0Y +  into itself such that for each 

0y Y+∈ , the map ( )t U t y→  is the unique integrated solution of (2.21a) with initial data y , 

namely ( )t U t y→ satisfies 
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(i) 
0

( ) ( ), 0,
t

U s yds D A t∈ ∀ ≥∫  

(ii) 
0 0 0

( ) ( ) ) ( ) )
t t t

U t y x A U s y ds F U s y ds= + +∫ ∫ ∫
 

 

Moreover we have for each 0y Y+∈ . 

 

t

lim sup U( )
H

t y y
µ→∞

Λ≤  

Proof:  
Let us take into consideration that for each N centered at 0 . One gets the existence of maximal 

positive semiflow for (2.21a) on 0Y +  into itself. It remains to prove that this semiflow is globally 

defined. In order to achieve this, let  0y Y+∈  be given and recall that 

 

( ) (0,0,0, ( ,.), (,.), (,.))U t y S t I R Γ= . 

 
Also let us consider the quantity 
 

0 0 0

( ) ( ) ( , ) ( , ) ( , )Q t U t y y S t a da I t a da R t a da
∞ ∞ ∞

= = + +∫ ∫ ∫ , HB ( )
H V

t
η

µ δ
Λ≤  

the total population at time t . Then it satisfies the differential inequality 
 

0limsup ( ) ,  ( )H
t H

U t y y y Y Q tµ
µ +

→∞

Λ≤ ∀ ∈ −  

 
Thus the map ( )t Q t→  cannot blow up in finite time and the global existence result follows.  

Let us in addition, notice that, from this inequality one gets 
 

0limsup ( ) ,  
t H

U t y y y Y
µ +

→∞

Λ≤ ∀ ∈ . 

One the other hand one has 
 

( )
( )H

dQ t
Q t

dt
µ= Λ −  

Hµ≥ Λ − . 

So that  
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0lim inf ( ) ,  
t

H

U t y y y Y
µ +→∞

Λ≤ ∀ ∈  , HB ( )
H V

t
η

µ δ
Λ≤ . 

 
This completes the proof of the result. 
 
2.3 Equilibria and Their Stabilities 
 

Let  [0, )max{ }, supessη η η η∞= = . It is easy to demonstrate the following set is positively 

invariant for the system (2a-d) 
 

H

0 0 0

( , , , ) ( ( , ) ( , ) ( , )) ,  B ( )H
H H V

W S I R B S a t I a t R a t da t
η

µ µ δ

∞ ∞ ∞ Λ Λ= + + ≤ ≤∫ ∫ ∫
  (2.23a) 

 

System of equation (2a-d) always has the disease free equilibrium ,0,0,00
H aE eµ Λ 

 
. To simplify 

expressions, we introduce the following notations  
 

1

0

( ( ) ( ))
( )( )

a

v g v dv
u aa e e

ρ

π
− +

−
∫

= . 
 

Let * * * *( ( ), ( ), ( ), )HS a I a R a B  represent any arbitrary endemic equilibrium of the model (2a-d). 

This equilibrium satisfies the following equations 
 

**
* * *

*

( )
( , ) ( ) ( ) ( ) ( ) ( ) ( )

( )
H

H H
H H

BdS a
a t a S a a S a a R a

da k a B
β µ θ= Λ − − +

+
,   (2.4a) 

 
**

* * * *
1 2*

( )
( ) ( ) ( ) ( ) (1 ( )) ( ) ( ) ( )

( )
H

H H
H H

BdI a
a S a a I a g a I a g a I a

da k a B
β µ ρ ρ= − − − −

+
 (2.4b) 

 
*

* * * *
1 2

( )
(1 ( )) ( ) ( , ) ( ) ( ) ( ) ( ) ( )H

dR a
g a I a g a t I a a R a a R a

da
ρ ρ µ θ= − + − −    (2.4c) 

 
=

* *

0

( ) 0H
V H

dB
I a da B

dt
η δ

∞

= − =∫
,        (2.4d) 

 
Solving   the second   and fourth equations of (2.4b)-(2.4d) respectively, leads 
 

* *( ) (0) ( )I a I aπ= , 
 

* *

0

1
( )H

V

B I a daη
δ

+∞

= ∫ . 
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Let 

           0 1

0

[ ( ) ( )]H

H V

R a a da
β η π
µ δ

∞Λ= ∫ .     (2.4e) 

 
According to [16] 0R  in (2.4e) can be regarded as the basic reproduction number of the disease 

and explained as follows. Since the total infectivity at time t  is the sum of the infectivity in the 

compartment and the Mycobacterium ulcerans compartment, we define 0 I BR R R= +  where 

0

0

( ) ( )I HR S a a daβ π
∞

= ∫
 

 
is the number of secondary cases generated by individual in the infective compartment, and 

0
H

S
µ
Λ=  is the number of susceptible individuals in the absence of the disease. The term 

1 2
0

( ( ) (1 g( )) ( ))

( )

a

H v v g v dv

a e
µ ρ ρ

π
− + − +

=
∫

is the survival probability as a function of age a in the 

infected class. 
 
The reproduction number of the infectious caused by the free Mycobacterium ulcerans is  
 

0

0

( ) ( )H
H

V

RB S a a da
β η π
δ

∞

= ∫ . 

 
Now we consider the existence of the endemic equilibria. From (2.4b) and (2.4d), we obtain that 

the equilibrium level of susceptible individual *S  satisfies the following equations 
 

( )

( )
( )* 0

1 2

0

1
( )

( ) (1 ( ) ( ) ( )

( )

H
V

H

H

V

k a

S a g a g a a

a

ηπ
δ

µ ρ ρ π
β ηπ
δ

+∞

+∞

+
= + − +

∫

∫

. 

 

3 Existence of the Solution to the State System by Method of 
Characteristics  

 
We determine solution of the system applying the method of characteristics [19]. By using Banach 
contraction mapping principle, we prove the existence and uniqueness of the solutions of the 
system. To compute the solution representation for the system (2a)-(2b), we add new notation to 
the right hand side of the partial differential equation (PDEs):  
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1

( )
( ( ), ( , ), ( , )) ( , ) ( ) ( , ) ( ) ( , )

( ) ( )
H

H H
H H

B t
f B t S a t R a t a t a S a t a R a t

k a B t
β θ= Λ − +

+
                   (3a) 

                           

2 1 2

( )
( ( ), ( , ), ( , ), ( , )) ( ) ( , ) (1 ( , )) ( , ) ( , ) ( , )

( ) ( )
H

H H
H H

B t
f B t S a t I a t g a t a S a t g a t I a t g a t I a t

k a B t
β ρ ρ= − − −

+  

(3b) 

 
3 1 2( ( , ), ( , ), ( , ), ( , )) (1 )( , )) ( , ) ( , ) ( , ) ( ) ( , )f S a t I a t R a t g a t g a t I a t g a t I a t a R a tρ ρ θ= − + − .            (3c) 

 

A notice was made that, ( ) ( , )H a S a tµ , ( ) ( , )H a I a tµ and ( ) ( , )H a R a tµ were not part of the 

if  for 1,2,3i =  terms. They were added in the left side of the three partial differential equations 

(2a-c) to make use in the representation of the solution based on characteristics.  
 
Let B be chosen such that  

 0 0 0

0 0 0

( ) , ( ) , ( )
A A A

S a da B I a da B R a da B≤ ≤ ≤∫ ∫ ∫ ,    

and 00 HB B≤ ≤ , 
  
 The state solution is defined as  
 

{ 3( , , , ) ( (0, ; '(0, ))) ( (0, ) )HY S I R B L T L A L T∞ ∞= ∈ ×  

}

0 0

0

( , ) 2 , ( , ) 2 ,

( , ) 2 , ( ) 2

A A

t t

A

H
t

sup S a t da B Sup I a t da B

sup R a t da B B t B

≤ ≤

≤ ≤

∫ ∫

∫
 

   
By applying the method of characteristics, we can determine the representation of the solution   
and then use that representation to construct the map to be employed in the fixed point argument 
for existence and uniqueness. Now we define a map 
 

:L Y Y→  such that 
 

1 2 3 4( , , , ) ( ( , , , ), ( , , , ), ( , , , ), ( , , , ))H H H H HL S I R B L S I R B L S I R B L S I R B L S I R B=  

 where 1L is associated with equation (2a) and 2L is associated with equation (2b) and where  
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1

( )0
0

0

1

0

1

( )

( )

( )

( ( ( ), ( , ),

( , )))( , , , )( , )
 

1

( ( ( ), ( , ), ( , ))

 ,

H

a
H

s

t

H S a t

t

t H
s

H

a

H

d

t a d

t a d

f B s S s a t s

R s a t s ds

e

e

L S I R B a t
if a t

e

s t a s t a s t a
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− − + ×

+ −

+ −







+




= 
>

 
 
 

+ − + − + −

<

∫
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∫
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
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
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
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with 

( )
4 0

0 0

( , , , )( ) ( , )L L

t A
t t s

H HL S I R B t B e e I a t dadsδ δ η− − −= + ∫ ∫
 

 
A   fixed point of the map L was derived, meeting the conditions  
 

1 2 3 4( , , , ) ( , , , )( , , , ),H HS I R B L L L L S I R B=  
 

with each one of ( , ), ( , ), ( , )S a t I a t R a t and HB  being positive, will be a solution 

( , , , ) ( , , , )( )H HS I R B S I R B g=  to the system of the model. 

 
Theorem 2: (Existence and Uniqueness of solution). For g W∈  as defined in (2.23a) and D  

sufficiently small, there exists a unique solution ( , , , )HS I R B to the system (2a) –(2c) with 

boundary 2e and initial conditions 2f 
 
Proof : We prove that the map  
 

:L Y Y→  
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stated above is a strict contraction. Note that the function 1f , 2f  and 3f  used in the , ,S I R 

equations are Lipschitz in their arguments with the Lipschitz constants base on coefficients and 
parameters from our model and also on B, an addition to the bounds on , ,S I Rfrom the set Y  . 

The definition of the map L , was given to show that L maps Y into Y and the definition of the 
Li functions for 1,2,3i = was expressed as 

 

1

0

( , , , ) ( , ) 2
A

i HL S I R B a t da D BW B B≤ + ≤∫  

where the single B in the first inequality obtained from the bound of 0 0

0 0

( ) , ( ) ,
A A

S a da I a da∫ ∫ or

0

0

( ) ,
A

R a da∫  respectively for 1,2,3.i = By the fact W  is sufficiently minimal, then  the above 

estimate is less than or equal to 2B.  
In an addition for 1,2,3j =  
 

0 2( , , , ) sup{ } 2j H HL S I R B B D BW B≤ + ≤  . 

 
The constants D1 and D2 hinge upon the coefficients and the parameters in the model. Also for 
D  to be sufficiently small, we get the estimates above and hence, the L maps Y into Y.  
 
Note that for the contraction property, for 1,2,3i =  we take into account  

1 1 1 1 2 2 2 2

0

( , , , ) ( , , , ) ( , ) .
A

i H i HL S I R B L S I R B a t da−∫  

There is a need to examine some of the terms on the model such as 

( )
( ) ( , )

( ) ( )
H

H
H H

B t
a S a t

k a B t
β

+
 and in specific their differences. For instance, we have   

 

( )2 1 21
1 2

1 2

, ( )( )
( , )

( ) ( ) ( ))( ( ))
H H HH

H H H H H H

S a t k B B tB t
S S a t

k a B t k B t k B t

−
− +

+ + +
   (4) 

 
and consider from equations (3a) and (3b). In order to make things simple, we show an estimate of 

such a term for a tα>  in 1( , , , )( , )HL S I R B a t  
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0 0

( )HA t

t
t a d

se

µ ατ α τ− − + ×∫

∫ ∫

 
 

2
2 1

2

( )
( , )( ( , )

( )
H

H
H H

B s
B s a t s S S s a t s

k B s
α α α α+ − − + −

+  
 

1 2 1

1 2

( , ) ( )

( ( ))( ( ))
H H H

H H H H

S s a t s k B B s

k B s k B s

α α+ − −
+

+ +  
 

2 1( , )( )( , )s a t s R R s a t s dsdaθ α α α α+ + − − + −  
 

Note that we let 1 ( )s s t aα= − +  and 2s s= then 0 ( )t a s t a aα α< − + < − + <  or 

0 ( )s t a A< − + <  and 20 s W≤ < . In addition, the Jacobian for this transformation becomes 

finite. Hence, we can now bound the estimate above by 
 

3 2 1 1 2 4 2 1 1 2 1 2

0 0

( , ) ( , )
T A

D S S s s D R R s s ds ds− + −∫ ∫
 

 

5 1 1 2 1 2 2 1 2 2

0 0

( , ) { ( ) ( ) }
T A

H HD S s s ds B s B s ds+ −∫ ∫
 

 

( )6 2 1 2 1

0

sup ( , )
A

t
D W S S R R a t da≤ − + −∫

 
 

7 2 1sup ( )H H
t

D NW B B t + − 
 

 
In the above equations, we have substituted 1S  and 2S  by a  and t respectively. Again, the 

constants kD  for 3,...,7k =  depend on the bounds of the coefficients. For terms that consist of 

the fractional parts, we have employed the 2B bound for the terms made up of the iS  for 1, 2i =  

in the second term of 7 for integrals over (0,A)×(0, t) when a tα> or for integrals over (0,A) × 
(0, a) when a tα α< < Τ . We can determine these estimates which lead 
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1 1 1 1 1 1 2 2 2 2

0

( , , , ) ( , , , ) ( , )
A

H HL S I R B L S I R B a t da−∫
 

 

( )8 2 1 2 1 9 2 1

0

sup ( , ) sup ( )
A

H H
t t

D W S S R R a t da D NW B B t ≤ − + − + − ∫ . 

 
Similarly we estimate for 2,3j =  and for 4,5j = we have  
 

1 1 1 1 2 2 2 2( , , , ) ( , , , ) ( )j H j HL S I R B L S I R B t−
 

 

1 2 10 1 2

0

sup ( , ) sup ( )
A

H H
t t

W I I a t da D B B t≤ − + Ω −∫ , 

  
where  10D  has to do with η  and δ . 

 
By putting the work and carefully selecting W  sufficiently small, we obtain the contraction result 
and therefore , desire fixed point to the system 2 –2d. 
 

4 Numerical Simulations 
 
We state briefly the numerical method employed in our simulations. The equations for the 
quantities S , I  and R  from (2a) —(2c) from hyperbolic system of PDEs; in addition to these, 

we have one ODE for HB  from 2d. Our choice of numerical method is a forward time/ backward 

space finite difference [20]. For the convenience of our model, we use the scalar one- way wave 
equation. 
 

( , )
u u

f a t
t a

α∂ ∂+ =
∂ ∂  

 
where α  is a constant (that is the wave speed), and t  and x  denote time and space, respectively. 
The forward time/backward space scheme [20] for the above model is expressed as                             

 
1

1 ( , )
n n n n

m m m m
m n

f f f f
q x x

t x
α

+
−− −− =

∆ ∆
, 

 
where n  stands for the time index and m the space index in the time and space grid. The stability 
of our scheme is achieved by applying Courant-Friedrich-Levy (CFL) condition [20] to ensure a 
necessary and sufficient condition and satisfies that 
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x tα∆ ≤ ∆
 

For a given spatial discretization x∆ , this produces a restriction on the time step as /t x α∆ ≤ ∆  
 

5 Simulations with no Infected Individuals 
 
Buruli ulcer disease requires more antibiotic in children than adults. We model the rate of losing 
immunity of humans at age a by 
 

1/ 365  15 ( )
( )

1/ 2.363   15 ( )

for a year s
a

for a year s
θ

≤
=  >

. 

 
The rate of waning is important because it influences our choice of initial conditions 
 
We assumed a pool of 20, 000 humans distributed uniformly over the age range 0 Aα≤ ≤ , for 

all ages a at 0t = . Therefore, all 20, 000 humans are distributed to the susceptible and removed 
classes. Based on the rate of losing immunity conditions for children and adult, it requires a year 
for a newborn baby to lose his or her immunity and become susceptible to Buruli ulcer. In this 
regard, we initialize everyone with age less than or equal to one year old in the removed section 
and everyone older than one year old in the susceptible section. This leads to the initial conditions 

 

0  0 40 
( ,0)

  40 

if a weeks
S a

d if a weeks

≤ ≤
=  >  

 
0  0 40 

( ,0)
  40 

if a weeks
R a

d if a weeks

≤ ≤
=  >

. 

 
for the  susceptible and removed population, respectively. The numerical value of the age density 
d in the initial conditions depends on the number of humans and the numerical resolution of the 
age variable. 
 
By applying numerical and having age resolution in weeks, we will then have to have a fixed 
density d for each age for0 40α≤ ≤ , given by 
 

20,000 (humans)
8.33 humans / weeks

50 (weeks / year) 60 (year)
d = ≈

×  
 

This provides the values of d in the initial conditions for ( ,0)S a  and ( ,0)R a . Given the age 
resolution of 1 week, that at the initial time with constant density d, this leads 40 to 333 humans of 
each age a. In other words, we are saying that 20, 000 total humans are distributed to the ages 0 to 
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60 uniformly as 20,000 / 60 333≈ humans. See Table 2 for a complete description of the 
model parameters  value  and their sources. 
 

Table 2. These are the values of the model parameters in the simulation 
 

Parameter Value/Range Sources 
( , )a tΛ  0 Estimated 

( , )g a t  0.8 Estimated 

HB  
1.5/7 [2] 

Hk  
105 Estimated 

Hβ  0.00065 [2] 

( )H aµ  0.45 [2] 

1ρ  1/5 Estimated 

2ρ  1/3 Estimated 

η  

Vδ  

0.04 
1/5 

Estimated 
Estimated 
 

 
In Fig. 2 billow, we show the dynamics in the total population, susceptible population, infected 
population, and recovered population over time. We note here, the decrease in the susceptible 
population, which is attributed to humans who died of natural causes during the period-line of the 
simulation. Furthermore, we notice an increase in recovered population, which is partly due to 
antibiotic and partly due to natural recovery of MU by humans. 
 
This however, takes sometime for human to lose immunity to get back to susceptible class and is 
governed by the rate of waning of immunity. In Fig. 2b we see that the infection reduced with 
respect to time and this could be inferred from people getting awareness of MU and antibiotic 
medications which are now available to BU patients. Even though there is no epidemic in this 
simulation, our model indicates more than just the population dynamics. Our three-dimensional 
surface plots in Fig. 3 depict the advantages of this age-structured model even in this basic 
simulation. Each plot in Fig. 3 indicates the number of humans at an age a  in years at time t in 
weeks; the colour provides the same information as the height of surface. The number of humans 
at a particular age is calculated by integrating each density. For instance ( , )S a t  from a years to 

1a + years by 
1

( , )
a

a

S a t d a
+

∫ constituting the basic apprehension that humans from age a  to 

1a +  
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Fig. 2. Shows simulations of BU with susceptible, infected population and recovered 
population dynamics over time 

 
are taken to be a years old. Notice that we use a resolution of 1 week in age, thus at the initial time 
with constant densityd . This leads 52 120≈ humans of each age a . We also examined the 

dynamics of HB  over time which is shown in Figs. 2(d). It depicts a peak within few days of the 

spread of BU and this is due to the fact that initially people do not pay attention to the 
environment.  Hence a greater accumulation in the entire area in the curve was observed. 
 
To make excessive use of our PDE model, we can observe at the model quantities in Fig. 3 which 
indicate how the quantities vary over time across different age groups. For instance, in Fig. 3, in 
the surface plot of the susceptible, infected and recovered population, the height (the vertical 
coordinate) at point ( , )a t  is the number of susceptible, infected and recovered people of age a  

at time t  as the height of surface respectively. Since the susceptible and infected populations 
decline, as anticipated, the recovered rise over time and age. We note that owing natural recovery 
and antibiotic given, the recovered increase. There is a decrease in both Fig. 3(a) and 3(b) as 
assumed to crop up as a result of medication and long duration for humans to who have recovered 
to wane their immunity. We note a rise in the Fig. 3(c) as a result of   high recovery rate based on 
natural and antibiotic medications. 
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Fig. 3. Shows simulation of BU with susceptible, infected population and recovered 
population dynamics as function of age and time 

 

6 Conclusion 
 
An age-structured model can model the infection pathway of Buruli ulcer more accurately since 
the risk for contracting the disease has something to do with the age of a human being [5]. We 
observe that introducing age as another independent variable encompasses solving a system of 
partial differential equations instead of simpler ordinary different equation systems and this brings 
in new challenges for the existence of a solution of the system, and for the numerical method. We 
also present our existence result for the PDE system applying a fixed point argument. We 

determined the reproduction number of BU disease0R . We present time dependent , ,S I R
simulation. We also present numerical simulation on both age and time the dynamics of BU 
disease. We also observe that Mycobacterium ulcrans spread is facilitated by the behaviour of 
humans as the rate of recovery untreated Buruli ulcer depend on the immunity. Treatment of 
Buruli ulcer at early stages reduces the epidemiology of BU disease. The inclusion of treatment 
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control strategies in an age-structured Buruli ulcer model will help in further explanation of the 
dynamics of BU. 
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