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Abstract

In this paper, we define the band matrix T = (tnk) by

tnk =


tn , k = n
− 1
tn

, k = n− 1

0 , k > n or 0 ≤ k < n− 1,

where tn > 0 for all n ∈ N and (tn) ∈ c\c0. By using the matrix T , we introduce the sequence

space `p(T ) for 1 ≤ p ≤ ∞. Also, we give some inclusion theorems related to this space and

find the α-, β-, γ- duals of the space `p(T ). Lastly, we investigate the necessary and sufficient

conditions for an infinite matrix to be in the classes (`p(T ), λ) or (λ, `p(T )) and give the norm of

the operators in B(`p(T ), µ(S)), where λ ∈ {`1, c0, c, `∞} and µ ∈ {`1, `∞}.
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1 Introduction and Preliminaries

Let ω be the space of all real or complex valued sequences. We shall write supk and
∑
k instead

of supk∈N and
∑∞
k=0, respectively, where N = {0, 1, 2, ...}. Also, if x = (xk)∞k=0 ∈ ω, we simply

denote it by x = (xk). Further, e = (1, 1, ...) and e(k) is the sequence whose kth term is 1 and the

other terms are 0, that is, e(k) = (e
(k)
0 , e

(k)
1 , ..., e

(k)
k , ...) = (0, 0, ..., 1, ...). Any vector subspace of ω

is called a sequence space. By `∞, c, c0 and `p (1 ≤ p < ∞), we denote the spaces of all bounded,
convergent, null sequences and p−absolutely convergent series, respectively.

A sequence space λ with a linear topology is called a K-space provided each of the maps pn : λ→ C
defined by pn(x) = xn is continuous for all n ∈ N, where C is the set of all complex numbers. If a
K-space λ is a complete linear metric space, it is called an FK-space. A normed FK-space is called
a BK-space, that is, a BK-space is a Banach sequence space. For example, the sequence space
`∞ is a BK-space with the norm given by ‖x‖`∞ = supk |xk|. Further, `p is a complete p−normed
space and a BK-space in the cases of 0 < p < 1 and 1 ≤ p < ∞ with respect to the usual p-norm
and `p-norm defined by

‖x‖`p =
∑
k

|xk|p (0 < p < 1)

and

‖x‖`p =

(∑
k

|xk|p
)1/p

(1 ≤ p <∞),

respectively.

Let λ and µ be sequence spaces and A = (ank) be an infinite matrix of real or complex numbers
ank, where n, k ∈ N. Then A gives a matrix transformation from λ into µ and we write A : λ→ µ if
for every sequence x = (xk) ∈ λ, the sequence Ax = (An(x)), the A−transform of x, is in µ, where

An(x) =
∑
k

ankxk (n ∈ N). (1.1)

By (λ, µ), we denote the class of all infinite matrices that map λ into µ. Hence A ∈ (λ, µ) if
and only if the series on the right side of (1.1) converges for each n ∈ N and every x ∈ λ, and
Ax ∈ µ for all x ∈ λ. If λ and µ are any two Banach spaces, then B(λ, µ) denotes the set
of all bounded linear operators from λ into µ. The operator norm of A ∈ B(λ, µ) is given by
‖A‖ = sup{‖Ax‖µ : x ∈ λ, ‖x‖λ ≤ 1}.

Let λ be a sequence space. Then the matrix domain λA of an infinite matrix A is defined by

λA = {x = (xk) ∈ ω : Ax ∈ λ}

which is also a sequence space.

In the literature, there are many papers related to new sequence spaces constructed by means of
the matrix domain of a special triangle. See, for example [1,2,3,4,5,6,7,8]. For more details about
matrix domains of triangles, one can see [9].

A sequence (bn) in normed space λ is called a Schauder basis for λ if for every x ∈ λ there is a
unique sequence (αn) of scalars such that x =

∑
n αnbn, i.e.,

lim
m→∞

‖x−
m∑
n=0

αnbn‖ = 0.
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By cs0, cs and bs, we denote the set of all convergent to zero, convergent and bounded series,
respectively, that is, cs0 = {x = (xk) ∈ ω :

(∑n
k=0 xk

)∞
n=0

∈ c0}, cs = {x = (xk) ∈ ω :
(
∑n
k=0 xk)∞n=0 ∈ c} and bs = {x = (xk) ∈ ω : (

∑n
k=0 xk)∞n=0 ∈ `∞}, and we define the norm

on cs0, cs and bs by ‖x‖cs0 = ‖x‖cs = ‖x‖bs = supn
∣∣∑n

k=0 xk
∣∣. Let λ and µ be subsets of ω. For

all z ∈ ω, we write z−1 ∗ µ = {x ∈ ω : xz = (xkzk) ∈ µ}. The set Z = M(λ, µ) = ∩x∈λx−1 ∗ µ =
{a ∈ ω : ax ∈ µ for all x ∈ λ} is called the multiplier space of λ and µ. In the special case, where
µ = `1, µ = cs or µ = bs, the multiplier spaces λα = M(λ, `1), λβ = M(λ, cs) and λγ = M(λ, bs)
are called the α-, β- and γ- duals of λ.

Throughout this paper, we assume that p, q ≥ 1 with 1
p

+ 1
q

= 1 and denote the collection of all
finite subsets of N by F .

The difference operator ∆ : ω → ω is defined by ∆x = (∆xk) = (xk − xk−1) or ∆x = (∆xk) =
(xk−1 − xk) for all x = (xk) ∈ ω. The matrix domain λ∆ is called the difference sequence space
whenever λ is a sequence space. Firstly, the notion of difference sequence spaces was defined by
Kızmaz [10] as

λ(∆) = {x = (xk) ∈ ω : (xk−1 − xk) ∈ λ}

for λ = `∞, c and c0. After Kızmaz [10], Et and Çolak [11] defined the generalized difference
sequence spaces

`∞(∆m) = {x = (xk) ∈ ω : ∆mx ∈ `∞},

c(∆m) = {x = (xk) ∈ ω : ∆mx ∈ c}

and

c0(∆m) = {x = (xk) ∈ ω : ∆mx ∈ c0},

where m ∈ N, ∆mx = (∆mxk) = (∆m−1xk −∆m−1xk+1) and so that

∆mxk =
m∑
i=0

(−1)i
(
m
i

)
xk+i.

The difference space

bvp = {x = (xk) ∈ ω : (xk − xk−1) ∈ `p} (0 < p <∞)

was studied by Altay and Başar [12] for 0 < p < 1 and in the case 1 ≤ p ≤ ∞ Başar and Altay [13],
and Çolak et al [14]. Recently, for λ ∈ {`p, c0, c, `∞} (1 ≤ p <∞), Kirişçi and Başar [6] introduced
the generalized difference sequence space

λ̂ = {x = (xk) :∈ ω : B(r, s)x = ((B(r, s)x)k) ∈ λ},

where B(r, s)x is the sequence defined by (B(r, s)x)k = rxk + sxk−1 for all k ∈ N and r, s ∈ R\{0}.
Quite recently, the sequence space

λ(B) = {x = (xk) ∈ ω : B(r, s, t)x = ((B(r, s, t)x)k) ∈ λ}

was studied by Sönmez [15], where (B(r, s, t)x)k = rxk + sxk−1 + txk−2 for all k ∈ N and r, s, t ∈
R\{0}.
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In [16], the Fibonacci band matrix F̂ = (f̂nk) was defined by

f̂nk =


− fn+1

fn
, k = n− 1

fn
fn+1

, k = n

0 , 0 ≤ k < n− 1 or k > n

for all k, n ∈ N, where fn is the nth Fibonacci number (n ∈ N). Also, in [16 ] the Fibonacci
difference sequence spaces introduced as follows:

`p(F̂ ) =

{
x = (xn) ∈ ω :

∑
n

∣∣∣∣ fnfn+1
xn −

fn+1

fn
xn−1

∣∣∣∣p <∞
}

(1 ≤ p <∞)

and

`∞(F̂ ) =

{
x = (xn) ∈ ω : sup

n

∣∣∣∣ fnfn+1
xn −

fn+1

fn
xn−1

∣∣∣∣ <∞} ,
where F̂ x is the F̂ -transform of a sequence x = (xn).

Candan [17] defined the sequential generalized difference matrix B(r̃, s̃) = {bnk(r̃, s̃)} by

bnk(r̃, s̃) =


rn , k = n
sn , k = n− 1
0 , 0 ≤ k < n− 1 or k > n

for all n, k ∈ N, where r̃ = (rn) and s̃ = (sn) are convergent sequences of positive real numbers.
Moreover, Candan [17] introduced the sequence space

λ̃ = {x = (xk) ∈ ω : B(r̃, s̃)x = ((B(r̃, s̃)x)k) ∈ λ},

where (B(r̃, s̃)x)k = sk−1xk−1 + rkxk for all k ∈ N, λ ∈ {`∞, c, c0, `p} and 1 ≤ p < ∞. Further in
[18,19,20,21,22,23,24,25], several authors defined and studied some new difference sequence spaces.

The paper is organized so that this section is followed by three sections. In Section 2 we define a
new band matrix and introduce the sequence spaces `p(T ) and `∞(T ), where 1 ≤ p <∞. We prove
that `p(T ) and `∞(T ) are Banach spaces with respect to the norm defined on these spaces. Further,
we establish some inclusion theorems related to the space `p(T ), where 1 ≤ p ≤ ∞. In section 3 we
determine the α-, β-, γ- duals of the space `p(T ) for 1 ≤ p ≤ ∞. In the last section we characterize
the classes (`p(T ), λ) and (λ, `p(T )) for λ ∈ {`1, c0, c, `∞} and also give the norm of an operator
in the class (`p(T ), µ(S)) for µ ∈ {`1, `∞}, where S is the band matrix having the same properties
with T and 1 ≤ p ≤ ∞.

2 The Difference Sequence Space `p(T )

In the present section, we define a new band matrix T and introduce the difference sequence space
`p(T ) by using this matrix, where 1 ≤ p ≤ ∞. Also, we present some theorems which give inclusion
relations corcerning this space.

Let tn > 0 for all n ∈ N and t = (tn) ∈ c\c0. We define the band matrix T = (tnk) by

tnk =


tn , k = n
− 1
tn

, k = n− 1

0 , k > n or 0 ≤ k < n− 1.
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One can easily derive that the inverse T−1 = (gnk) of the band matrix T is given by

gnk =

 tk
n∏
j=k

1
t2j

, 0 ≤ k ≤ n

0 , k > n

for all k, n ∈ N.

Now, we introduce the difference sequence spaces `p(T ) and `∞(T ) by

`p(T ) =

{
x = (xn) ∈ ω :

∑
n

∣∣∣∣tnxn − 1

tn
xn−1

∣∣∣∣p <∞
}

(1 ≤ p <∞)

and

`∞(T ) =

{
x = (xn) ∈ ω : sup

n

∣∣∣∣tnxn − 1

tn
xn−1

∣∣∣∣ <∞} .
As the notation of matrix domain, the sequence spaces `p(T ) and `∞(T ) may be represented by

`p(T ) = (`p)T (1 ≤ p <∞) and `∞(T ) = (`∞)T .

The space `p(T ) is more general and more comprehensive than the spaces `p(F̂ ) and bvp, that is
`p(T ) contains both of them, where 1 ≤ p ≤ ∞. Let tn = fn

fn+1
(n ∈ N), then T is the Fibonacci

band matrix F̂ and let (tn) = e, then T is the difference matrix ∆. On the other hand, the space

`p(T ) is not a special case of the space ˜̀p = (`p)B(r̃,s̃) defined by Candan [17]. To put it more
explicitly, if we take tk and −1/tk instead of rk and sk−1, respectively, this contradicts the fact that
sk > 0 for all k ∈ N.

We will frequently use the sequence y = (yn) for the T -transform of a sequence x = (xn), that is,

yn = Tn(x) =

{
t0x0 , n = 0

tnxn − 1
tn
xn−1 , n ≥ 1

(n ∈ N). (2.1)

Theorem 2.1. Let 1 ≤ p ≤ ∞. Then `p(T ) is a Banach space with the norm ‖x‖`p(T ) = ‖Tx‖`p ,
that is,

‖x‖`p(T ) =


(∑
n

|Tn(x)|p
)1/p

, 1 ≤ p <∞

sup
n
|Tn(x)| , p =∞.

Proof. Suppose that ‖x‖`p(T ) = 0. Then, ‖Tx‖`p = 0 and since ‖.‖`p is a norm we have Tx = θ.
Since T is invertible, we have x = θ.

Let α ∈ C and x ∈ `p(T ). Then,

‖αx‖`p(T ) = ‖T (αx)‖`p = ‖αTx‖`p
= |α|‖Tx‖`p = |α|‖x‖`p(T ).

Lastly, for x, z ∈ `p(T ) we have

‖x+ z‖`p(T ) = ‖T (x+ z)‖`p = ‖Tx+ Tz‖`p
≤ ‖Tx‖`p + ‖Tz‖`p = ‖x‖`p(T ) + ‖z‖`p(T )
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and so the triangle inequality holds.

Hence, (`p(T ), ‖.‖`p(T )) is a normed sequence space for 1 ≤ p ≤ ∞. To prove that `p(T ) is a Banach
space, let (xn) be a Cauchy sequece in `p(T ). Then, (yn) is a sequence in `p. Clearly,

‖xn − xm‖`p(T ) = ‖T (xn − xm)‖`p
= ‖Txn − Txm‖`p = ‖yn − ym‖`p ,

that is, (yn) is a Cauchy sequence in `p. Since (`p, ‖.‖`p) is a Banach space, there exists y ∈ `p such
that limn→∞ yn = y in `p. Since x = T−1y, we have

lim
n→∞

‖xn − x‖`p(T ) = lim
n→∞

‖T (xn − x)‖`p

= lim
n→∞

‖Txn − Tx‖`p = lim
n→∞

‖yn − y‖`p = 0.

This means that limn→∞ xn = x in `p(T ), where x ∈ `p(T ). The proof is completed.

Remark 2.2. It is clear that `p(T ) is a BK-space for 1 ≤ p ≤ ∞.

Theorem 2.3. The difference sequence space `p(T ) is linearly isomorphic to the space `p, that is,
`p(T ) ∼= `p for 1 ≤ p ≤ ∞.

Proof. We must show that there exists a linear bijection between the spaces `p(T ) and `p for
1 ≤ p ≤ ∞. Let T be the transformation defined from `p(T ) to `p by x→ y = Tx = (Tn(x)). Then,
we have Tx = y ∈ `p for every x ∈ `p(T ). It is clear that T is a linear transformation. Also, it is
obvious that x = θ whenever Tx = θ and so that T is injective.

Furthermore, let y = (yn) ∈ `p be given for 1 ≤ p ≤ ∞ and define the sequence x = (xn) as follows:

xn =

n∑
k=0

 n∏
j=k

1

t2j

 tkyk (n ∈ N). (2.2)

Then, by combining (2.1) and (2.2), we get for every n ∈ N

Tn(x) = tnxn −
1

tn
xn−1

= tn

n∑
k=0

 n∏
j=k

1

t2j

 tkyk −
1

tn

n−1∑
k=0

n−1∏
j=k

1

t2j

 tkyk

= tn

(
n∏
j=n

1

t2j

)
tnyn + tn

n−1∑
k=0

 n∏
j=k

1

t2j

 tkyk −
1

tn

n−1∑
k=0

n−1∏
j=k

1

t2j

 tkyk

= yn.

This means that Tx = y. Since y ∈ `p, we have Tx ∈ `p. Thus, we conclude that x ∈ `p(T ) for any
y ∈ `p. Hence T is surjective.

Since ‖x‖`p(T ) = ‖Tx‖`p for any x ∈ `p(T ), we have

‖y‖`p = ‖Tx‖`p = ‖x‖`p(T )

which shows that T preserves the norm, where 1 ≤ p ≤ ∞. Hence, T is an isometry. As a
consequence, the spaces `p(T ) and `p are isometrically isomorphic for 1 ≤ p ≤ ∞. This completes
the proof.

It is known that the space `p is not a Hilbert space with p 6= 2. The similar result is valid for the
space `p(T ) and the following theorem gives this result.
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Theorem 2.4. The space `p(T ) is not an inner product space in the case p 6= 2. Hence, `p(T ) is
not a Hilbert space for 1 ≤ p <∞ and p 6= 2.

Proof. We must show that the space `2(T ) is a Hilbert space while `p(T ) is not a Hilbert space for
p 6= 2. By Theorem 2.1, we know that `2(T ) is a Banach space with the norm ‖x‖`2(T ) = ‖Tx‖`2
and its norm can be obtained as follows:

‖x‖`2(T ) = 〈x, x〉1/2`2(T ) = 〈Tx, Tx〉1/2`2
= ‖Tx‖`2

for every x ∈ `2(T ). Hence `2(T ) is a Hilbert space.
Consider the sequences

u = (un) =


1
t0

, n = 0

(t1 + 1
t0

)
n∏
i=1

1
t2i

, n ≥ 1
(n ∈ N)

and

v = (vn) =


1
t0

, n = 0

(−t1 + 1
t0

)
n∏
i=1

1
t2i

, n ≥ 1
(n ∈ N).

With the T -transforms of u and v, we have the following sequences

Tu = (1, 1, 0, 0, ...) and Tv = (1,−1, 0, 0, ...).

Also, it is easy to see that

‖u+ v‖2`p(T ) + ‖u− v‖2`p(T ) = 8 6= 4(22/p) = 2(‖u‖2`p(T ) + ‖v‖2`p(T ))

for p 6= 2. This means that the parallelogram equality cannot be satisfied by the norm of the space
`p(T ) for p 6= 2. Therefore, this norm cannot be obtained from an inner product. Hence, the space
`p(T ) with p 6= 2 is a Banach space but it is not a Hilbert space, where 1 ≤ p < ∞. The proof is
completed.

Remark 2.5. Obviously, the space `∞(T ) is also a Banach space but it is not a Hilbert space.

Before giving some inclusion relations concerning the space `p(T ), we give a lemma which is
necessary to show that some inclusions strictly hold.

Lemma 2.6. [[26] Theorem 3. page 219]inf.pro] A product
∏
n(1 + an) with positive terms an is

convergent if and only if the series
∑
n an converges.

Now, we present the inclusion relations concerning the space `p(T ).

Theorem 2.7. The inclusion `p(T ) ⊂ `q(T ) strictly holds for 1 ≤ p < q <∞.

Proof. Let 1 ≤ p < q < ∞. If x is any sequence in `p(T ), then its T -transform Tx is in `p. Since
the inclusion `p ⊂ `q holds, Tx is also in `q. Hence x ∈ `q(T ) which means that `p(T ) ⊂ `q(T ). To
show that the inclusion is strict, consider a sequence x = (xn) ∈ `q but not in `p, i.e., x ∈ `q\`p.
From the fact that the inclusion `p ⊂ `q is strict, the existence of x ∈ `q\`p is clear. Let define the
sequence y = (yn) in terms of the sequence x as follows:

yn =

n∑
k=0

 n∏
j=k

1

t2j

 tkxk (n ∈ N).

Then, it is clear that

Tn(y) = xn
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for every n ∈ N. This shows that Ty = x and since x ∈ `q\`p, we have Ty ∈ `q\`p. Hence, the
sequence y must be in `q(T ) but cannot be in `p(T ), that is, the inclusion `p(T ) ⊂ `q(T ) is strict.
The proof is completed.

Theorem 2.8. The inclusion `p(T ) ⊂ `∞(T ) strictly holds for 1 ≤ p <∞.

Proof. If x ∈ `p(T ), then Tx ∈ `p. Since `p ⊂ `∞, Tx ∈ `∞. Hence, x ∈ `∞(T ) which shows that
`p(T ) ⊂ `∞(T ). To show that this inclusion is strict, we define the sequence y = (yn) by

yn =

n∑
k=0

(−1)ktk

n∏
i=k

1

t2i
(n ∈ N).

Then, we have for every n ∈ N that

Tn(y) = tn

n∑
k=0

(−1)ktk

n∏
i=k

1

t2i
− 1

tn

n−1∑
k=0

(−1)ktk

n−1∏
i=k

1

t2i

= tn(−1)ntn

n∏
i=n

1

t2i
+ tn

n−1∑
k=0

(−1)ktk

n∏
i=k

1

t2i
− 1

tn

n−1∑
k=0

(−1)ktk

n−1∏
i=k

1

t2i

= (−1)n +

n−1∑
k=0

(−1)ktk

(
tn

n∏
i=k

1

t2i
− 1

tn

n−1∏
i=k

1

t2i

)
= (−1)n.

Then, Ty ∈ `∞\`p since ((−1)n) ∈ `∞ but not in `p. Thus, y is in `∞(T ) but not in `p(T ) which
means that the inclusion `p(T ) ⊂ `∞(T ) strictly holds. The proof is completed.

Theorem 2.9. The inclusion `p ⊂ `p(T ) strictly holds, where 1 ≤ p ≤ ∞.

Proof. To prove that the inclusion `p ⊂ `p(T ) holds for 1 ≤ p ≤ ∞, it is sufficient to show that
there exists a number M > 0 such that ‖x‖`p(T ) ≤M‖x‖`p for any x ∈ `p.

Let x ∈ `p and 1 ≤ p ≤ ∞.
(

1
tn

)
∈ c\c0 since (tn) ∈ c\c0. Then, there exist K,L > 0 such that

tn ≤ K and 1
tn
≤ L for all n ∈ N. Thus, we have

‖x‖`p(T ) =

(∑
n

|Tn(x)|p
)1/p

=

(∑
n

∣∣∣∣tnxn − 1

tn
xn−1

∣∣∣∣p
)1/p

≤

(∑
n

|tnxn|p
)1/p

+

(∑
n

∣∣∣∣ 1

tn
xn−1

∣∣∣∣p
)1/p

≤

(
Kp
∑
n

|xn|p
)1/p

+

(
Lp
∑
n

|xn−1|p
)1/p

= (K + L)‖x‖`p
and

‖x‖`∞(T ) = sup
n
|Tn(x)| = sup

n

∣∣∣∣tnxn − 1

tn
xn−1

∣∣∣∣
≤ (K + L) sup

n
|xn| = (K + L)‖x‖`∞ .
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If we define M = K +L, it yields the desired result, that is, ‖x‖`p(T ) ≤M‖x‖`p for 1 ≤ p ≤ ∞. To
prove that the inclusion is strict:

i) If 0 < tn < 1 for all n ∈ N;

For 1 ≤ p < ∞, the sequence x =
(∏n

i=1
1
t2i

)
/∈ `p since 1/ti > 1. Clearly, Tx = (t0, 0, 0, ...) ∈

`p. Thus x ∈ `p(T ).

Let ti =
√

i
i+1

< 1 for all i ∈ N. Then, 1
t2i

= 1 + 1
i
. By Lemma 2.6,

∏∞
i=1

1
t2i

is not

convergent since
∑∞
i=1

1
i

is not convergent. Hence, x =
(∏n

i=1
1
t2i

)∞
n=1

/∈ `∞. It follows that

Tx = (t0, 0, 0, ...) ∈ `∞ and so x ∈ `∞(T ).
ii) If tn = 1 for all n ∈ N;
In this case,

Tn(x) = xn − xn−1

for all n ∈ N. For 1 ≤ p < ∞, consider the sequence x = e which is clearly not in `p. But,
Tx = (1, 0, 0, ...) ∈ `p, that is, x ∈ `p(T ).

Now, let x = (n+ 1). Obviously, x is not in `∞ but Tx = e ∈ `∞ which means x ∈ `∞(T ).
iii) If tn > 1 for all n ∈ N;
Let tn = n+1

n
> 1 for all n ≥ 1 and assume that p = 1. If we choose x = ( 1

n+1
) /∈ `1, then

Tx = ( 1
n(n+1)

) ∈ `1. Hence, x ∈ `1(T ).

Let tn = n+1
n

> 1 for all n ≥ 1 and choose x = (n). Then, x /∈ `∞ but Tx = ( 3n+1
n

) ∈ `∞ and so
x ∈ `∞(T ).

As a result, there exists x ∈ `p(T )\`p. Thus, we conclude that the inclusion `p ⊂ `p(T ) strictly
holds for 1 ≤ p ≤ ∞. The proof is completed.

Theorem 2.10. Neither of the spaces `∞ and `p(T ) includes the other one, where 1 ≤ p <∞.

Proof. For ti =
√

i
i+1

, consider the sequence x =
(∏n

i=1
1
t2i

)
which is not in `∞. However, x ∈ `p(T )

since Tx = (t0, 0, 0, ...) ∈ `p. Now, consider the sequence x = ((−1)n) in `∞. Thus,

Tn(x) =

{
t0 , n = 0

(−1)n
(
tn + 1

tn

)
, n ≥ 1

(n ∈ N).

Clearly, for all n ∈ N,
∣∣∣(−1)n

(
tn + 1

tn

)∣∣∣ > 1 which implies that the series
∑
n |Tn(x)|p is not

convergent, where 1 ≤ p < ∞. Hence, x /∈ `p(T ). We conclude that neither of the spaces includes
the other.

3 The α-, β- and γ-duals of the Space `p(T )

In this section, we determine the α-, β- and γ-duals of the sequence space `p(T ), where 1 ≤ p ≤ ∞.
Also, we give a sequence of the points of the space `p(T ) which forms a basis for this space.

The following known results [27] and [28] are fundamental for our investigation.

Lemma 3.1. Let 1 < p <∞. The following statements hold:

(a) A = (ank) ∈ (`p, `∞) if and only if

sup
n

∑
k

|ank|q <∞. (3.1)
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(b) A = (ank) ∈ (`p, c) if and only if (3.1) holds and

lim
n→∞

ank exists for all k ∈ N. (3.2)

(c) A = (ank) ∈ (`p, c0) if and only if (3.1) holds and

lim
n→∞

ank = 0 for all k ∈ N. (3.3)

(d) A = (ank) ∈ (`p, `1) if and only if

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

ank

∣∣∣∣∣
q

<∞. (3.4)

Lemma 3.2. The following statements hold:

(a) A = (ank) ∈ (`1, `∞) if and only if

sup
n,k
|ank| <∞. (3.5)

(b) A = (ank) ∈ (`1, c) if and only if (3.2) and (3.5)
(c) A = (ank) ∈ (`1, c0) if and only if (3.3) and (3.5)
(d) A = (ank) ∈ (`1, `1) if and only if

sup
k

∑
n

|ank| <∞. (3.6)

Lemma 3.3. The following statements hold:

(a) A = (ank) ∈ (`∞, `∞) if and only if (3.1) holds with q = 1.
(b) A = (ank) ∈ (`∞, c) if and only if (3.2) holds and

lim
n→∞

∑
k

|ank| =
∑
k

∣∣∣ lim
n→∞

ank

∣∣∣ . (3.7)

(c) A = (ank) ∈ (`∞, c0) if and only if (3.3) holds and

lim
n→∞

∑
k

|ank| = 0. (3.8)

(d) A = (ank) ∈ (`∞, `1) if and only if (3.4) holds with q = 1.

Now, we give two lemmas which are required to determine the α−, β- and γ-duals of the space
`p(T ), where 1 ≤ p ≤ ∞.

Lemma 3.4. Let a = (an) ∈ ω and the matrix B = (bnk) be defined by Bn = anT
−1
n , that is,

bnk =

{
0 , k > n

angnk , 0 ≤ k ≤ n

for all k, n ∈ N. Then, a ∈ (`p(T ))α if and only if B ∈ (`p, `1), where 1 ≤ p ≤ ∞.

Proof. Let y be the T -transform of a sequence x = (xn) ∈ ω. Then, we have

anxn = anT
−1
n (y) = Bn(y)

for all n ∈ N. Thus, we obtain from this equality that ax = (anxn) ∈ `1 with x ∈ `p(T ) if and only
if By ∈ `1 with y ∈ `p. This implies that a ∈ (`p(T ))α if and only if B ∈ (`p, `1). The proof is
completed.
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Lemma 3.5. [[29] Theorem 3.1]al-b2] Let C = (cnk) be defined via a sequence a = (ak) ∈ ω and
the inverse matrix V = (vnk) of the triangle matrix U = (unk) by

cnk =

{
0 , k > n∑n

j=k ajvjk , 0 ≤ k ≤ n

for all k, n ∈ N. Then,
(`p(U))γ = {a = (ak) ∈ ω : C ∈ (`p, `∞)},
(`p(U))β = {a = (ak) ∈ ω : C ∈ (`p, c)},

where 1 ≤ p ≤ ∞.

Combining Lemmas 3.1-3.5 we have;

Corollary 3.6. Let the sets d̂1, d̂2, d̂3, d̂4, d̂5 and d̂6 be defined as follows:

d̂1 =

a = (ak) ∈ ω : sup
K∈F

∑
k

∣∣∣∣∣∣
∑
n∈K

tk n∏
j=k

1

t2j

 an

∣∣∣∣∣∣
q

<∞

 ,

d̂2 =

a = (ak) ∈ ω :
∞∑
j=k

(
tk

j∏
i=k

1

t2i

)
aj exists for each k ∈ N

 ,

d̂3 =

a = (ak) ∈ ω : sup
n

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(
tk

j∏
i=k

1

t2i

)
aj

∣∣∣∣∣∣
q

<∞

 ,

d̂4 =

a = (ak) ∈ ω : lim
n→∞

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(
tk

j∏
i=k

1

t2i

)
aj

∣∣∣∣∣∣ =
∑
k

∣∣∣∣∣∣
∞∑
j=k

(
j∏
i=k

tk
t2i

)
aj

∣∣∣∣∣∣ <∞
 ,

d̂5 =

a = (ak) ∈ ω : sup
k

∑
n

∣∣∣∣∣∣
tk n∏

j=k

1

t2j

 an

∣∣∣∣∣∣ <∞


and

d̂6 =

a = (ak) ∈ ω : sup
n,k

∣∣∣∣∣∣
n∑
j=k

(
tk

j∏
i=k

1

t2i

)
aj

∣∣∣∣∣∣ <∞
 .

Then, the following statements hold:

(a) (`p(T ))α = d̂1 and (`1(T ))α = d̂5, where 1 < p ≤ ∞.
(b) (`p(T ))β = d̂2 ∩ d̂3, (`∞(T ))β = d̂2 ∩ d̂4 and (`1(T ))β = d̂2 ∩ d̂6, where 1 < p <∞.
(c) (`p(T ))γ = d̂3 and (`1(T ))γ = d̂6, where 1 < p ≤ ∞.

Now, we give the Schauder basis of the space `p(T ) (1 ≤ p <∞).

Theorem 3.7. Let 1 ≤ p <∞ and define the sequence c(k) ∈ `p(T ) for every fixed k ∈ N by

(c(k))n =


0 , n < k

tk
n∏
j=k

1
t2j

, n ≥ k (n ∈ N). (3.9)

Then the sequence (c(k)) is a basis for the space `p(T ), and every x ∈ `p(T ) has a unique representation
of the form

x =
∑
k

Tk(x)c(k). (3.10)
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Proof. Let 1 ≤ p <∞. By (3.9), it is clear that T (c(k)) = e(k) ∈ `p and c(k) ∈ `p(T ) for all k ∈ N.
Also, let x ∈ `p(T ) given. For every non-negative integer m, we put

x(m) =

m∑
k=0

Tk(x)c(k).

Then, we have that

T (x(m)) =

m∑
k=0

Tk(x)T (c(k)) =

m∑
k=0

Tk(x)e(k)

and hence

Tn(x− x(m)) =

{
0 (0 ≤ n ≤ m)

Tn(x) (n > m).

Let ε > 0 be given. Then, there exists a non-negative integer m0 such that

∞∑
n=m0+1

|Tn(x)|p ≤
( ε

2

)p
.

Therefore, we obtain for every m ≥ m0 that

‖x− x(m)‖`p(T ) =

(
∞∑

n=m+1

|Tn(x)|p
)1/p

≤

(
∞∑

n=m0+1

|Tn(x)|p
)1/p

≤ ε

2
< ε

which shows that lim
m→∞

‖x− x(m)‖`p(T ) = 0 and hence x is represented as in (3.10).

Finally, let us show the uniqueness of the representation (3.10) of x ∈ `p(T ). Assume that x =∑
k µk(x)c(k). Since the linear transformation T defined from `p(T ) to `p in the proof of Theorem

2.3 is continuous, we have

Tn(x) =
∑
k

µk(x)Tn(c(k)) =
∑
k

µk(x)δnk = µn(x) (n ∈ N).

Hence, the representation (3.10) of x ∈ `p(T ) is unique. The proof is completed.

4 Some Matrix Transformations Related to the Sequence
Space `p(T )

In the final section, we give the characterization of the classes (`p(T ), λ), (λ, `p(T )) and define
the norm of an matrix operator in B(`p(T ), µ(S)), where 1 ≤ p ≤ ∞, λ ∈ {`1, c0, c, `∞} and
µ ∈ {`1, `∞}.

Throughout this section, we write a(n, k) =
∑n
j=0 ajk for given an infinite matrix A = (ank), where

n, k ∈ N.

Firstly, we give a theorem which is essential for our results.

Theorem 4.1. Let 1 ≤ p ≤ ∞ and λ be an arbitrary subset of ω. Then, we have A = (ank) ∈
(`p(T ), λ) if and only if

D(m) =
(
d

(m)
nk

)
∈ (`p, c) for all n ∈ N, (4.1)

D = (dnk) ∈ (`p, λ), (4.2)
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where d
(m)
nk =

{
0 , k > m∑m

j=k

(
tk
∏j
i=k

1
t2i

)
anj , 0 ≤ k ≤ m and dnk =

∑∞
j=k

(
tk
∏j
i=k

1
t2i

)
anj for

all k,m, n ∈ N.

Proof. To prove the theorem, we follow the similar way due to Kirişçi and Başar (6). Let A =
(ank) ∈ (`p(T ), λ) and x = (xk) ∈ `p(T ). By (2.2), we have

m∑
k=0

ankxk =

m∑
k=0

ank

k∑
j=0

(
tj

k∏
i=j

1

t2i

)
yj

=

m∑
k=0

m∑
j=k

(
tk

j∏
i=k

1

t2i

)
anjyk

=

m∑
k=0

d
(m)
nk yk

= D(m)
n (y)

for all m,n ∈ N. Since Ax exists, D(m) belongs to the class (`p, c). Letting m → ∞ in the last
equality, we obtain Ax = Dy which gives the result D ∈ (`p, λ).

Conversely, suppose the conditions (4.1), (4.2) hold and take any x ∈ `p(T ). Then, we have
(dnk)k∈N ∈ `βp which gives together with (4.1) that An = (ank)k∈N ∈ (`p(T ))β for all n ∈ N. Thus,
Ax exists. Therefore, we derive by the above equality as m → ∞ that Ax = Dy, and this shows
that A ∈ (`p(T ), λ).

We obtain the following results by combining Lemma 4.1 with Lemmas 3.1-3.3.

Theorem 4.2.
(a) A = (ank) ∈ (`1(T ), `∞) if and only if (3.5) holds with dnk instead of ank and

lim
m→∞

d
(m)
nk exists (∀n, k ∈ N), (4.3)

sup
m,k

∣∣∣d(m)
nk

∣∣∣ <∞ (∀n ∈ N) (4.4)

also hold.
(b) A = (ank) ∈ (`1(T ), c) if and only if (4.3) and (4.4) hold, and (3.2) and (3.5) also hold

with dnk instead of ank.
(c) A = (ank) ∈ (`1(T ), c0) if and only if (4.3) and (4.4) hold, and (3.3) and (3.5) also hold

with dnk instead of ank.
(d) A = (ank) ∈ (`1(T ), `1) if and only if (4.3) and (4.4) hold, and (3.6) also holds with dnk

instead of ank.

Theorem 4.3. Let 1 < p <∞.

(a) A = (ank) ∈ (`p(T ), `∞) if and only if (4.3) and

sup
m

m∑
k=0

∣∣∣d(m)
nk

∣∣∣q <∞ (4.5)

hold, and (3.1) also hold with dnk instead of ank.
(b) A = (ank) ∈ (`p(T ), c) if and only if (4.3) and (4.5) hold, and (3.1) and (3.2) also hold

with dnk instead of ank.
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(c) A = (ank) ∈ (`p(T ), c0) if and only if (4.3) and (4.5) hold, and (3.1) and (3.3) also hold
with dnk instead of ank.

(d) A = (ank) ∈ (`p(T ), `1) if and only if (4.3) and (4.5) hold, and (3.4) also holds with dnk
instead of ank.

Theorem 4.4.
(a) A = (ank) ∈ (`∞(T ), `∞) if and only if (4.3) and

lim
m→∞

m∑
k=0

∣∣∣d(m)
nk

∣∣∣ =
∑
k

|dnk| for each n ∈ N (4.6)

hold, and (3.1) also holds with q = 1 and dnk instead of ank .
(b) A = (ank) ∈ (`∞(T ), c) if and only if (4.3) and (4.6) hold, and (3.2) and (3.7) also hold

with dnk instead of ank.
(c) A = (ank) ∈ (`∞(T ), c0) if and only if (4.3) and (4.6) hold, and (3.3) and (3.8) also hold

with dnk instead of ank.
(d) A = (ank) ∈ (`∞(T ), `1) if and only if (4.3), (4.6) and

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

dnk

∣∣∣∣∣ <∞
hold.

By using Theorems 4.2-4.4, we derive the following results:

Corollary 4.5. The following statements hold:

(a) A = (ank) ∈ (`1(T ), cs0) if and only if (3.3), (3.5) and (4.3), (4.4) hold with d(n, k) instead
of ank and dnk, respectively.

(b) A = (ank) ∈ (`1(T ), cs) if and only if (3.2), (3.5) and (4.3), (4.4) hold with d(n, k) instead
of ank and dnk, respectively.

(c) A = (ank) ∈ (`1(T ), bs) if and only if (3.5) and (4.3), (4.4) hold with d(n, k) instead of ank
and dnk, respectively.

Corollary 4.6. Let 1 < p <∞. Then, the following statements hold:

(a) A = (ank) ∈ (`p(T ), cs0) if and only if (3.1), (3.3) and (4.3), (4.5) hold with d(n, k) instead
of ank and dnk, respectively.

(b) A = (ank) ∈ (`p(T ), cs) if and only if (3.1), (3.2) and (4.3), (4.5) hold with d(n, k) instead
of ank and dnk, respectively.

(c) A = (ank) ∈ (`p(T ), bs) if and only if (3.1) and (4.3), (4.5) hold with d(n, k) instead of ank
and dnk, respectively.

Corollary 4.7. The following statements hold:

(a) A = (ank) ∈ (`∞(T ), cs0) if and only if (3.3), (3.8) and (4.3), (4.6) hold with d(n, k) instead
of ank and dnk, respectively.

(b) A = (ank) ∈ (`∞(T ), cs) if and only if (3.2), (3.7) and (4.3), (4.6) and hold with d(n, k)
instead of ank and dnk, respectively.

(c) A = (ank) ∈ (`∞(T ), bs) if and only if (3.1) with q = 1 and (4.3), (4.6) hold with d(n, k)
instead of ank and dnk, respectively.

Now, we introduce the matrix transformations from the space λ ∈ {`1, c0, c, `∞} to `p(T ),
where 1 ≤ p ≤ ∞. Before this, we give the necessary and sufficient conditions for the matrix
transformation A is in (λ, `p).
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Lemma 4.8. The following statements hold:

(a) A ∈ (`∞, `p) = (c, `p) = (c0, `p) if and only if

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

ank

∣∣∣∣∣
p

<∞, where 1 ≤ p <∞. (4.7)

(b) A ∈ (`∞, `∞) = (c, `∞) = (c0, `∞) if and only if

sup
n

∑
k

|ank| <∞. (4.8)

(c) A ∈ (`1, `p) if and only if

sup
k

∑
n

|ank|p <∞, where 1 ≤ p <∞. (4.9)

When we change the roles of the spaces `p(T ) and `p with λ in Theorem 4.1, we obtain the
following theorem.

Theorem 4.9. Assume that there exists the following relation between the terms of the infinite
matrices A = (ank) and B = (bnk)

bnk = − 1

tn
an−1,k + tnank (4.10)

for all k, n ∈ N and λ be any given sequence space. Then, A ∈ (λ, `p(T )) if and only if B ∈ (λ, `p),
where 1 ≤ p ≤ ∞.

Proof. Let x = (xk) ∈ λ. Then, by using the relation (4.10) one can easily obtain the following
equality

m∑
k=0

bnkxk =

m∑
k=0

(
− 1

tn
an−1,k + tnank

)
xk for all m,n ∈ N

which yields as m → ∞ that (Bn(x)) = (Tn(Ax)). Therefore, we conclude that Ax ∈ `p(T ) for
x ∈ λ if and only if Bx ∈ `p for x ∈ λ, where 1 ≤ p ≤ ∞. The proof is completed.

By combining Lemma 3.2 (a), Lemma 4.8 and Theorem 4.9, we obtain the following results:

Corollary 4.10. Let the matrices A = (ank) and B = (bnk) be connected by (4.10). Then, we
obtain:

(a) A = (ank) ∈ (`∞, `1(T )) = (c, `1(T )) = (c0, `1(T )) if and only if (4.7) holds with p = 1 and
bnk instead of ank.

(b) A = (ank) ∈ (`1, `1(T )) if and only if (4.9) holds with p = 1 and bnk instead of ank.

Corollary 4.11. Let the matrices A = (ank) and B = (bnk) be connected by (4.10). For 1 < p <∞,
we obtain:

(a) A = (ank) ∈ (`∞, `p(T )) = (c, `p(T )) = (c0, `p(T )) if and only if (4.7) holds with bnk instead
of ank.

(b) A = (ank) ∈ (`1, `p(T )) if and only if (4.9) holds with bnk instead of ank.
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Corollary 4.12. Let the matrices A = (ank) and B = (bnk) be connected by (4.10). Then, we
obtain:

(a) A = (ank) ∈ (`∞, `∞(T )) = (c, `∞(T )) = (c0, `∞(T )) if and only if (4.8) holds with bnk
instead of ank.

(b) A = (ank) ∈ (`1, `∞(T )) if and only if (3.5) holds with bnk instead of ank.

Now, we investigate the norm of the infinite matrices in the class B(`p(T ), µ(S)), where µ ∈
{`1, `∞} and 1 ≤ p ≤ ∞. Firstly, we give an essential lemma for our investigation.

Lemma 4.13. Let B = (bnk) be an infinite matrix. Then the following statements hold:

(a) The norm of B in B(`p, `∞) is defined by

‖B‖(`1,`∞) = sup
n,k
|bnk|

and

‖B‖(`p,`∞) = sup
n

∑
k

|bnk|q (1 < p ≤ ∞).

(b) The norm of B in B(`p, `1) is defined by

‖B‖(`1,`1) = sup
k

∑
n

|bnk|

and

‖B‖(`p,`1) = sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

bnk

∣∣∣∣∣
q

(1 < p ≤ ∞).

Theorem 4.14. Let T and S be two band matrices given by the sequences t = (tn) and s = (sn),
respectively, and A = (ank) be an infinite matrix.

(a) If A ∈ B((`1(T ), `∞(S)), then

M1 = sup
n,k

∣∣∣∣∣∣
∞∑
j=k

(
tk

j∏
i=k

1

t2i

)(
snanj −

1

sn
an−1,j

)∣∣∣∣∣∣
is finite. In this case, ‖A‖(`1(T ),`∞(S)) = M1.

(b) Let 1 < p ≤ ∞. If A ∈ B((`p(T ), `∞(S)), then

Mp = sup
n

∑
k

∣∣∣∣∣∣
∞∑
j=k

(
tk

j∏
i=k

1

t2i

)(
snanj −

1

sn
an−1,j

)∣∣∣∣∣∣
q

is finite. In this case, ‖A‖(`p(T ),`∞(S)) = Mp.

(c) If A ∈ B((`1(T ), `1(S)), then

K1 = sup
k

∑
n

∣∣∣∣∣∣
∞∑
j=k

(
tk

j∏
i=k

1

t2i

)(
snanj −

1

sn
an−1,j

)∣∣∣∣∣∣
is finite. In this case, ‖A‖(`1(T ),`1(S)) = K1.
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(d) Let 1 < p ≤ ∞. If A ∈ B((`p(T ), `1(S)), then

Kp = sup
K∈F

∑
k

∣∣∣∣∣∣
∑
n∈K

∞∑
j=k

(
tk

j∏
i=k

1

t2i

)(
snanj −

1

sn
an−1,j

)∣∣∣∣∣∣
q

is finite. In this case, ‖A‖(`p(T ),`1(S)) = Kp.

Proof. From Theorem 2.3, we know that T is an isometric isomorphism: `p(T ) → `p, where 1 ≤
p ≤ ∞. Let B = SAT−1. Thus, the following diagram

`p(T )
A // µ(S)

S

��
`p

T−1

OO

B=SAT−1

// µ

shows that ‖A‖(`p(T ),µ(S)) = ‖B‖(`p,µ), where µ ∈ {`∞, `1} and 1 ≤ p ≤ ∞. Using Lemma 4.13 (a)
and (b), we have that

‖B‖(`p,µ) =

{
Mp, if µ = `∞
Kp, if µ = `1,

where 1 ≤ p ≤ ∞.

5 Conclusions

Introducing a new sequence space by means of the matrix domain of a special triangle has been
studied by many mathematicians. In this study we introduce some Banach sequence spaces by
using a new band matrix. These spaces are more general than some spaces and not a special case of
other spaces defined earlier. These type investigations fill some gaps in the literature. The authors
can introduce new sequence spaces and results by using similar techniques in this paper.
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[6] Kirişçi M, Başar F. Some new sequence spaces derived by the domain of generalized difference
matrix. Comput. Math. Appl. 2010;60(A2):1299-1309.
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