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Abstract

In this note we focus on three independent problems on Okounkov bodies for projective varieties.

The main goal is to present a geometric version of the classical Fujita Approximation Theorem, a

Jow-type theorem [1]and a cardinality formulae for Minkowski bases on a certain class of smooth

projective surfaces.
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1 Introduction

We would like to present three results on Okounkov bodies, mainly for projective surfaces.
The first one can be viewed as a geometric Fujita approximation, which tells us that the Fujita
Approximation Theorem for big divisors induces the shape approximation of associated Okounkov
bodies. The second result is a certain variation on Jow theorem [1], which roughly speaking tells us
that Okounkov bodies can be used to check numerical equivalence of pseudoeffective divisors. The
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last section is devoted to the cardinality problem for Minkowski bases [2] for surfaces with rational
polyhedral pseudoeffective cones.

Let us recall briefly what Okounkov bodies are. These bodies were introduced independently by
Lazarsfeld and Mustaţă [3] and Kaveh and Khovanskii [4] and they are convex bodies 4(D) ⊂ Rn
attached to big divisors D on smooth projective varieties X of dimension n with respect to an
admissible flag, i.e., a sequence of irreducible subvarieties X = Y0 ⊃ Y1 ⊃ ... ⊃ Yn = {pt} such that
codimXYi = i and Yn is a smooth point of each Yi’s. We refer to Section 1 in [3] for further details
about Okounkov bodies.

Recently Okounkov bodies have been applied to some problems appearing in other branches of
mathematics, for instance in mathematical physics. One of the most prominent examples is the
paper due to Harada and Kaveh [5] in which the authors consider complete integrable systems in
the context of Okounkov bodies. Roughly speaking they showed that the image of the so-called
moment map corresponds to a certain Okounkov body, which is highly remarkable.

2 Geometric Fujita Approximation

Assume that X is an irreducible complex projective variety of dimension n > 0. Recall that for
an integral divisor D the volume of D is a real number defined by

volX(D) = lim supm→∞
h0(X,OX(mD))

mn/n!
.

It is well known that D is big if and only if volX(D) > 0.

In [3] the authors studied the Fujita Approximation Theorem in the language of Okounkov bodies.
Let us recall a classical statement of this theorem.

Theorem 2.1 (Theorem 11.4.4 (Part II), [6]). Let D be a big integral divisor on X and fix a positive
number ε > 0. Then there exists a birational morphism µ : X ′ → X, where X ′ is irreducible, and
an integer p > 0 such that

µ∗(pD) = A+ E,

where A is an ample divisor and E is an effective divisor, both integral, having the property that

volX′(A) > pn(volX(D)− ε).

Of course this theorem remains true for numerical classes of divisors. The proof presented in
[6] is based one the theory of multiplier ideals.

In [3] the authors formulated the above result in the language of semigroups and Okounkov bodies.

Theorem 2.2 (Theorem 3.3, [3]). Let D be a big divisor on X and for numbers p, k > 0 write

Vk,p = Im

(
SkH0(X,OX(pD))→ H0(X,OX(pkD))

)
,

where Sk denotes the k-th symmetric power. Given ε > 0, there exists an integer p0 = p0(ε) having
the property that if p ≥ p0, then

lim
k→∞

dimVk,p
pnkn/n!

≥ volX(D)− ε.
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We refer to [3 Remark 3.4] for a link between the classical statement of the Fujita Approximation
Theorem with the above result.

Our main aim in this section is to present a certain reformulation of the Fujita Approximation
Theorem in the language of shapes of Okounkov bodies for big divisors. Our result tells us that using
ample divisors on a modification one can approximate shape of Okounkov bodies of big divisors as
precisely as desired. The Fujita Approximation Theorem provides quantitive statement concerning
the volume, a numerical invariant of divisors. This article extends this result in a geometrical
direction connecting the numerical nature with geometry. Let us point out that a certain kind of
approximation can be found also in [[7] Lemma 8].

It may happen that Okounkov bodies for certain ample divisors may not be polyhedral, but there
is also a large class of projective varieties and divisors for which Okounkov bodies are rational
polyhedral, for instance Okounkov bodies of big divisors on smooth projective surfaces – see [8] for
details and results.

Theorem 2.3. Let X be a smooth projective variety of dimension n. Assume that D is a big divisor
on X. Then for every β > 0 there exists a birational morphism η : X̃ → X, an ample divisor A
on X̃, δ > 0 and an admissible flag Y• on X̃ such that the Okounkov body 4Y•(η∗(D)) contains
4Y•(A) with

volRn(4Y•(η
∗(D)) \ 4Y•(A)) < β

and is contained in 4Y•((1 + δ)A) with

volRn(4Y•((1 + δ)A) \ 4Y•(η
∗(D))) < β.

Before we proceed to the proof let us present the following picture, which shows the geometrical
meaning of this theorem (in the case of n = 2).
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4Y•(η∗(D))

Proof. By Theorem 2.1 we know that for a fixed ε > 0 there exists a birational morphism η : X̃ → X,
an ample divisor A and an effective divisor E on X̃ such that

η∗(D) = A+ E and vol(η∗(D)) ≥ vol(A) ≥ vol(η∗(D))− ε.

Take a very general admissible flag Y• on X̃ satisfying 0 ∈ 4Y•(E) and Y1 is not contained in the
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augmented base locus B+(η∗(D)) (see [9]). These assumptions imply that 4Y•(η∗(D)) = 4Y•(A+
E) ⊇ 4Y•(A) and additionally taking ε small enough implies automatically that volRn(4(η∗(D)) \
4(A)) < ε ≤ β.

To conclude this proof it is enough to show that there exists δ > 0 as in the theorem. Notice
that decreasing the value ε implies by Theorem 2.1 that the Okounkov body 4Y•(A) approaches to
4Y•(η∗D) and the difference between volumes of 4(η∗D) and 4(A) tends to 0. Thus for a fixed
β > 0 one can find a sufficiently small ε > 0 and δ = δ(β, ε) > 0 such that

4Y•((1 + δ)A) ⊃ 4Y•(η
∗(D))

and moreover
volRn(4Y•((1 + δ)A) \ 4Y•(η

∗(D))) < β.

This completes the proof.

3 Numerical Equivalence of Pseudoeffective Divisors on
Surfaces

In [3] the authors have showed that Okounkov bodies are both geometrical and numerical in
nature, which means that if big divisors D1, D2 are numerical equivalent, then 4Y•(D1) = 4Y•(D2)
for an admissible flag Y•. However, it was not clear whether one can read off all numerical invariants
of a given big divisor from its Okounkov bodies with respect to any flag. In [1] the author has proved
the following very interesting theorem.

Theorem 3.1. Let X be a normal complex projective variety of dimension n. If D1, D2 are two
big divisors on X such that

4Y•(D1) = 4Y•(D2)

for every admissible flag Y• on X, then D1 and D2 are numerically equivalent.

The proof uses theory of restricted complete linear series and restricted volumes.

Recently [10] the authors have studied another numerical properties of divisors in the context of
Okounkov bodies, i.e. they presented a certain ampleness and nefness criterion for divisors on
projective surfaces. Our aim is to follow this path by showing a special version of Jow theorem
for complex projective surfaces. Namely we prove that it is enough to compare only finitely many
Okounkov bodies and possibly infinitely many intersection numbers (these numbers come from
intersections with irreducible negative curves) in order to obtain the same result. We will use
the following description of Okounkov bodies on surfaces, which uses Zariski decomposition for
R-pseudoeffective divisors.

Definition 3.1 (Zariski decomposition). Let D be a pseudo-effective R–divisor on a complex
projective surface Y . Then there exist R–divisors PD and ND such that

a) D = PD +ND;

b) PD is a nef divisor and ND is either empty or supported on a union of curves N1, . . . , Nr
with negative definite intersection matrix;

c) Ni.PD = 0 for each i = 1, . . . , r.

We refer to [11][Chapter 14] for a nice expository presentation of the notion of Fujita-Zariski
decomposition for R-divisors. In the sequel we will use the following description of Okounkov bodies
for smooth projective surfaces.
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Theorem 3.2. [Theorem 6.4,[3]] Let D be a big Q-divisor on a smooth complex projective surface
Y and let (x,C) be an admissible flag. Suppose that C is not contained in B+(D). Let a be
the coefficient of C in the negative part of the Zariski decomposition. For t ∈ [a, µ] let us define
Dt = D − tC, where 0 ≤ a ≤ µ. Consider Dt = Pt +Nt the Zariski decomposition of Dt. Put

α(t) = ordx(Nt), β(t) = α(t) + volX|C(Pt) = ordx(Nt) + Pt.C.

Then the Okounkov body of D is the region bounded by the graphs of α and β, i.e.

4(D) = {(t, y) ∈ R2 : a ≤ t ≤ µ ∧ α(t) ≤ y ≤ β(t)}.

Moreover, α and β are piecewise linear functions with rational slopes, α is convex and increasing,
β is concave.

Let us point out that in [8] the authors showed that in fact Okounkov bodies for surfaces are
rational polyhedrons described by almost rational data – see [8] for details.

Now we present our approach to Theorem 3.1 for projective surfaces.

Proposition 3.1. Let Y be a smooth complex projective surface. Denote by ρ the Picard number
of Y . Then there exists a set of irreducible ample divisors {A1, ..., Aρ} and a set of very general
points {x1, ..., xρ} with xi ∈ Ai, such that for two big R-divisors D1, D2 if

4(xi,Ai)(D1) = 4(xi,Ai)(D2)

for every i ∈ {1, ..., ρ}, then the positive parts of the Zariski decompositions P1, P2 of D1, D2 are
numerical equivalent.

Proof. Let us choose an ample base B = {A1, ..., Aρ} for N1(Y ). Without loss of generality we may
assume that A1, ..., Aρ are effective and let us choose irreducible curves Ci ∈ |Ai| for i ∈ {1, ..., ρ}.

Fix a flag (xi, Ci). Thus by Theorem 3.2 we have that for a big divisor D

4(D) = {(t, y) ∈ R2 : 0 ≤ t ≤ µ & α(t) ≤ y ≤ β(t)}.

Since xi is a very general point, thus α(t) ≡ 0 and β(t) = Pt.Ci, where Pt is the positive part of
the Zariski decomposition of Dt = D − tCi. Combining this with the condition 4(xi,Ci)(D1) =
4(xi,Ci)(D2) one obtains that P1 and P2 are numerical equivalent, which ends the proof.

In order to finish this construction it is enough to construct a test configuration for negative
parts N1 and N2. We need to check additionally intersections with all irreducible negative curves
I(Y ) = {Cj}j∈I on Y . Then Cj .N1 = Cj .N2 for every j ∈ I implies that N1 and N2 are numerical
equivalent. These considerations lead us to the following result.

Theorem 3.3. Let Y be a smooth complex projective surface. Denote by ρ the Picard number
of Y . Assume that D1, D2 are R-pseudoeffective divisors and let Dj = Pj + Nj be the Zariski
decompositions. There exist irreducible ample divisors A1, ..., Aρ with general points xi ∈ Ai, such
that D1, D2 are numerical equivalent if and only if

• 4(xi,Ai)(D1) = 4(xi,Ai)(D2) for every i ∈ {1, ..., ρ},
• C.N1 = C.N2 for every negative curve C ∈ I(Y ).

Remark 3.1. If Y is a smooth complex projective surface with the rational polyhedral pseudoeffective
cone, then there is only finitely many negative curves and this implies that in order to check
numerical equivalence of two pseudoeffective divisors D1, D2 it is enough to compare only finitely
many data.
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4 On the Cardinality of Minkowski Bases

In this section we present a formulae to compute cardinalities of Minkowski bases for a certain
class of projective surfaces. The idea of a Minkowski decomposition was presented in [12], where
the author studied this concept for the blow-up of P2 at three non-collinear points. Basically the
idea of a Minkowski decomposition is the following. Assume (for whole this section) that Y is a
smooth complex projective surface with the rational polyhedral pseudoeffective cone. Let (x,C) be
a flag such that C is a big and nef curve with a general point x ∈ C. Then one can construct the
set of nef divisors MB(x,C) = {M1, ...,Mk} such that for any big and nef R-divisor D one has

D =
∑
i

αiMi and 4(D) =
∑
i

αi4(Mi),

where the second sum is the Minkowski sum of convex bodies

A+B = {a+ b, a ∈ A & b ∈ B}.

Elements Mi can be viewed as building blocks and it can be shown that these blocks are simplicial.
The natural question is the following.

Problem 4.1. Let (x,C) be a fixed flag. What is the cardinality of the Minkowski basis MB(x,C)?

In [13] we showed that if C is an ample curve, then the cardinality is maximal possible, which
means in other words that such flags deliver the largest possible complexity of computations. On
the other hand, it seems to be reasonable to ask about a minimal Minkowski basis, i.e. a basis for
which the number of Minkowski basis elements is the smallest possible. Before we recall our result
for ample flags let us introduce some notions.

Suppose that P is a big and nef divisor. Then the Zariski chamber associated to P is defined as

ΣP = {B ∈ Big(Y ) : irreducible components of NB

are the only irreducible curves on Y that intersectP with multiplicity 0}.

By Theorem 1.3 in [14] we know that Zariski chambers yield a locally finite decomposition on the
cone Big(X) into locally polyhedral subcones such that the support of the negative part of Zariski
decompositions of all divisors in the subcone is constant.

The construction of Minkowski bases [2] tells us that for every Zariski chamber one assigns the
associated Minkowski basis element, which is by the construction nef. Now we present the idea
how to find Minkowski basis elements. Let Σ be a Zariski chamber with the support Neg(Σ) =
{N1, ..., Nr}. Then by [[2]Section 3.1] we have MΣ = dC+

∑r
i=1 aiNi with real coefficients ai, which

are the solution of the following system of equations

S(a1, ..., ar)
T = −d(C.N1, ..., Nr)

T . (4.1)

By S we mean the r × r intersection matrix of negative curves N1, ..., Nr. As we can see the
construction of a Minkowski decomposition relies on the full description of negative curves, which
determine Zariski chambers.

We define two numbers

NnB(Y ) = #{D ∈ N1(Y ) : D is nef and not big },

Zar(Y ) = number of Zariski chambers except nef cone.
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Theorem 4.2. [Theorem 3.3, [13]] Let Y be a smooth complex projective surface with Eff(Y )
rational polyhedral. Given a flag (x,A), where A is an ample curve and x is a smooth point on A,
there is

#MB(x,A) = 1 + NnB(Y ) + Zar(Y ).

It is worth to point out that the cardinality of a Minkowski basis with respect to an ample flag
can be computed directly from the shape of the nef cone, see [13] for details. In order to reduce
complexity of computations it is natural to consider a case when C is not any ample curve. For a
big and nef divisor (not ample) C let us define

NZ(C) = #{Σ : Neg(Σ) ∩Null(C) 6= ∅}.

Notice that NZ(C) > 0.

Theorem 4.3. Let Y be a smooth projective surface which contains only finitely many negative
curves satisfying the following condition

(?) if two irreducible distinct negative curves N1, N2 meet, then N1.N2 ≥
√
N2

1N
2
2 .

Let (x,C) be an admissible flag, where C is big and nef. Then

#MB(x,C) = 1 + NnB(Y ) + Zar(Y )−NZ(C).

Proof. Since the number 1 + NnB(Y ) is fixed for every projective surface (does not depend on
an admissible flag), thus we need to compute the number Zar(Y ) − NZ(C). Notice [[15] Theorem
3] that the condition (?) tells us that for every Zariski chamber Σ if Neg(Σ) = {N1, ..., Nk} is
the support of the negative part of Zariski decomposition, then the associated intersection matrix
S = [Ni.Nj ] ∈Mk×k(Z) is diagonal.

Suppose that Neg(Σ) = {N1, ..., Nk} and let MΣ = dC +
∑k
j=1 ajNj be a Minkowski basis element

with fixed d 6= 0. Assume that Ns+1, .., Nk ∈ Null(C) and N1, ..., Ns 6∈ Null(C). By the construction
of Minkowski basis elements we have MΣ ∈ Neg(Σ)⊥. This implies that for every Ni ∈ Null(C) one
has

0 = MΣ.Ni =
∑
j

ajNj .Ni = aiN
2
i ,

and ai = 0. We obtain

MΣ = dC +

s∑
j=1

ajNj

with aj > 0. Since for all such surfaces the intersection matrix of curves in the negative part of
Zariski decompositions is −diag(λ1, ..., λr) with r = #Neg(Σ′) and λj ≥ 1, thus the corresponding
intersection matrix is −diag(λ1, ..., λs). On the other hand, [[16] Proposition 1.1] tells us that
there is one to one correspondence between sets of reduced curves which have negative definite
intersection matrix with Zariski chambers, thus a diagonal matrix −diag(λ1, ..., λs) corresponds to
another Zariski chamber. This completes the proof.

By [15] we know that for a projective surface which satisfies the condition (?) all Zariski
chambers are simple Weyl chambers, which means that Zariski chambers are determined by intersec-
tions. However, it is not clear how a general formulae for the cardinality of Minkowski bases should
look like when the condition (?) does not hold since Minkowski basis elements are determined by
intersection matrices. One can obviously give the following upper-bound. Let C be a big and
nef curve. Using curves in Null(C) one can find NullZar(X) ≥ 1 subsets such that corresponding
intersection matrices of these curves are negative definite – it means that these sets are supports of
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the negative parts of Zariski chambers. Then we have

#MB(x,C) ≤ 1 + NnB(X) + Zar(X)−NullZar(X). (4.2)

Now we present an example, which shows that the above bound is sharp.

Example 4.4. This construction comes from [17]. Let Y be a smooth quartic surface in P3, which
contains a hyperplane section that decomposes into two lines L1, L2 and an irreducible conic C.
The existence of such surfaces was proved for instance in [[18] Lemma 2.2B]. Such surface has the
Picard number 3 and the pseudoeffective cone is generated by L1, L2 and C. Curves L1, L2, C have
the following intersection matrix  −2 1 2

1 −2 2
2 2 −2

 .

The BKS decomposition consists of five chambers, namely the nef chamber, which is spanned by
{L1 +C,L2 +C,C + 2L1 + 2L2}, one chamber corresponding to each (−2)-curve and one chamber
with support {L1, L2}. Fix the flag (x,D), where D ∈ |C+2L1 +2L2| and x ∈ D is a general point.
Of course D is big. Simple computations shows that

(C + 2L1 + 2L2).L1 = CL1 + 2L1L1 + 2L1L2 = 2− 4 + 2 = 0,

(C + 2L1 + 2L2).L2 = 0,

thus
Null(C + 2L1 + 2L2) = {L1, L2}.

Zariski chambers corresponding to {L1}, {L2}, {L1, L2} have the same Minkowski basis element D.
Since (C + 2L1 + 2L2).C = −2 + 4 + 4 = 6, thus by the construction of Minkowski basis elements
one has

M = C + 2L1 + 2L2 + 3C = 4C + 2L1 + 2L2.

Summarizing up all computations, the Minkowski basis with respect to the flag (x,D) is

MB(x,D) = {C,L1 + C,L2 + C, 4C + 2L1 + 2L2},

and the number of elements is equal to

1 + NnB(Y ) + Zar(Y )−NZ(Y ) = 4.

Before we end this note let us point out that the cardinality of a Minkowski basis can be
computed (quite) efficiently using a computer programme. In [16,19] the authors presented a certain
backtracking algorithm, which allows to find Zariski chambers just by working on the intersection
matrix of all negative reduced curves. A slightly modified version of this algorithm allows us
to check whether all Zariski chambers are determined by intersections (we need to check that all
negative definite principal submatrices of the intersection matrix of the negative curves are diagonal
matrices).

In order to compute cardinalities of Minowski bases it is enough to proceed almost along the same
lines. Suppose that Y has only Zariski chambers determined by intersections. If C is a big and nef
curve, then B+(C) is supported on negative curves. Now we can consider the submatrix N of the
intersection matrix of all negative curves M – we remove all rows and columns which correspond to
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negative curves from B+(C). It is easy to see that the collection of Zariski chambers determined by
N is a subcollection of Zariski chambers determined by M and moreover the number of all Zariski
chambers given by N is equal to Zar(Y )−NZ(C).

5 Conclusions

In the paper we studied geometrical and enumerative questions on Okounkov bodies. We
provided a geometrical presentation of the Fujita Approximation Theorem, a Jow type theorem
and a cardinality formulae on Minkowski bases for a certain class of surfaces.
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[10] Küronya A, Lozovanu V. Local positivity of linear series on Surfaces. Preprint arXiv:1411.6205.

120



Pokora; BJMCS, 9(2), 112-121, 2015; Article no.BJMCS.2015.191
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