

International Research Journal of Pure & Applied Chemistry 12(3): 1-10, 2016, Article no.IRJPAC.28006 ISSN: 2231-3443, NLM ID: 101647669

SCIENCEDOMAIN international www.sciencedomain.org

Effect of Substituents on Methylenecyclobutane / 1-Methylcyclobutene System

Ghassab M. Al-Mazaideh^{1*}, Rabia A. Enwisry² and Salim M. Khalil¹

¹Department of Chemistry and Chemical Technology, Faculty of Science, Tafila Technical University, P.O.Box 179, Tafila 66110, Jordan. ²Department of Chemistry, School of Basic Science, Libyan Academy for Graduate Studies, P.O.Box 17979031, Tripoli, Libya.

Authors' contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IRJPAC/2016/28006 <u>Editor(s):</u> (1) Martin Kroger, Department of Materials, Computational Polymer Physics, Swiss Federal Institute of Technology (ETH Zürich), Switzerland. <u>Reviewers:</u> (1) Nobuaki Tanaka, Shinshu University, Japan. (2) Reddi Mohan Naidu Kalla, Pusan National University, Busan, Republic of Korea. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/15747</u>

Original Research Article

Received 28th June 2016 Accepted 28th July 2016 Published 10th August 2016

ABSTRACT

A theoretical study was performed on the methylenecyclobutane and 1-methylcyclobutene in the gas and aqueous phases using PM3 and DFT calculations. Methylenecyclobutane was found to be more stable than 1-methylcyclobutene in the gas and aqueous phases according to PM3 calculations, and only slightly more stable than 1-methylcyclobutene in the case of DFT calculations. Also the effect of substituents (X = F, CH₃, NH₂, CN, NO₂, CHO and CF₃) was studied on the relative stabilities of these two tautomers. It was found that all the substituents increase the stability of 1-methylcyclobutene in the gas and aqueous phases. Heats of formation, and electron densities, were reported. The stability effect of X- substituents on the methylenecyclobutane and 1-methylcyclobutene was explained by Gibbs free energies calculations and confirmed by isodesmic reactions.

Keywords: Cyclic alkene; tautomerism; PM3; DFT; substituents.

1. INTRODUCTION

Process involving proton transfers between interconversion tautomers are of fundamental importance in synthetic and mechanistic chemistry [1]. Tautomerism is a prototropic rearrangement in which a hydrogen atom migrates to exo- C=C double bond for example in methylenecyclobutane $\underline{1}$ to form 1-methylcyclobutene $\underline{2}$ as shown in scheme 1.

Scheme 1. Methylenecyclobutane / 1methylcyclobutene tautomerism

The subject of tautomerism has been extensively reviewed, but it is receiving renewed interest because of improved experimental and theoretical methods [2]. Recently [3], methylene-cyclopropane / 1-methylcyclopropene system (Scheme 2) has been studied and shown that methylenecyclopropane $\underline{3}$ is more stable than 1-methylcyclopropene $\underline{4}$.

Scheme 2. Methylenecyclopropane / 1methylcyclopropene system

This was confirmed by a positive Gibbs free energy (11.615 kcal/mol), which indicates that this system is non-spontaneous and compound $\underline{3}$ is more stable than $\underline{4}$.

In regard to the effect of methylene group on the four-member ring (compound <u>1</u>), much work has been done by the reaction of methylenecyclobutane <u>1</u> with hydroxyl radicals to decompose to vinyl radical [4] (Scheme 3).

Also, work has been done on degenerate rearrangement of methylenecyclobutane by the synthesis and heating of dideuteromethylenecycl- obutane [5], gas photolysis of methylenecyclo- butane [6], reaction of methylenecyclobutane with PdCl₂ [7], and theoretical study of thermal degenerate rearrangement in methylenecyclo- butane [8], but no work was done on the tautomerism and effect of substituents as far as the literature is concerned.

Scheme 3. Decomposition of four-member ring

The aim of this paper is to extend our work on the effect of methylene group on the fourmember ring and to give more theoretical insight to the problem of the tautomerism of methylenecyclobutane / 1-methylcyclobutene. In addition, the effect of substituents X (X = F, NH₂, CH₃, CN, NO₂, CF₃ and CHO) were studied in the gas phase and aqueous environment using semiempirical PM3 [9] and DFT/B3LYP methods using G03 at 6-31G (d) main set in the MOPAC program, version 8.3 (2004) Cambridge Soft Corporation [10].

2. RESULTS AND DISCUSSION

Theoretical calculations (PM3 and DFT method) were carried out with complete optimization of geometries on methylenecyclobutane and 1-methylcyclobutene at temperature 298.15 K in the gas ($\epsilon = 1.00$) and aqueous ($\epsilon = 78.4$) phase.

2.1 PM3 Calculations

Calculations are first performed on the methylenecyclobutane and 1- methylcyclobutene without substitution, and then on the substituted parent compound at temperature 298.15 K.

2.1.1 Parent compounds (methylenecyclobutane and 1-methylcyclobutene)

2.1.1.1 Tautomerism

The calculated heat of formation of methylenecyclobutane ($\Delta H_f = 19.599 \text{ kcal/mol}$) in the gas phase is less than that of 1-methylcyclobutene ($\Delta H_f = 26.848 \text{ kcal/mol}$), which suggests that methylenecyclobutane is the more stable. This is supported by calculated Gibbs free energies of the tautomerization.

The Gibbs free energies of the tautomerization (ΔG_r) at 298.15 K were predicated by adding the heat of formation (ΔH_f) and entropic $(-T\Delta S)$ terms. The calculated value of the Gibbs free energy (G_A) of compound (A) is $G_{A=}$ - 0.954 kcal/mol (Table 1) and that of (B) is $G_B = 5.227$ kcal/mol. The Gibbs free energy for the tautomerization ΔG_r ($\Delta G_r = G_B - G_A$) is 6.182 kcal/mol which is less than that of methylenecyclopropane [3]. This is because the ring strain of the 1-methylcyclobutene is less than that of 1-methylcyclopropene which causes a decrease in free energies from three-member ring to four-member ring. Recently [11], it was found that ΔG_r for tautomerization of methylenecyclo- pentane / 1-methycyclopentene $(\Delta G_r = -3.667 \text{ kcal/mol})$ is less than that of the present result (methylenecyclobutane /1methylcyclobutene), which suggests a decrease in ring strain in going from 1-methylcyclobutente to 1-methylcyclopen- tene.

methylenecyclopentane 1-methylcyclopentene

Similar thermodynamic calculations of the Gibbs free energies ΔG_r of cyclopropanone /cyclopro penol [12], cyclobutanone /cyclobutenol [1], and cyclopentanone /cyclopentenol [13] show that the values of ΔG_r are 17.509 kcal/mol, 7.792 kcal/mol and 5.311 kcal/mol, respectively. From these values it can be seen that ΔG_r decrease from three-member ring, to the four and five-member ring, suggesting an increase of the enol tautomer when going from three-member ring to five-member ring. This is due to a decrease in the ring strain of the enol tautomer when going from the three to five-member ring [14].

In the aqueous phase, the calculated heat of formation of methylenecyclobutane (18.062 kcal/ mol) is less than that of 1-methylcyclobutene ($\Delta H_f = 24.925$ kcal/ mol), which suggests that methylenecyclobutane is the more stable. The calculated value of the Gibbs free energy (G_A) of

compound (A) is $G_A = -2.594$ kcal/ mol and that of (B) is $G_B = 4.030$ kcal/ mol. The Gibbs free energy for the tautomerization $\Delta G_r (\Delta G_r = G_B - G_A)$ is 6.625 kcal/mol. This (ΔG_r) is very close to that calculated in the case of the gas phase ($\Delta G_r =$ 6.182 kcal/mol). The ΔG_r ($\Delta G_r = 6.182$ kcal/mol) methylenecyclobutane /1-methylcyclobutene of will be taken as reference for determining relative stability of substituted the methylenecyclobutane and 1-methylcyclobutene tautomerism.

2.1.2 Effect of substituents

The semi-empirical PM3 method was used to calculate the optimized geometrical parameters of substituted methylenecyclobutane and 1-methylcyclobutene. The molecular geometrical structures of the optimized molecules are given in Fig. 1.

All substituents (F, NH₂, CH₃, CN, NO₂, CF₃, CHO) cause changes in the geometrical parameters compared to the parent (without substitution) and mostly where the substituent is attached.

2.1.3 Electron density

F, NH₂ and CH₃ substituents are found to decrease the electron density at which they are attached (C2) and increases it on the adjacent carbons (C1 and C3) as shown in Table 2. Therefore, these substituents act as electron releasing [13]. The CN, NO₂, CF₃ and CHO substituents increase the electron density at which they are attached and decrease it on the adjacent carbons. Therefore, these substituents act as electron substituents at a electron withdrawing [15].

2.1.4 Thermodynamic calculations

All substituents show less Gibbs free energies than that of the parent compounds as shown in Table 1, which suggests a destabilization of the methylenecyclobutane. The stabilization effect is often confirmed by the isodesmic reactions [3,15-17]. Positive substituent stabilization energy (ΔH_{rxn}) value indicates stability of the reactant and negative value is more stability to the product.

It can be seen that ΔH_{rxn} values of the isodesmic reactions of methylenecyclobutane are less than that of 1-methylcyclobutenes for all the substituents, which suggests that all the substituents destabilize the methylenecyclobutane as compared to 1-methylcyclobutenes (Table 3).

Al-Mazaideh et al.; IRJPAC	, 12(3): 1-10,	2016; Article	no.IRJPAC.28006
----------------------------	----------------	---------------	-----------------

Cpd #	Bond	Bond length (Å)	Bond angle	Angle degree
H1 5 C H2 4 1 3 2	C1-C2 C1=C5 C2-H8 C3-C2 C4-C1 C4-C3 C5-H1	1.511 1.320 1.113 1.523 1.497 1.523 1.098	C2-C1=C5 C4-C1-C2 C1-C2-H8 C3-C2-C1 C4-C3-C2 C3-C4-C1 C1=C5-H1	133.757 92.536 114.688 89.035 89.391 89.038 122.473
H_8 H_1 H_7 C H_2 H_2 H_3 H_2 H_3	C1=C2 C1-C5 C2-H8 C3-C2 C4-C1 C4-C3 C5-H1	1.352 1.459 1.081 1.518 1.522 1.567 1.098	C1-C5-H1 C2=C1-C5 C4-C1=C2 C3-C2=C1 C4-C3-C2 C3-C4-C1	110.678 135.862 94.085 94.045 86.125 85.745
$ \begin{array}{c} 2 \\ \mathbf{H}^{1} \\ 5 \\ \mathbf{H}^{2} \\ $	C1-C2 C1=C5 C2-F1 C2-H7 C3-C2 C4-C1 C4-C3 C5-H1	1.525 1.318 1.356 1.106 1.565 1.506 1.547 1.086	C1-C2-F1 C2-C1-C5 C4-C1=C5 C4-C1-C2 C3-C2-C1 C4-C3-C2 C3-C4-C1	115.631 133.358 134.256 92.383 88.436 89.337 89.782
3 H₁ 5 H₂ 4 3 2 NH₂ NH₂	C1=C2 C1-C5 C2-CF1 C3-C2 C4-C1 C4-C3 C5-H1	1.356 1.458 1.322 1.520 1.525 1.569 1.098	C2=C1-C5 C4-C1-C2 C1-C2-N1 C3-C2-C1 C4-C3-C2 C3-C4-C1	133.631 92.717 114.866 88.343 89.438 89.482
4 1 3 2,H ₂ 5	C1-C2 C1=C5 C2-N1 C2-H7 C3-C2 C4-C1 C4-C3 C5-H1	1.519 1.319 1.468 1.112 1.565 1.507 1.547 1.086	C2-C1=C5 C4-C1-C2 C1-C2-N1 C3-C2-C1 C4-C3-C2 C3-C4-C1	133.631 92.717 114.866 88.343 89.438 89.482

Al-Mazaideh et al.; IRJPAC	, 12(3): 1-10,	2016; Article n	o.IRJPAC.28006
----------------------------	----------------	-----------------	----------------

Cpd #	Bond	Bond length (Å)	Bond angle	Angle degree
	C1=C2 C1-C5 C2-N1	1.361 1.458 1.404	C2-C1=C5 C4-C1-C5 C4-C1=C2	136.111 130.335 93.553
$\begin{array}{c} 4 \\ 3 \\ 3 \end{array}$	C3-C2 C4-C1 C4-C3 C5-H1	1.523 1.520 1.567 1.098	C1=C2-N1 C3-C2=C1 C4-C3-C2 C3-C4-C1	135.218 94.227 85.719 86.501
NH2				
6 H ₁ 5 H ₂ C H ₂ C H ₂ C H ₂	C1-C2 C1=C5 C2-C6 C3-C2 C4-C1 C4-C3 C5-H1	1.516 1.319 1.506 1.557 1.507 1.523 1.085	C2-C1=C5 C4-C1=C5 C4-C1-C2 C1-C2-C6 C3-C2-C1 C4-C3-C2 C3-C4-C1	133.552 133.771 92.677 115.320 88.556 89.545 89.212
H_7 H_1 H_7 C H_2 H_2 H_2 H_2 H_2 H_3	C1=C2 C1-C5 C2-C6 C3-C2 C4-C1 C4-C3 C5-H1	1.355 1.459 1.459 1.521 1.521 1.567 1.098	C2=C1-C5 C4-C1-C5 C4-C1=C2 C1=C2-C6 C3-C2=C1 C4-C3-C2 C3-C4-C1	135.710 130.299 93.991 135.783 93.986 86.019 86.004
8 H ₁ 5 H ₂ H ₂ H ₂ H ₂ H ₂ H ₂ H ₂	C1-C2 C1=C5 C2-C6 C2-H7 C3-C2 C4-C1 C4-C3 C5-H1	1.549 1.319 1.445 1.112 1.560 1.508 1.549 1.086	C2-C1=C5 C4-C1=5 C4-C1-C2 C1-C2-C6 C3-C2-C1 C4-C3-C2 C3-C4-C1	109.500 109.500 109.510 112.400 109.390 110.510 109.390
$\begin{array}{c} 9 \\ \mathbf{H}_1 \\ \mathbf{H}_7 \\ 0 $	C1=C2 C1-C5 C2-C6 C3-C2 C4-C1 C4-C3 C5-H1	1.357 1.458 1.402 1.521 1.523 1.568 1.099	C2-C1=C5 C4-C1=C5 C4-C1-C2 C3-C2-C1 C4-C3-C2 C3-C4-C1	132.739 134.707 92.541 88.695 89.458 89.301
$\frac{10}{H_1}$	C1-C2 C1=C5 C2-N1 C2-H7 C3-C2 C4-C1 C4-C3	1.516 1.319 1.528 1.115 1.558 1.509 1.548	C2- C1=C5 C4-C1=C5 C4-C1-C2 C1-C2-N1 C3-C2-C1 C4-C3-C2 C3-C4-C1	132.739 134.707 92.541 115.354 88.695 89.458 89.301

Cpd #	Bond	Bond length (Å)	Bond angle	Angle degree
$ \begin{array}{c} 11\\ H_1\\ H_7\\ C\\ H_2\\ H_2\\ H_2\\ H_2\\ H_2\\ H_2\\ H_2 $	C1=C2	1.362	C2=C1-C5	136.313
	C1-C5	1.457	C4-C1-C5	130.172
	C2-N1	1.458	C4-C1=C2	93.516
	C3-C2	1.524	C1=C2-N1	135.504
	C4-C1	1.521	C3-C2=C1	94.160
	C4-C3	1.566	C4-C3-C2	85.772
	C5-H1	1.099	C3-C4-C1	86.552
$\frac{12}{H_1}$ $\frac{4}{3}$ $\frac{4}{2}$ $\frac{4}{5}$ $\frac{12}{5}$ H_2 H_2 H_2	C1-C2 C1=C5 C2-C6 C2-H7 C3-C2 C4-C1 C4-C3 C5-H1	1.512 1.319 1.551 1.110 1.553 1.508 1.549 1.086	C2-C1=C5 C4-C1=C5 C4-C1-C2 C1-C2-C6 C3-C2-C1 C4-C3-C2 C3-C4-C1	133.267 134.216 92.520 115.319 88.897 89.389 89.187
$\begin{array}{c} 13\\H_1\\H_7\\\hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	C1=C2	1.354	C2= C1-C5	136.233
	C1-C5	1.458	C4-C1-C5	130.307
	C2-C6	1.496	C4-C1=C2	93.460
	C3-C2	1.518	C1=C2-C6	135.545
	C4-C1	1.523	C3-C2=C1	94.607
	C4-C3	1.568	C4-C3-C2	85.686
	C5-H1	1.098	C3-C4-C1	86.246
$\begin{array}{c} 14\\ H_1\\ H_1\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C1-C2	1.515	C2-C1=C5	133.466
	C1=C5	1.319	C4-C1=C5	133.871
	C2-C6	1.509	C4-C1-C2	92.655
	C2-H7	1.111	C1-C2-C6	113.529
	C3-C2	1.556	C3-C2-C1	88.632
	C4-C1	1.508	C4-C3-C2	89.541
	C4-C3	1.549	C3-C4-C1	89.169
$O \\ 15 \\ H_1 \\ H_2 \\ f \\ $	C1=C2 C1-C5 C2-C6 C3-C2 C4-C1 C4-C3	1.358 1.458 1.455 1.521 1.522 1.566	C2=C1-C5 C4-C1-C5 C4-C1=C2 C1=C2-C6 C3-C2=C1 C4-C3-C2 C3-C4-C1	136.092 130.076 93.833 136.599 93.992 86.051 86.124

Fig. 1. Structures and optimized geometrical parameters calculated by PM3 for the substituted methylenecyclobutane and 1-methylcyclobutene in the gas phase (ϵ = 1.00) at temperature 298.15K and liquid (ϵ = 78.4) phase

	A CH ₂					
X	GA	GB	ΔGr			
Н	-2.594	4.030	6.625			
F	-49.278	-43.909	5.368			
NH_2	-5.621	-7.124	-1.503			
CH ₃	11.390	10.061	-1.329			
CN	23.873	27.800	3.926			
NO ₂	-36.493	-38.944	-2.450			
CF ₃	-169.995	-165.818	4.176			
CHO	-45.502	-44.328	1.173			

Table 1. Calculated gibbs free energies ∆G (kcal/mol) of the substituted methylenecyclobutane and 1-methylcyclobutene in the gas phase, obtained from PM3 program

 $\Delta G_r = G_B - G_A$

Table 2. Calculated electron densities of substitute methylenecyclobutane and 1- methylcyclobutene (see Fig.1 for numbering), obtained from PM3 in the gas phase ($\epsilon = 1.00$)

Cpd #	C1	C2	C3	C4	C5	C6	H7	N1	01	F1
1	4.134	4.067	4.109	4.067	4.152		0.938			
2	4.147	4.170	4.078	4.072	4.036		0.956			
3	4.179	3.900	4.135	4.056	4.106		0.929			7.138
4	4.174	4.021	4.069	4.055	4.030		0.951			
5	4.148	4.054	4.144	4.063	4.125		0.916	5.018		
6	4.217	4.183	4.057	4.050	4.016		0.964	4.880		
7	4.134	4.048	4.111	4.066	4.149	4.098	0.925			
8	4.152	4.152	4.067	4.067	4.032	4.032	0.957			
9	4.148	3.909	4.102	4.062	4.115	4.139	0.935	5.066		
10	4.069	4.068	4.046	4.080	4.052	4.059	0.931	5.071		
11	4.147	4.296	4.082	4.060	4.100		0.908	3.759	6.581	
12	3.934	4.520	4.006	3.105	4.084		0.925	3.646	6.607	
13	4.413	4.100	4.094	4.054	4.111	3.648	0.928			7.141
14	4.014	4.292	4.029	4.086	4.064	3.559	0.926			7.143
15	4.129	4.138	4.088	4.067	4.143	3.706	0.939		6.311	
16	4.074	4.289	4.162	4.147	3.991	3.574	0.921		6.306	

Table 3. Evaluation of the substituent effects on the substituted methylenecyclobutane and 1methylcyclobutene tautomerism via isodesmic reactions (ΔH_{rxn} kcal/mol), obtained from PM3 in the gas phase ($\epsilon = 1$)

Isodesmic reactions				Х			
	F	NH ₂	CH₃	CN	NO ₂	CF₃	СНО
	1.648	1.030	0.095	1.550	2.016	1.949	1.007
	2.765	8.310	4.543	4.844	9.898	3.713	5.097

 $\Delta H_r = \sum \Delta H_{product} - \sum \Delta H_{reactant}$

2.2 DFT Calculations

Density Functional Theory (DFT) type (B3LYP) has been performed in the gas phase with complete optimization of geometrical parameters first on the parent compounds (methylenecyclobutane and 1-methylcyclobutene) and then on substituted methylenecyclobutane and 1-methylcyclobutene.

2.2.1 Tautomerism

The calculated enthalpy (H_A) of methylenecyclobutane (H_A = -192.814 Hartrees) is smaller than that of 1-methylcyclobutene (H_B = -192.810 Hartrees), which suggests that compound (A) is the more stable. This is supported by the calculated Gibbs free energy (G_A) of compound (A) (G_A = -192.846 Hartrees) and that of (B) (G_B = -192.844 Hartrees) (Table 4), where $\Delta G_B > \Delta G_A$. The Gibbs free energy (ΔG_r) for the tautomeri- zation ($\Delta G_B - \Delta G_A$) is $\Delta G_r = 0.00217$ Hartrees (1.362 kcal/ mol), which suggests that compound (A) is slightly predominant in the gas phase. But the present PM3 calculations show that the compound (A) is predominant in the gas and aqueous phases.

2.2.2 Effect of substituents

2.2.2.1 Thermodynamic calculations

All substituents show less Gibbs free energies than that of the parent compounds as shown in Table 4, which suggests a destabilization of the methylenecyclobutane. The stabilization effect is confirmed by the isodesmic reactions. It can be seen that ΔH_{rxn} values of the isodesmic reactions of methylenecyclobutane are less than that of 1methylcyclobutenes for all the substituents, which suggests that all the substituents destabilize the methylenecyclobutane as compared to 1-methylcyclobutenes (Table 5).

Table 4. Calculated Gibbs free energies ∆G (kcal/mol) of the substituted methylenecyclobutane and 1methylcyclobutene system obtained from DFT calculations

Table 5. Evaluation of substituent effects on the substituted methylenecyclobutane 1-methylcyclobutene tautomerism via isodesmic reactions (ΔH_{rxn} kcal/mol), obtained from DFT in the gas phase ($\epsilon = 1$)

Isodesmic reactions	X						
	F	NH ₂	CH₃	CN	NO ₂	CF₃	CHO
	0.700	0.188	-0.629	0.167	0.002	0.155	0.181
	2.740	10.650	8.330	8.330	0.003	2.797	5.742
ΔH_{rxn}	$= \sum \Delta H_{pro}$	$_{duct}$ - $\sum \Delta H$	reactant				

3. CONCLUSIONS

The present theoretical study indicates the following:

1- PM3 method has shown that the methylenecyclobutane is predominant in the gas and aqueous phases.

methylenecyclobutane 1-methylcyclobutene (A) (B)

- 2- DFT method has shown that the methylenecyclobutane is slightly predominant in the gas phase.
- 3- All substituents (X = F, NH₂, CH₃, CN, NO₂, CF₃ and CHO) were found to affect the geometrical parameters (bond lengths and angles) especially at which the substituents are attached in position 2.

- 4- All substituents were found to stabilize the 1-methylcyclobutene in the gas phase.
- 5- The relative stabilities of substituted methylenecyclobutane and 1-methylcyclobutene were explained by thermodynamic calculations and supported by the isodesmic reactions.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial support of the Tafila Technical University.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Sway MI, Al-Shawabkeh ID, Khalil SM. A theoretical study of substituted

cyclobutanones and their enols. Z. Naturforsch. 2004;59a:838-844.

- 2. Lammertsma K, Bharatam PV. Keto ≓ enol, imine \rightleftharpoons enamine, and nitro \rightleftharpoons acitautomerism and nitro their interrelationship in substituted nitroethylenes. Keto, Imine, Nitro, and Vinyl Substituent Effects and the Importance of H-bonding. J. Org. Chem. 2000;65(15): 4662-4670. Karelson M, Lobanov VS, Quantum-chemical Katritzkv AR. descriptors in QSAR/QSPR studies. Chem. Rev. 1996;96(3):1027-1044.
- Takeda K, Yoshida H, Hayashi K, Okamura S. Electron spin resonance study of radiation- and free radical-Induced reactions of methylenecycloalkanes (special issue on physical, chemical and biological effects of gamma radiation, VIII). Bull Inst. Chem. Res.1967;45(1):55-62.
- 5. Von W, Doering E, Gilbert JC. Degenerate rearrangement of methylene-cyclobutane. Tetrahedron. 1966;22:397-414.
- 6. Tu CK, Doepker RD. Gas-phase photolysis of methylenecyclobutane, at 147.0 nm and 123.6 nm. J. Phot. 1973; 1(4):271-282.
- Rossi R, Diversi P, Porri L. The reaction of methylenecyclobutane with PdCl2 and [Rh(CO)₂ Cl]₂: A re-examination. J. Organometallic Chem. 1973;47(1):C21.
- Shancke PN, Koga N, Morokuma K. A theoretical study of the thermal degenerate rearrangement in methylenecyclobutane. J. Am. Chem. Soc. 1989; 111(5):1559-1563.
- Stewart JJP, Comput J. Optimization of parameters for semiempirical methods I. Method. Chem. 1989;10(2):209-220.
- Kohn W. Nobel lecture: Electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 1999;71(5):1253-1266.
- 11. El-Jalidi WB, M Sc. Thesis, Academy of Graduate Studies; 2008.
- El-Alali A, Marashdeh AA, Khalil SM. Atheoretical study of substituted stepwise fluorinated cyclopropanone keto-enol system. Z. Naturforsch. 2003;58a:749-755.
- 13. Al-Noeemat MS, Al-Ma'ani RA, Khalil SM. A theoretical study of substituted

cyclopentanones and their enols. A theoretical study of substituted cyclopentanones and their enols. Z. Naturforsch. 2003;58a:738-748.

14. a) Al-Msiedeen AM, Al-Mazaideh GM, Khalil SM. A theoretical study of the enol contents of cyclohexanone, cyclopentanone and acetone. Amer. Chem. Sc. J. 2016;13(4):1-8.

b) Hine J, Arata K. Keto-Enol tautomerism. I. the calorimetrical determination of the equilibrium constant for Keto-Enol tautomerism for cyclopentanone. Bull. Chem. Soc. Jpn. 1976 49(11):3085-3088.

- 15. Halasah AL, Mahsnah M, Khalil SM. Study on the substituent effect in the keto-enol tautomerism of acetal derivative. Z. Naturforsch. 2004;59a:299.
- Khalil SM, Jarjis HM. Mindo–forces study of α- substituted cyclopropyl and isopropyl radicals. Z. Naturforsch. 1991;46 898-908.
- Jarjis HM, Khalil SM. A theoretical study of monosubstituted fulvenes. Z Naturforsch. 1990;45a:799-806.

© 2016 Al-Mazaideh et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/15747