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ABSTRACT 
 
Oscillatory blood flow in bifurcating arteries with emphasis on the thermal factor is investigated. 
Blood is treated as Newtonian, viscous, incompressible, homogeneous, magnetically susceptible, 
chemically reactive but of order one; the arteries are porous, bifurcate axisymmetrically, and have 
negligible distensibility. The governing non-linear and coupled equations modeled on the 
Boussinesq assumptions are solved using the perturbation series expansion solutions. The 
solutions obtained for the temperature and velocity are expressed quantitatively and graphically. 
The results show that the temperature is increased by the increase in chemical reaction rate, heat 
exchange parameter, Peclet number, Grashof number and Reynolds number, but decreases with 
increasing magnetic field parameter (in the range of 0.1≤M

2
≤1.0) and bifurcation angle; the velocity 

increases as the magnetic field parameter (in the range of 0.1≤M
2
≤1.0 in the mother channel and 

0.1≤M2≤0.5 in the daughter channel), chemical reaction rate (in the range of 0.1≤δ1
2≤0.5), Grashof 

number (in the range of 0.1≤Gr≤0.5), Reynolds number and bifurcation angle. The increase and 
decrease in the flow variables have strong implications on the arterial blood flow.  
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1. INTRODUCTION 
 
The transport of materials (food nutrients, water, 
drugs, oxygen and the likes), in particular, round 
the human body is through the blood. 
Specifically, in the cardiac cycle of the systemic 
circulation, the oxygen-rich blood is transported 
from the heart to other parts of the body. The 
journey of the oxygen-rich blood starts from the 
left atrium-ventricle of the heart to the main artery 
or aorta from which it enters the other                      
arteries connected with such flow like the                   
carotid arteries of the head, subclavian arteries 
of the fore limbs, gastric and mesenteric                  
arteries of the stomach and intestines, the renal 
arteries of the kidney, the genital arteries of the 
gonads, the iliac arteries of the lower limbs and 
finally to the capillaries and body cells. More so, 
studies have shown that arteries bifurcate and 
are sometimes stenosed. At these points, the 
flow experiences some disturbances due to 
change in the geometric configurations. The 
disturbances lead to the emergence of 
secondary/oscillatory flows. The oscillatory 
characteristics are marked by the presence of 
imaginary parts in the solutions of the flow 
variables. 
 
Furthermore, the rhythmic pumping action                
of the heart makes the arterial blood flow                 
forced convective. On the other hand, the      
natural influence of the environmental                 
thermal and concentration gradients accounts        
for the free convective motion of blood in the 
human system. For the forced-free convective 
effects, the arterial blood flow is mixed 
convective. 
 
There are a lot of literatures on the oscillatory 
flow in bifurcated, stenosed arteries and other 
related channels. For example, [1] investigated 
the radiative heat transfer to blood through a 
stenosed artery using analytic series solutions, 
and observed that increase in the height of the 
constriction increases the heat transfer rate and 
skin friction; the increase in the radiation 
absorption parameter increases the velocity, 
temperature, heat transfer rate and skin friction; 
the increase in the Hartmann number decreases 
the flow velocity; [2] studied the effects of heat 
transfer on the pulsatile blood flow in tubes with 
slowly varying cross-sections using the 
perturbation series expansions, and noticed that 
the amplitude of the pulse, height of constriction 
and Reynolds number of the flow increase the 

temperature and heat transfer rates. [3] 
investigated analytically the oscillatory blood flow 
in convergent and divergent channels using the 
method of regular perturbation series solutions, 
and found that the variations in the pulse 
amplitude and height of constriction reduce the 
axial velocity and pressure but increase the 
radial velocity and wall shear stress. More so, 
they observed that flow separation occurs in the 
radial velocity and pressure structures in the 
convergent and divergent regions respectively, 
when the height of the constriction is increasingly 
varied. [4] examined the effects of Reynolds 
number on the oscillating flow in convergent and 
divergent channels using the method of 
perturbation series solutions, and saw that 
increase in the Reynolds number increases the 
velocities and wall shear stress. Similarly, they 
observed that a flow separation occurs in the 
radial velocity flow structure. [5] investigated the 
effect of pulse amplitude, radius of constriction 
and Reynolds number on the blood flow through 
a multi-stenosed artery under the influence of                    
viscous dissipation and insignificant free 
convective force. They assumed blood is 
Newtonian and the artery rigid, and using the 
stream function and vorticity and perturbation 
series expansions, and found that an increase in 
the amplitude decreases the axial pressure and 
radial velocity; an increase in the height of 
constriction increases the axial pressure but 
decreases the radial velocity; an increase in the 
Reynolds number decreases the radial velocity 
but has no significant effect on the axial 
pressure.  
 
The effects of magnetic field on oscillatory 
arterial blood flow have been investigated. [6] 
worked on the effects of magnetic field on the 
flow in a mildly constricted artery, assuming 
blood is  Newtonian, and using the vorticity 
stream function and Galerkin technique of the 
finite element method, observed that at increase 
in the magnetic field intensity flattens the wall 
shear stress. [7] considered the heat transfer 
effect on the oscillatory arterial blood flow 
modeled under the optically fluid assumption 
using the closed-form solutions, and saw that the 
height of constriction of the stenosed artery, 
magnetic field and the heat transfer affect the 
velocity and temperature distributions; [8] studied 
the MHD oscillatory flow in a channel filled with 
porous medium using the closed form solutions 
method, and observed that increase in magnetic 
field reduces the wall shear stress while the 
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radiation parameter increases it. [9] examined 
the oscillatory blood in multi-stenosed arteries 
using a vorticity-stream function and finite 
difference scheme, and noticed that magnetic 
field increases the heat transfer rate and the 
thermal boundary layer thickness. [10] studied 
the free convection flow through a vertical porous 
channel in the presence of an applied magnetic 
field using the finite difference numerical 
approach, and noticed that the velocity 
decreases with the increase in the Darcy and 
Hartmann numbers. [11] considered the MHD 
free convective and oscillatory flow through a 
vertical channel filled with porous medium with 
non-uniform wall temperatures using the method 
of asymptotic expansions, and noticed that the 
fluid velocity, skin-friction coefficient increase as 
the Grashof number increases; the temperature 
and velocity and rate of heat transfer of the fluid 
decrease as porosity and magnetic field, 
radiation, heat generation/absorption parameters 
or Prandtl number increases. [12] investigated 
analytically the effect of heat and mass transfer 
on the MHD oscillatory flow in an asymmetric 
wavy channel in the presence of chemical 
reaction and heat source using the method of 
regular perturbation, and found that the heat 
transport of a system is strongly increased in 
oscillatory flow than in the ordinary condition. [13] 
considered the radiation and hall current effects 
on the MHD free convective three -dimensional 
flow of an incompressible viscous fluid               
between vertical parallel plates channel filled with 
a porous medium, and saw among others,  that 
the velocity component for the primary flow 
increases with the increase in Reynolds number, 
Darcy parameter, hall parameter, Grashof 
number, Peclet number and pressure gradient 
but reduces as the Hartmann number and 
radiation parameter increase; the velocity 
component for secondary flow increases with the 
increase in Darcy number and hall parameter but 
reduces with the increase in Reynolds                    
number, magnetic field, Gashof number, Peclet 
number, pressure gradient and radiation 
parameter.  
 
Furthermore, the roles of geometry with respect 
to bifurcation angle has been examined. [14] 
investigated a three-dimensional one-to-two 
symmetrical flow in which the mother is straight 
and of circular cross-section, containing a fully 
developed incident motion, while the diverging 
daughters are straight and of semi-circular cross-
section. Using the method of direct numerical 
simulation and slender modeling for a variety of 
Reynolds number and divergent angles, they 

observed that a flow separation or reversal 
occurs at the corners of the junction, and the inlet 
pressure increases as the bifurcation angle 
increases. [15] considered the flow in a 
bifurcating river, and found that bifurcation angle, 
Reynolds number and thermal differentials 
increase the velocity factor, while the Hartmann 
number decreases it. [16] investigated 
analytically the biomechanics of a bifurcating 
green plant using the perturbation method of 
solutions, and noticed amidst others, that 
increase in the bifurcation angle increases the 
flow velocity and concentration, Nusselt and 
Sherwood numbers. [17] studied the oscillatory 
flow in bifurcating green plants using the regular 
perturbation series solution, and noticed that the 
velocity increases with the increase in the 
magnetic field in the range of 0.1≤M2≤1.0 but 
drops for M

2
≥5.0; Reynolds and Peclet numbers 

increase the concentration and velocity; 
bifurcation angle decreases the concentration       
but increases the velocity. 
 
Moreover, the flow of fluids in the arteries has 
been viewed clinically. For example, [18] 
investigated the dispersion of drugs through 
lumen catheters into the arterial system using 
numerical simulation. They observed that the 
dispersion is improved by the use of multi-lumen 
devices; the multi-lumen devices have a reduced 
hydraulic resistance to blood flow. [19] gave a 
mass transfer model for predicting the 
penetration of drugs into the arterial walls by 
numerical approach, and noticed that the 
concentration of the drugs at certain depth of the 
arterial wall depends on the duration of the drug 
administration, increase with the applied 
pressure but decreases for lighter viscosities of 
the advection fluids; [20] studied experimentally 
the rate of penetration of drugs into the                    
arterial walls using pressured balloon.                  
The study is partly aimed at examining the 
formation of aneurysms. Also, [21] examined 
experimentally the roles of waveforms on the 
flow distribution in cerebral aneurysms, and saw 
amidst others, that a reduction in the pressure 
variable gives a universal relationship that 
characterized the flow; [22] considered the 
importance of surrounding tissues on the 
deformation and distensibility of healthy and 
diseased arteries, and found that the presence of 
plague reduces the distensibility of the               
arteries.  
 
Attempting to have an in-depth understanding of 
flow in physiologic systems, [17] studied the flow 
of a bio-fluid (the soil mineral salt water) under 
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oscillatory influence in a bifurcating green plant 
wherein the inertia force is zero. In this study, we 
investigate the oscillatory flow behaviour of blood 
in a bifurcating artery wherein the inertia force is 
non-zero.  Therefore, this work is an extension of 
[17].  
 
The purpose of this paper is to investigate the 
oscillatory flow characteristics behaviours of 
blood in bifurcating arteries under the influence 
of exposed magnetic field, temperature 
differentials, Peclet number, Reynolds number, 
and chemical reaction rate and bifurcation               
angle. 
 
This paper is arranged in the following order: 
section 2 is the methodology; section 3 is the 
results and discussion, while section 4 gives the 
conclusion. 
 
 

2. METHODOLOGY 
 
We consider the problem of thermally driven 
MHD mixed convective oscillatory blood flow in 
bifurcating arteries. It is formulated under the 
following assumptions: That arteries are 
cylindrical, porous, have negligible distensibility, 
and bifurcate axisymmetrically; Blood is 
Newtonian, viscous, incompressible, 
homogeneous, magnetically susceptible, 
chemically reactive but of order one; the flow 
velocity is symmetrical in the θ-axis such that its 
variation about θ-axis is zero, thus for a two-
dimensional consideration the velocity 

components become  ',' wu .in the  ',' xr  

coordinates. Therefore, the equations for the 
continuity, momentum, energy and diffusion 
respectively, following the Boussinesq 
approximations are: 
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where 'p is the fluid pressure,   is the fluid viscosity, m  is the magnetic permeability of the fluid, g 

is the gravitational field vector, 'T and 'C  are the fluid temperature and concentration,  wT and wC are 

the constant temperature and concentration at the wall, T andC  are the equilibrium temperature  

and concentration, tB and cB are the volumetric expansion coefficients for temperature and 

concentration,  is the permeability of the porous medium, 
2
oB  is the applied uniform magnetic field 

strength due to the salinity of blood, e is the electrical conductivity of blood, ok  is the thermal 

conductivity of the medium, pC is the specific heat  capacity at constant pressure, Q
 
is the heat 

absorption/generation coefficient, D is the diffusion coefficient, 
2
rk  is the chemical reaction rate. 
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Fig. 1. A physical models of a bifurcating artery (where the angles  and  aresymmetrical) 

 
Fig. 1 shows that the boundary conditions can be 
separated into two parts: the mother/upstream 
x<xo  and daughter/downstream x>xo, where xo is 
the point of bifurcation assumed the origin. Now 
for the mother/upstream region we have 
 

' 1,u  ,1'w  ' 1,T  ' 1C   on  ' 0r           (6) 

 

' 0,u  ,0'w ' ,wT T ' ,wC C
 
on  ' 1r    (7) 

 

and for the daughter/downstream region 
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where  is bifurcation angle, 1 and 2 are 

constants.  
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where 10 
l

ro ,   and   are the 

dimensionless temperature and concentration, 

respectively; ),( wu are the dimensionless 

velocities in the ),( xr -axes,   is the aspect 

ratio,  is the kinematic viscosity, ro is the 

characteristic radius of the artery, is the 

magnetic field parameter,  is the Reynolds 

number, is the environmental temperature 

differential parameter,  is the porosity 

parameter,  is the chemical reaction 

parameter,  is the Schmidt number, Pr is the 

Prandtl number, Gr and Gc are the Grashof 
numbers due to the temperature and  

concentration difference, respectively; hPe  and

mPe are the Peclet number due to heat and 

mass  transfers, respectively; into equations (1) – 
(9) to have 
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with the boundary conditions 
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Equation (12) is the crux of this study. 
 
A close look at equations (12)-(14) shows that 
they are non-linear and coupled. To make them 
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for the downstream region 
 
For further simplification and tractability of equations (21)-(27), we seek for the perturbation series 
solution in terms of the Reynolds number and of the form: 
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where 1
Re

1


 
the perturbing parameter, is small. The choice of this parameter comes from the 

fact that in the upstream channel the flow is laminar and Poiseuille such that the Reynolds number is 
usually moderate. But almost at the point of bifurcation, the inertial force and hence the Reynolds 
number rises due to a change in the geometrical configuration. This being the case, its reciprocal will 

be small enough. More so, we assume the velocity, temperature and concentration variables nh can 

be expressed as: xrhxrh  )(),( 000  and xrhxrh  )(),( 101 and the pressure as

2)( xxxp  , where x is the upstream pressure, and
2x is the downstream pressure (see 

[23]). Substituting these into equations (21)-(27) gives 
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 100010
210

2

10
2 1

wwPeN
rrr

h 










                 
(33) 

 

 100010
2

1
10

2

10
2 1

wwPe
rrr

h 








                  (34)  

 

Where 21 
 

 

Now, for the mother/upstream channel, we shall remove ow  from equations (30) and (31) by taking 

the  


















 2
12

2 1
M

rrr
  

(where   222
1 MM )

 
 

of both equations to get  
 

     hoooorr PeRRNDMD 22
1                 (35) 

 

and 

     oorrooh RDMDRPe   2
1

2
1                 (36) 

 

where  Dr = 

















rrr

1
2

2

and GcGrGcPeGrPe mh  ,
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Moreover, we shall remove oo  from equations (35) and (36) by multiplying through equation (35) by 

R and taking  

 

    RNDMD rr  22
1  

 
of equation (36) so that on adding the evolving equations, we have 
  

        hoorrrr PeRRDMDRNDMD  2
1

2
1

22
1               (37) 

 
which expands to  give 
 

     24
1

2
1

22
1

2
1

22
1

32
1

2
1

24 2222 rrr DRMNMMNMDMND 

   rDNMMNM 42
1

2
1

222
1

4
1 2   +    ooM  2222

1
2

1   

 hPeR                       (38) 

 
Equation (38) is a fourth order characteristic equation. We shall break it into two solvable parts: the 
even and odd powers terms. Thus: 
 

   24
1

2
1

22
1

2
1

22
1

4 222 rr DRMNMMNMD 

   ooM  2222
1

2
1   hPeR                   (39) 

 
for the even power terms 
 

   22
1

2
1

22 rr DMND    42
1

2
1

222
1

4
1 2 NMMNM    0oo  (40) 

 
and for the odd powers terms. 
 
Now, since our problem here is of fourth order, the solution of equation (39) which is 
 

       
2/1

6

2/1
61

1
2/1

8

2/1
82/1

81
2 







rrI
c

rI
rIdr o

ooo


                 (41) 
 
can be used to approximate the solution of equation (38). 
 

Furthermore, we remove oo  from equation (35) and equation (36) by taking 

 

     RDMD rr  2
1

2
1  

 
 

of equation (35) and  multiplying  through equation (36) by R so that on subtracting the first from 

the second, we have 
 

         hoorrrr PeRRDMDRNDMD  2
1

2
1

22
1                (42) 

 

Comparing equation (37) with equation (42), reveals that they are the similar. So, oooo  . 
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 More so, putting oo and oo  in equation (29) and solving gives 

 










2/1
6

2/1
81

11111

)(

2
)()()(



 rI
Grd

r
rMrIMrMIvrw oooo +     


















1921611420

6
6

4
2

1

7
6

5 rr
M

rr 
+
























2/1
8

2/1
81

1

1

11
32

11 )(
2

)(

42 

 rI
Grd

M

rMIrMrM

-
806406

5
6

35
8

2
1

32
1 rrrMrM 





 +


















19216

6
6

4
2

1

rr
M


                 (43) 

For the daughter/downstream problem, we solve equations (32)-(34). We shall remove oow
and 10w

 

from equation (33) and (34) by taking  
 


















 2
12

2 1
M

rrr
 

 

of both sides of the equations, and substituting the solutions of oo and oo  [see equation (41)] into 

the resulting equations gives 
 

         ...2 2/1
811

2
1010

22
1  rIdRxPeRRRNDMD omrr 

      (44)
 

 
and 
 

                                
(45) 

 
 

Also, removing 10 from equation (44) and (45) by multiplying equation (43) by R and taking 

 

    RNDMD rr  22
1  

 
of equation  (45),and subtracting the first result from the second gives 
 
 

       10
222

10
2

1
2

1
22

1   rrrr DMDNDMD  

   rIdxNNPe oh
2/1

8
222

11
32 2        (46) 

 
which expands to give 
 

       
        

 
10

2
1

2
1

22
1

2
1

22
1

2
1

2
1

2
1

2
1

22
1

2
1

22
1

22
1

2
1

222
1

2
1

2
1

2
1

22
1

2
1

32
1

22
1

2
1

4






























MNMNM

DMMNMMNMNM

DNMMMNMDMNMD

r

rrr

 

   rIDxNNPe oh
2/1

8
222

11
32                      (47) 

 
To ease solving, we separate equation (47) into two:  the even and odd power terms to get  
 

         ...2 2/1
811

2
1010

2
1

2
1  rIdRxPeRRRDrMDr om 
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      2
1

2
1

22
1

2
1

22
1

222
1

2
1

2
1

2
1

22
1

2
1

4  MNMNMDNMMMNMD rr  10  

   rIDxNNPe oh
2/1

8
222

11
32                                  (48) 

 

for the even power terms, and 
 

        2
1

22
1

22
1

2
1

22
1

22
1

2
1 MNMNMDMNMD rr  

 
    0  10

2
1

2
1

2
1

2
1

22
1  MMNM 

                              (49) 
 

for the odd terms 
     

 
Solving equation (48), we have 
 

     
2/1

14

2/1
14

1
2/1

16
2/1

16

2/1
16

110
2 




 rI
rgrI

rI
k o

o
o 

                              (50) 
 

and this can be used to approximate the solution of equation (47), being order four. 
 

Similarly, removing 10 from equation (44) and (45) by multiplying equation (44) by R and taking 

    RNDMD rr  22
1  

 
of equation  (45), and subtracting the first result from the second gives 
 
       10

222
10

2
1

2
1

22
1   rrrr DMDNDMD  

   rIDxNNPe oh
2/1

6
222

11
32 2                     (51) 

 

Comparing equation (46) with equation (51), reveals that they are the similar. So, 1010  . 

Substituting 10 and 10  in equation (32) and solving, we have 

 









 


2/1
16

2/1
16111

1111

)(

2
)()()(



 rIk
Gc

xr
rMIrMIvrw oo +

64

)( 4
14

2/1
16

2/1
161

1
2/1

16

rrrI
g






 





 
 













384

6
1614 r

+ 


























2/1

16

2/1
161

1
2/1

16

5
16

3

1

3
1

2
1

2

)(

203
2

34 




 rrI
g

rr
kGc

rM
+        

 
























38464

6
1614

4
14 rr 

+ 









43

33
11 rMrM



 


1

111 )(

M

rMxI

 
 



















8016

)(
2

5
16

2
1

4
16

1

11
1

rMr

M

rMI
kGc


+
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)( 4
14

1

11
1

2/1
16

r

M

rMrI
g


 




+ 





384

6
114 rM

+   

19232

62
116

4
16 rMr 

 +











2048384

82
11614

6
1614 rMr 

                              (52)
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3. RESULTS AND DISCUSSION 
 

In section 2, the problem of oscillatory blood flow 
with emphasis on the thermal factor is 
formulated. The effects of some choice 

parameters such as M2, 
2

1 , N2, Gr/Gc,  Pe, Re 

and α are investigated. The computation is 
carried out using Maple 18for constant realistic 
values of Pr =0.71, γ1 = 0.6, γ2 =0.6,  γ =0.7, Φw 

= 2.0, Θw =2.0, 0.8  and varying values of 
2

1  =0.1, 0.3, 0.5, 1.0, 5.0; M2 = 0.1, 0.3, 0.5, 

1.0, 5.0; N
2
=0.1, 0.3, 0.5, 1.0, 5.0; Gr/Gc=0.1, 

0.3, 0.5, 1.0, 5.0; Pe=0.1, 0.3, 0.5, 1.0, 5.0; 

Re=100, 500, 1000, 2000, 3000; α=5, 10, 15, 20, 
25. The results are shown below. Figs. 2-4 and 
Tables 1-11 show that the temperature 
distribution is increased by the increase in 
chemical reaction rate, heat exchange 
parameter, Peclet number, Grashof numbers, 
and Reynolds number but it is decreased by the 
increase in the magnetic field parameter (in the 
range 0.1≤M

2
≤1.0), and bifurcation angle; the 

velocity distribution is increased by the increase 
in magnetic field parameter  (in the range 
0.1≤M

2
≤0.5), chemical reaction rate, Grashof 

numbers (in the range 0.1≤Gr≤0.5), Reynolds 
number and bifurcation angle. 

 

 
 

Fig. 2. Temperature-magnetic field parameter profiles in the mother channel 
 

 
 

Fig. 3. Velocity-magnetic field parameter profiles in the mother channel 
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Fig. 2 shows that the temperature decreases with 
the increase in the magnetic field strength.            
Also, the distribution have a flow separation 
structure at r=0.7. The presence of flow 
separation may be due to some adverse 
conditions in the flow field. More so, Fig.3 and 
Table 1 show that the velocity distribution 

increases with the increase in the magnetic             
field strength in certain ranges, and after which           
it drops. In the mother channel, It increases 
within 0.1≤ M

2
≤1.0 while in the daughter,                     

it increases within 0.1≤ M2≤ 0.5.The fluctuation  
in the velocity may be due to the oscillatory 
effect. 

 
Table 1. Velocity-magnetic field parameter in the daughter channel 

 
r M2=0.1 M2=0.3 M2=0.5 M2=1.0 M2=5.0 
0.2 -2.75109 I 2.84872 I 25.1280 I -22.2304 I -297.945 I 
0.4 -2.75009 I 2.84772 I 25.1180 I -22.2204 I -297.925 I 
0.6 -2.74935 I 2.85559 I 25.3042 I -22.8749 I -476.682 I 
0.8 -2.74896 I 2.86901 I 25.6168 I -23.9692 I -774.619 I 
1.0 -2.76340 I 2.92424 I 26.6820 I -27.5023 -1728.14 I 

 

 
 

Fig. 4. Temperature-chemical reaction rate in the mother channel 
 

Table 2. Temperature-chemical reaction rate in the daughter channel 
 

R δ1
2=0.1 δ 1

2=0.3 δ 1
2=0.5 δ 1

2=1.0 δ1
2=5.0 

0.2 0.129135 I  0.146072 I 0.172567 I 0.249870 I 0.785695 I 
0.4 0.128107 I 0.144936 I 0.171287 I 0.248343 I 0.789444 I 
0.6 0.126184 I 0.142783 I 0.168802 I 0.245093 I 0.788970 I 
0.8 0.123045 I 0.139217 I 0.164578 I 0.239043 I 0.774393 I 
1.0 0.118234 I 0.133673 I 0.157852 I 0.228660 I 0.730024 I 

 
Table 3. Velocity-chemical reaction rate in the mother channel 

 
r δ1

2=0.1 δ 1
2=0.3 δ 1

2=0.5 δ 1
2=1.0 

0.2 -0.729313 I -0.703236 I -0.693916 I -0.703066 I 
0.4 -0.694784 I -0.668733 I -0.657240 I -0.665003 I 
0.6 -0.633679 I -0.608046 I -0.593062 I -0.598432 I 
0.8 -0.537427 I -0.513930 I -0.493668 I -0.495527 I 
1.0 -0.387330 I -0.366534 I -0.342068 I -0.339182 I 
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Fig. 3 and Table 2 show that the temperature 
increases as the rate of chemical reaction 
increases. Similarly, the figure shows the 
existence of flow separation in the temperature 
distribution at r=0.2. Furthermore, Table 3 
depicts that the velocity distribution increases 
with the increase in the rate of chemical reaction 
in the range of 0.1≤ δ1

2≤ 0.5 but drops for δ1
2= 

1.0. The fluctuation in the velocity structure may 
be due to the oscillatory effect. Chemical reaction 
leads to the depletion of the chemicals in the fluid 
system. It may be heat absorbing or generating. 
Specifically, the increase in the fluid temperature 
may imply that the chemical reaction is heat-
generating. 

 
Table 4 shows that the fluid temperature 
distribution increases with the increase in the 
heat exchange parameter. A positive heat 
gradient exists between man and his 
environment when the radiation from the                 

sun increases or when he is drawn near to                   
a source of heat. In such situations heat is 
usually absorbed from the external source into 
the body; thus increasing the body fluid 
temperature.  
 

Table 5 shows that the fluid temperature 
increases as the Grashof number increases. 
More so, Table 6 depicts that the velocity 
distribution increases with the increase in the 
Grashof number within the range of 0.1≤Gr≤0.5 
but drops for Gr ≥1.0. The fluctuation in the 
velocity field may be due to the oscillatory factor. 
As said above, a positive thermal gradient exists 
between the man and his environment when the 
external heat level is higher than the body 
equilibrium temperature. The temperature 
gradient sparks up the free convective current 
(Grashof number) which reduces the viscosity of 
the fluid and energizes the fluid particles to 
higher motion. 

 
Table 4. Temperature-Heat exchange parameter in the daughter channel 

 
r N

2
=0.1 N

2
=0.3 N

2
=0.5 N

2
=1.0 N

2
=5.0 

0.2 0.128107 I 0.144936 I 0.171287 I 0.248343 I 0.789444 I 
0.4 0.128109 I 0.144939 I 0.171289 I 0.248345 I 0.789446 I 
0.6 0.126184 I 0.142783 I 0.168802 I 0.245092 I 0.788970 I 
0.8 0.123045 I 0.139217 I 0.164577 I 0.239043 I 0.774040 I 
1.0 0.118235 I 0.133673 I 0.157852 I 0.228659 I 0.730024 I 

 
Table 5. Temperature-Grashof number in the daughter channel 

 
r Gr=0.1 Gr=0.3 Gcr=0.5 Gr=1.0 Gcr=5.0 
0.2 0.219180 I 0.308713 I 0.378750 I 0.539227 I 5.20106 I 
0.4 0.217406 I 0.306034 I 0.375359 I 0.534237 I 5.15795 I 
0.6 0.214037 I 0.301007 I 0.369032 I 0.524980 I 5.07743 I 
0.8 0.208440 I 0.292771 I 0.358727 I 0.510007 I 4.94596 I 
1.0 0.199705 I 0.280079 I 0.342932 I 0.487188 I 4.74349 I 

 
Table 6. Velocity- Grashof number in the daughter channel 

 
r Gr=0.1 Gr=0.3 Gc=0.5 Gr=1.0 Gc=5.0 
0.2 0.299401 I 1.81187 I 6.20444 I -4.29062 I -25.8483 I 
0.4 0.301328 I 1.82321 I 6.24211 I -4.27821 I -25.9327 I 
0.6 0.304518 I 1.84209 I 6.30529 I -4.26882 I -26.0934 I 
0.8 0.309041 I 1.86914 I 6.39664 I -4.27720 I -26.3578 I 
1.0 0.315175 I 1.90636 I 6.52417 I -4.32723 I -26.7747 I 

 

Table 7. Temperature-Peclet number in the daughter channel 
 

 r Pe=0.1 Pe=0.3 Pe=0.5 Pe=1.0 Pe=5.0 
0.2 0.184592I 0.245728I 0.289355I 0.378750I 1.13127 I 
0.4 0.183161I 0.243688I 0.286873I 0.375359I 1.12085 I 
0.6 0.18419I 0.239831I 0.282205I 0.369032I 1.10156 I 
0.8 0.175823I 0.233455I 0.274543I 0.358727I 1.07042 I 
1 0.168596I 0.223552I 0.262709I 0.342932I 1.02303 I 
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Table 7 shows that the temperature increases as 
the Peclet number increases. Peclet number is 
the ratio of the product the channel length and 
fluid local velocity to the thermal/concentration 
diffusivity. Assuming the thermal diffusivity is 
constant, the increase in the Peclet number 
depicts that the velocity is increasing. 
Furthermore, the increase in the velocity favours 
the temperature, and vice versa. 
 
Table 8 shows that the fluid temperature 
increases with the increase in the Reynolds 
number. More so, Table 9 shows that the velocity 
increases with the increase in the flow Reynolds 
number. In the mother tube the flow is laminar 
and Poiseuille such that its Reynolds number is 
moderate. But almost at the point of bifurcation 
the inertial force rises due to the change in the 

geometrical configuration, and so are the 
Reynolds number and momentum. These 
increases favour the velocity, which in turn 
increases the temperature. These results agree 
with [4] and [13]. 
 
Table 10 shows that the temperature decreases 
with the increase in the bifurcation angle. 
Additionally, Table 11 depicts that the flow 
velocity increases as the bifurcation angle 
increases. It is seen from Fig.1 that the increase 
in the bifurcation angle tends to narrow down the 
daughter channels. In effects, this has the 
tendency of increasing the inlet pressure, which 
invariably increases the velocity and 
temperature. Therefore, the decrease in the 
temperature may be due to oscillatory effect. 
These results align with [14,16,17]. 

 

Table 8. Temperature-reynolds number in the daughter channel 
 

 r Re=100 Re =500 Re =1000 Re =2000 Re =3000 

0.2 0.027507I 0.041260I 0.082520I 0.165039I 0.825196I 
0.4 0.027300I 0.040949I 0.081899I 0.163797I 0.818985I 
0.6 0.026900I 0.040351I 0.080701I 0.161403I 0.807014I 
0.8 0.026227I 0.039341I 0.078682I 0.157364I 0.786820I 
1 0.025163I 0.037744I 0.075489I 0.150978I 0.754889I 

 
Table 9. Velocity-reynolds number in the daughter channel 

 

 r Re=100 Re=500 Re=1000 Re=2000 Re=3000 

0.2 1.03407 I 1.55111 I 3.10221 I 6.20442 I 31.02210 I 
0.4 1.04035 I 1.56028 I 3.12106 I 6.24211 I 31.21055 I 
0.6 1.05088 I 1.57632 I 3.15265 I 6.30529 I 31.52646 I 
0.8 1.06611 I 1.59916 I 3.19832 I 6.39664 I 31.98132 I 
1 1.08762I 1.63104 I 3.26209 I 6.52417 I 32.62087 I 

 
Table 10. Temperature-bifurcation angle in the daughter channel 

 

 r α=5 α =10 α =15 α =20 

0.2 0.520105 I  -36.6510 I -265.550 I -777.910 I 
0.4 0.518794 I -36.2090 I -258.180 I -748.390 I 
0.6 0.515791 I -36.1710 I -257.120 I -746.330 I 
0.8 0.494596 I -34.2510 I -228.450 I -630.070 I 
1 0.474349 I -32.7610 I -206.090 I -541.250 I 

 
Table 11. Velocity-bifurcation angle in the daughter channel 

 

 r α=5 α =10 α =15 α =20 

0.2 0.620442I 567.477I 1194.89I 6802.17I 
0.4 0.624211I 571.020I 1202.12I 6843.06I 
0.6 0.630529I 576.888I 1214.16I 6911.17I 
0.8 0.639664I 585.033I 1230.97I 7006.44I 
1 0.65242I 595.420I 1252.54I 7128.83I 
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The increase or decrease in the flow variables 
has characteristic implications on the transport of 
blood in bifurcating arteries. Specifically, the 
increase in the temperature reduces the fluid 
viscosity and makes the arterial walls more 
permeable. Subsequently, these increase the 
rate of the blood transport to other parts of the 
body. 
 

4. CONCLUSION 
 
The oscillatory flow of blood in bifurcating 
arteries with emphasis on the thermal factor is 
considered. The effects of increasing magnetic 
field parameter, chemical reaction rate, heat 
exchange parameter, Peclet number, Grashof 
number, Reynolds number and bifurcation angle 
are investigated. The results show that the 
temperature is increased by the increase in 
chemical reaction rate, heat exchange 
parameter, Peclet number, Grashof number and 
Reynolds number but decreases with increasing 
magnetic field parameter (in the range of 
0.1≤M

2
≤1.0) and bifurcation angle; the velocity 

increases as the magnetic field parameter (in the 
range of 0.1≤M

2
≤1.0 in the mother channel and 

0.1≤M
2
≤0.5 in the daughter channel), chemical 

reaction rate (in the range of 0.1≤δ1
2≤0.5), 

Grashof number (in the range of 0.1≤Gr≤0.5), 
Reynolds number and bifurcation angle. The 
increase and decrease in the flow variables have 
strong implications on the bifurcating arterial 
blood flow. 
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