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ABSTRACT 
 

The aim of this study is to isolate phenolic compounds from the ethyl acetate fraction of the leaves 
of V. pinnata Linn, which have antioxidant properties, guided by a TLC-Bioautography (Thin-layer 
chromatography) with a reagent of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The TLC-
antioxidant bioautography technique has several advantages. It does not require a long time in 
testing, the sample used is small, and it can potentially obtain promising antioxidant-positive 
compounds.The isolation process led to obtaining two phenolic compounds. The UV-Vis, FTIR, and 
NMR spectrum analysis showed that the compounds were (1) p-hydroxybenzoate and (2) luteolin. 
Further antioxidant evaluation by DPPH assay showed a potential radical scavenging DPPH of 
luteolin (2) with an IC50 of 1.56±0.18 µg/mL.  
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1. INTRODUCTION  
 
Phenolic compounds are secondary metabolites 
widely found in plants, with more than 50.000 
molecules identified so far [1]. Phenolic 
compounds have one or more hydroxyl groups (-
OH) attaching to the aromatic ring, such as 
benzoic acid, cinnamic acid, flavonoids, tannins, 
and stilbenes [2-3]. Phenolic compounds have 
many benefits for human health, such as 
antioxidant, anti-diabetic, antifilarial, anticancer, 
cardio-protective, anti-inflammatory, and antiviral 
of Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) [4–10]. For 
example, chlorogenic acid is an anti-influenza 
virus; quercetin is antioxidant and anti-
inflammatory in cardiovascular disease; antiviral, 
naringin is an anti-malignant, anti-proliferative, 
anticarcinogenic, antiviral, and inhibitor of 
hepatitis C infection; resveratrol to treat heart 
failure; and catechins to treat insulin insufficiency 
and chronic inflammation or fibrosis [11–14]. 
 
As the antioxidant function, Phenolic transfers an 
electron from hydroxyl groups, resulting in stable 
Phenol• due to resonance in the aromatic ring 
[15]. The presence of a methoxy group (-OCH3) 
and a hydroxyl group (-OH) in phenolic 
compounds can reduce bond dissociation 
enthalpy leading to the release of hydrogen 
atoms [16]. Phenolic also plays a role in single 
electron transfer described by the energy gap 
between the Highest Occupied Molecular Orbital 
(HOMO) and Lowest Empty Molecular Orbital 
(LUMO). The smaller the energy gap, the greater 
the radical scavenging activity that can occur due 
to the electron delocalization system in the 
aromatic ring of phenolic compounds [17-18]. 
 
Vitex is a plant species belonging to the 
Lamiaceae family, with 270 species of trees and 
shrubs spread in tropical and subtropical regions 
[19]. There are 161 compounds reported from 
this species, such as iridoids, diterpenoids, 
ecdysteroids, flavonoids, and phenolic 
compounds [20]. Phenolic compounds commonly 
found in this genus are vanillic acid, ferulic acid, 
p-coumaric acid, 3,4-dihydroxybenzoate acid, 
casticin, caffeic acid, gallic acid, chlorogenic 
acid, isochlorogenic acid, vitexin [21–25]. Vitex 
pinnata Linn is a plant species from 
the Vitex genus with a wide range of phenolic 
compounds, such as methyl p-hydroxybenzoate, 
vicioside, apigenin, retusin, and kaemferol 
trimethyl ether [26–28].   

This study aimed to find a phenolic compound 
with good antioxidant activity. Furthermore, the 
TLC-bioautography with DPPH was used as 
guidance to reach the pure antioxidant-phenolic 
compound. The TLC-bioautography method is a 
simple, inexpensive, and fast screening method 
in providing initial information about the biological 
activity of the examined plants [29]. Generally, 
secondary metabolites exist in small amounts in 
plants. Therefore, the utilization of guidance of 
TLC-bioautography using DPPH reagents might 
be an effective method to find the potential 
antioxidant compounds. 
 

2. MATERIALS AND METHODS  
 

2.1 Materials 
 
The leaves of V. pinnata Linn were air-dried and 
grinded to produce the leave powder. The 
materials used in this study were silica gel 
GF254 (Merck KgaA, Germany), silica gel 60 
(70-230 mesh; Merck KgaA, Germany), 
Sephadex LH-20 (Merck, Germany), powder 2,2-
diphenyl- 1-picrylhydrazyl (DPPH) (Himmedia-
India). 

 

2.2 Methods 
 
2.2.1 Extraction 
 
A total of 1.6 kg of dried leaf powder of V. 
pinnata were soaked with methanol (MeOH) for 
three times at room temperature during 72 hours. 
The solvent-material ratio was maintained at 2:1 
(w/w). The filtrate was concentrated with a rotary 
evaporator to obtain a crude extract. The crude 
extracts were partitioned with n-hexane (H), 
dichloromethane (DCM), and ethyl acetate 
(EtOAc), respectively. The % yield is calculated 
with the formula below: 

 

        
                  

                    
     

 

2.2.2 TLC-bioautography assay 
 

Potential antioxidant compounds from the V. 
pinnata Linn leaves can be determined through 
TLC-bioautography using the DPPH reagent 
procedure [30] with slight modification. Samples 
on TLC plates that had been eluted were air-
dried at room temperature for 1 hour. Then, the 
TLC plates were sprayed with 0.02 mM DPPH 
reagent (w/v in methanol-acetone). The tested 
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plates were allowed to react with the DPPH 
reagent for 30 minutes. The presence of a 
yellow spot on a purple background indicated 
the antioxidant activity of the samples [31]. 

 
2.2.3 Purification and characterization 
 
Ethyl acetate extract (50 gr), which showed 
better antioxidant potential, was purified by 
Vacuum Liquid Chromatography (VLC) technique 
with silica gel GF254 as a stationary phase and H-
EtOAc-MeOH as the mobile phase. The positive 
antioxidant fraction was separated by column 
chromatography with silica gel (70-230 mesh) as 
the stationary phase and H-EtOAc-MeOH as 
eluent. The isolated compounds were 
characterized by UV-Vis, FTIR, and NMR 
spectroscopy. The DPPH assay determined the 
antioxidant activity of the isolated compound. 

 
2.2.4 DPPH radical scavenging activity test 
 
The antioxidant activity was carried out by DPPH 
assay [32] with modifications. A total of 1 mL of 
0.02 mM DPPH solution was added to a test tube 
containing 3 mL of the tested sample dissolved 
with MeOH-Acetone (9.5:0.5) in several 
concentrations (0.5, 1, 2, 3, 4 mg/L). The mixture 
was incubated for 30 minutes at room 
temperature, and the absorbance was measured 
at λ 517 nm. Ascorbic acid was used as a 
positive control. All analysis was conducted in 
triplicate. The formula calculates the following 
formula calculated inhibition percentage: 
 

% Inhibition= (Absorbance control-
Absorbance sample / Absorbance control) 
×100 

 

3. RESULTS AND DISCUSSION 
 

3.1 Extraction 
 
In this study, the V. pinnata Linn leaves was 
extracted by a maceration method using MeOH 
solvent at room temperature to prevent the 
degradation of the thermo-labile compounds [33], 

since heated-assisted extraction can cause a 
decrease in the levels of phenolic compounds 
and increase radical activity in the material [34]. 
In addition, MeOH was used due to its universal 
properties that can extract polar, semi-polar, and 
non-polar compounds out of the plant cell matrix. 
MeOH is also a suitable solvent for extracting 
phenolic compounds [35-36]. 
 
Further fractionation of the crude methanolic 
extract produced several fractions with different 
yield percentages (Table 1). The results showed 
the yield variation of the fractions in the order of 
ethyl acetate > methanol > dichloromethane > 
hexane. The ethyl acetate fraction had the 
highest yield (Fig. 1). It indicated that V. pinnata 
Linn leaves have a wide range of semi-polar 
compounds, such as polyphenolic compounds of 
flavonoids [37-38]. High contents of phenolic 
content in the ethyl acetate fractions were also 
reported by Shafie et al. [39] working with Vitex 
pinnata leaves (33.1 ± 0.1 mg QE/g),  de Brum et 
al. [40] working with Vitex megapotamica leaves 
(522.4 ± 1.12 mg GAE/g), Gothai et al. [41] 
with Moringa oleifera leaves (65.81 ± 0.01 mg 
GAE/g ), Lasboi et al. [42] with Muntingia 
calabura L leaves (74.90 mg GAE/g), Okselni et 
al. [43] with Elaeocarpus mastersii Kings roots, 
leaves, and stem bark (362.88 ± 1.89 mg GAE/g, 
380.99 ± 2.14 mg GAE/g, and 341.89 ± 3.97 mg 
GAE/g ), and studies Tinco-Jayo et al. [44] 
with Jatropha macrantha Müll Arg. L leaves and 
stems (359 ± 5.21 mg GAE/g and 306 ± 1.93 mg 
GAE/g). 
 

3.2 Purification and Characterization 
 
TLC with DPPH reagent was applied for all 
extracts of V. pinnata L (Fig. 2). The results 
showed that the ethyl acetate extract has clear 
spots among the other extracts. A potential 
compound with a yellow spot was detected at a 
retention factor (Rf) of 0.4. Therefore, the ethyl 
acetate fraction was selected to be purified by 
several column chromatography types. This 
purification process led to obtaining 
compounds 1 and 2.     

 
Table 1. Yield % yield of hexane, dichloromethane, ethyl acetate, and methanol fractions of 

Vitex pinnata Linn 

 
Solvent Fraction weight (g) % Yield (w/w) 

Hexane 87.48 5.47 
Dichloromethane 72.69 4.54 
Etyl Acetate 147.16   9.20 
Methanol 130.15 8.13 
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Fig. 1. Fractions distribution of Vitex pinnata 
Linn 

 

 
 

Fig. 2. TLC-DPPH with the eluent of DCM-
EtOAc (5:5) for V. pinnata L fractions 

 
The purity of the isolated compounds was 
evaluated by TLC using several eluent ratios. A 
constant single spot on the TLC plate in various 
eluent ratios indicated the high purity of the 
isolated compound with the Rf value of 0.28, 
0.42, and 0.56 for compound 1 and 0.13, 0.31, 
and 0.47 for compound 2. While a yellow spot on 
the TLC with DPPH reagent was only detected 
from compound 2. It indicated that compound 1 
was not active as a DPPH radical scavenging. 

The structure of compound 1 was determined by 
UV, IR, and NMR data. Based on the UV 
spectrum, compound 1 gives an absorption band 
at a maximum wavelength of λmax 253 nm, 
indicating there is benzoate acid with para 
hydroxyl substituent [45]. Supported by IR 
spectral data showed represents the acid 
compound that indicated absorption at wave 
number (νmax 3448 cm

-1
) from the (–OH) 

stretching in alcohols, a strong peak from 
carbonyl group (C=O) at wave number (νmax 
1651 cm

- 1
), the broader peaks from (-OH) 

stretching vibration from acids that were 
overlapping with (C-H) stretching at (νmax 2818 
cm

-1
- 2542 cm

-1
) [46].  

 
The 

1
H NMR spectrum from compound 1 (Table 

2) indicated the presence of phenolic protons by 
a chemical shift at δ 4.9-7.5 ppm [47]. The 
presence of protons in the signaling δ 7.872 ppm 
indicates their position is less protected from the 
magnetic field when compared to the protons 
that appear in the signaling 6.887 ppm. The 
presence of an electron donor group (-OH) in a 
benzene ring causes resonance with high 
electronegativity in ortho and para proton 
substituents [48]. The increasing 
electronegativity in the area closest to the 
electron donor group causes the proton to be 
more protected so that it has a slight chemical 
shift value (δ) [49]. The appearance of two 
signaling protons at 7.87 ppm and 6.89 ppm, 
which are paired together, indicates that the 
protons are in the same chemical environment. 
Based on the analysis of the coupling constant 
(J) according to field et a [50], it is known that 
there is a proton at the H-4 position paired with a 
doublet of doublets multiplicity with H-3 at the 
ortho position with a J value of 6 Hz and paired 
at the meta position with H-6 which is indicated 
by a value of J at 2.5 Hz.  

 

 
 

Fig. 3. TLC bioautography two pure compound DCM: EtOAC with eluent (6:4, 4:6, 3:7) (a) 
compound 1 UV254 nm, (b) with DPPH reagent, (c) compound 2 UV254 nm dan (d) with DPPH 

reagent 



 
 
 
 

Faisal et al.; Chem. Sci. Int. J., vol. 31, no. 6, pp. 1-11, 2022; Article no.CSIJ.96191 
 

 

 
5 
 

The presence of a carbonyl group (C=O) in the 
structure of compound 1 at 

13
C NMR (Table 2) 

was indicated by a chemical shift at C-1 (δ 
166.79 ppm) [51]. Chemical shifts δ 131.91 ppm 
and δ 115.14 ppm from DEPT 135 data indicate 
the presence of four methine carbons (C-H) with 
overlapping spectra due to the same chemical 
environment. The structure of compound 1 was 
determined by comparing the spectral data with 
the literature [52] and assigned as p-
hydroxybenzoic acid has been isolated from bark 
(Fig. 4a). This compound has been reported to 
have been isolated from the leaves of V. 
pubescens Vahl by Mastura et al. [53] V. agnus-
castus [54], bark and leaves of V. negundo Linn 
[55].  
 
Srtructure determining of compound 2 was 
identified using UV, IR, and NMR data. Based on 
the UV spectrum, it is known that flavonoid is 
indicated by absorption at a maximum 
wavelength  λmax 247 nm (aromatic 
chromophore), and λmax 345  nm (carbonyl 
chromophore that are conjugated with the 
aromatic ring). The predicted structure from UV 
data was supported by IR data that showed the 
presence of (-OH) stretching with very broad and 
unstructured band at 3411-3501cm

-1
, 2688-

2627cm
-1

 (C-H), 1646cm
-1

 (C=O) [56]. A 
chemical shift at δ 182.232 ppm at 

13
C NMR 

(Table 2) indicated the presence of a carbonyl 
group (C=O). The appearance of six peaks in the 
DEPT 135 spectrum indicates the presence of 
six methine carbons (CH) at chemical shifts δ 
93.847 ppm, δ 98.848 ppm, δ 103.379 ppm, δ 
113.265 ppm, δ 115.780 ppm, and δ 119.322 
ppm, as well as nine quaternary carbon (C). This 
finding was confirmed by 

1
H NMR spectral data 

(Table 2), which showed six protons signaling at 
a chemical shift > δ 6 ppm representing aromatic 
protons.  
 
The presence of three aromatic protons signaling 
in the spin ABX system, at proton 7.48 ppm (H-
6') with doublet-doublet multiplicity matched with 
a proton at the meta position of proton 7.46 ppm 
(H-2') with coupling constant (J) 2.5 Hz and the 
ortho of the proton 6.98 ppm with a J value of 8.5 
Hz. This statement is also supported by the 
interpretation of COSY data, which shows the 
formation of a diagonal field at 7.48 ppm, 7.46 
ppm, and 6.98 ppm signaling [47].  
 
The results from elucidating structure of 
compound 2, it was assigned as a luteolin 
compound supported by HMBC analysis (Fig. 
4b). The HMBC analysis showed the correlation 

between the proton at δ 6.55 ppm (H-3) and 
several carbons, including C-9, C-1’, C-2, and C-
4, which confirmed the presence of aliphatic 
carbon at C-3.  The leaves of V. pinnata L have 
reported four isolated compounds by Ata et al. 
[26]: pinnatoside, viscoside, apigenin, and 
luteolin. Luteolin has also been reported to be 
isolated from aerial parts of Ixeris 
sonchifolia [57], flowers of Dendranthema 
morifolium Ramat Tzvel [58], leaves of Eclipta 
alba [59], Syzygium myrtifolium leaf 
[60], Sterculia foetida Linn leaf [61], Codonopsis 
clematidea leaf [62], Gymnanthemum 
amygdalinum flower [63]. 
 

3.3 DPPH Radical Scavenging Activity  
 

Antioxidant properties testing with DPPH showed 
that the isolated luteolin compound had an 
intense DPPH radical scavenging activity with an 
IC50 value of 1.56 ± 0.18 μg/mL. Furthermore, at 
the concentration of 3 μg/mL, luteolin showed a 
higher radical inhibition percentage than ascorbic 
acid as a positive control, with a value of 80.29% 
for luteolin and  56.34% for ascorbic acid. This 
finding was in line with previous studies through 
several antioxidant assays. For instance, its 
value was IC50 18.3 ± 0.2 μg/mL [64], EC50 49.36 
± 0.22 μM [64], and IC50 2.099 ± 0.0587 [65] for 
DPPH assay, EC50 15.69 ± 0.23 μM [66] and IC50 
0.59 ± 0.0208 μg/mL [65] for ABTS assay and 
37.58 ± 0.51 μM [66] for FRAP assay. Moreover, 
luteolin was reported to have excellent 3T3-L1 
adipocyte differentiation inhibitory activity through 
reduced ROS generation [66]. It confirmed that 
the isolated flavonoid compound of luteolin is a 
promising antioxidant compound. 
 

The antioxidant activity of a flavonoid is caused 
by the number and position of hydroxy 
substituents in ring B. Luteolin is higher in 
antioxidants than naringenin and pinocembrin 
because it has more hydroxy substituents in ring 
B [67]. The hydroxy substituent acts as a 
donating electron which will weaken the bond 
dissociation energy (BDE) [68]. The smaller the 
BDE value, the greater the potential for hydrogen 
atom transfer (HAT), which means the radical 
scavenging activity becomes greater. The effect 
of the hydroxy group on the ortho position (C-3') 
will weaken the electron density from 4'-OH so 
that it experiences HAT [69]. In addition, the 
presence of a 3-OH substituent in the C ring, the 
double bond between C2-C3 will have a 
conjugation effect on the 4-oxo bond (C=O), 
which allows electron delocalization to occur, 
thereby increasing radical scavenging activity 
[70].  
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Table 2. NMR chemical shift of isolated compound 
 

No Compound 1 Compound 2 

 δC in ppm δH in ppm (multiplicity, J) δC in ppm δH in ppm (multiplicity, J) HMBC 

1 166.79 - - -  
2 121.84 - 164,01 -  
3 131.91 7.87 (dd, J = 2.5 and 6 Hz) 103.38 6.56 (brs ) C-9, C-1’, C-2, C-4 
4 115.14 6.89 (dd, J = 2.5 and 6 Hz) 182.23 -  
5 161.78 - 162.55   
6 115.14 6.89 (dd, J = 2.5 and 6 Hz) 98.85 6.22 (brd,  JH(6→8) = 2.0 Hz) C-5, C-10, C-8 
7 131.91 7.87 (dd, J = 2.5 and 6 Hz) 164.29   
8   93.85 6.50 (brd, JH(8→6) = 2.5 Hz  ) C-6, C-10, C-9, C-7 
9   157.95 -  
10   104.55 -  
1’   122.95 -  
2’   113.27 7.46 (d, J = 2.5 Hz) C-2, C-3’, C-4’, C-6’ 
3’   145.62   
4’   149.20 -  
5’   115.78 6.98  (d, J = 8.5 Hz) C-1’, C-3’, C-4’ 
6’   119.32 7.48 (dd, JH(6’→2’, 6’→5’)= 2.0 Hz and 8.0 Hz) C-2’, C-3’, C-4’,  

 

 
 

Fig. 4. Prediction structure for p-hydroxybenzoate (a); and luteolin with key HMBC (H       C) (b) 
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On the other hand, compound 1 (p-
hydroxybenzoic acid), although a derivative of 
phenolic compounds, did not show antioxidant 
activity when bioautography was performed with 
TLC. It is assumed due to the absence of 
transfer of hydrogen atoms by p-hydroxybenzoic 
acid to form DPPH-H [71]. The influence of the 
number of hydroxyl groups and the position of 
the hydroxyl substituent (-OH) in benzoic acid 
affects the release of hydrogen atoms. The ortho 
position of the monohydroxy substituent shows 
potent antioxidant activity, but for the dihydroxy, 
the meta position is preferred [72]. 
Compound 1 has one hydroxy substituent (-OH), 
which is in the para position to the carboxylic 
group (-COOH), which causes the hydrogen 
atom release process to take longer. As a result, 
the DPPH radical scavenging that occurs is not 
significant. The DPPH radical scavenging activity 
of p-hydroxybenzoic is also evidenced by the 
research of Farhoosh et al. [73] who reported no 
antioxidant activity of p-hydroxybenzoic 
compounds against DPPH radicals. Therefore, 
the carboxylic acid groups affect the antioxidant 
activity of phenolic acids according to their 
electron-donating ability in the following order: -
CH2COOH > -CH = CHCOOH > -COOH [71]. 
 

4. CONCLUSION 
 
The results of the isolation of compounds guided 
by TLC-bioautography with DPPH reagents 
obtained p-hydroxybenzoate (1), and luteolin (2), 
where compound 2 showed a 50% DPPH radical 
scavenging activity of 1.56±0.18 µg/mL with a 
powerful antioxidant agent category. Thus, it can 
be concluded that the isolation of compounds in 
the ethyl acetate extract of the leaves of Vitex 
pinnata Linn with this technique succeeded in 
isolating compounds that have the potential as 
antioxidants. The TLC-antioxidant bioautography 
technique has several advantages. It does not 
require a long time in testing, the sample used is 
small, and it can potentially obtain promising 
antioxidant-positive compounds. 
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