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ABSTRACT 
 

Chicken bone coagulant (CBC) containing high grade hydroxyapatite (HPA) has been applied in 
the coag-flocculation of abattoir effluent. The influence of process variables (pH, initial 
concentration, dosage, Temperature, and settling time) on the effluent final turbidity was 
investigated. Also, the accuracies of two modelling techniques (Response surface methodology, 
RSM and Artificial neutral network, ANN) in predicting the non-linear nature of the system were 
compared. The optimization result indicates a final turbidity of 4.96 mg/L (corresponding to 98.28 % 
removal efficiency) at pH = 6.7, dosage = 1.003 g/L, initial conc. = 182.2 mg/L, coagulation temp. = 
345 K and settling time of 36 min. Meanwhile, effluent pH was spotted as the most significant 
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variable, with p-value <0.01%. Furthermore, the error analysis result portrayed the supremacy of 
ANN over RSM in data prediction accuracy as it signified lower error values (Mean square error, 
MSE = 13.11 and Absolute average relative deviation, AARD = 1.43%) when compared to those of 
RSM (MSE = 37.78, AARD = 5.93%). Thus, it was demonstrated that ANN is a better tool for 
optimization study of the present system. 
 

 

Keywords: Abattoir-effluent; turbidity; hydroxyapatite; chicken bone; artificial neural network. 
 

1. INTRODUCTION 
 
One of the most essential ingredients for human 
existence and the sustaining of life as a whole is 
fresh water. Even though there is an increased 
need for fresh water due to population expansion 
and increasing urbanization [1]. The greatest 
problem for those who use fresh water resources 
is still pollution, which also jeopardizes the 
survival of natural habitats. The release of 
dangerous pollutants into already stressed fresh 
water bodies, so contaminating them, 
exacerbates the difficulty of assuring the supply 
of fresh water for the teeming populace.  
 
The operations of the slaughterhouse sector 
continue to be a significant cause of 
environmental contamination while also serving 
as a key way of supplying Nigeria's enormous 
population with protein. Approximately 6% of the 
nation's total GDP and 20% of the agricultural 
GDP are contributed by the sector [2, 3] (Ohale 
et al., [4]. Animals are slaughtered, washed, 
butchered, and then packaged in raw form for 
further treatment or consumption as part of the 
fundamental meat production procedures carried 
out in an abattoir. These operations produce a 
significant amount of wastewater, often known as 
abattoir-effluent Various organic contaminants 
from the paunch, excrement, fat and lard, 
grease, unprocessed food, blood, dispersed 
matter, urine, soluble proteins, manure, grit, 
condemned meat, and colloidal particles are 
frequently present in slaughterhouse wastewater. 
Abattoir wastewater is characterized by its foul 
odor, black color, and low bacteriological quality, 
all of which are caused by these pollutants [5] 
Ohale et al., [4]. The deterioration of the 
groundwater and contamination of waterways 
and irrigation water with excessive organic 
matter are both considerably exacerbated by the 
discharge of slaughter house wastewater into the 
environment without proper treatment [5, 6]. 
 
In experimental and pilot size investigations, 
several studies have satisfactorily used a variety 
of methodologies for the remediation of 
slaughterhouse wastewater. Some of the 
investigated treatment procedures include 

electro-coagulation, electro-sequencing, 
ventilated lagoon systems, high rate algal 
reservoirs, halophyte therapy, and integrated bio 
treatment systems [7, 8, 5,4]. Some of the 
investigated treatment procedures include 
electro-coagulation, electro-sequencing, 
ventilated lagoon systems, high rate algal 
reservoirs, halophyte therapy, and integrated bio 
treatment systems. The significant energy 
requirement for ventilation, creation of surplus 
sludge, time-consuming processing rate brought 
on by buildup of suspended solids, and floating 
fats in the reactor, unfortunately, limit the 
effectiveness of anaerobic treatment options [9, 
10]. Many studies still choose to use coagulation 
and flocculation to control highly turbid pollutants 
due to the constraints of anaerobic treatment 
methods [9, 11]. This can be as a result of their 
operational cost efficiency and flexibility. In order 
for the large floccus to settle and be separated 
by decantation, the coagulation and flocculation 
process must generate large floccus which are 
heavier than the carrier wastewater. Three 
distinct and consecutive processes make up the 
complete coagulation process: coagulant 
production, particle instability, and inter-particle 
interactions [12, 11, 5]. Coagulant dose, 
coagulation temperature, effluent pH, 
and effluent concentration are the key 
coagulation process variables. Al-Mutairi et al 
[13], and Amuda & Alade [14] examined the use 
of poly-aluminum chloride and aluminum salt as 
effective coagulants for the treatment of abattoir 
wastewater. Aquilar, et al., [15], reported that 
treating abattoir wastewater with alum alone has 
a highest turbidity reduction effectiveness of 

87%. Furthermore, Amudaa ＆  Alade, [14] 

achieved a substantial reduction in COD from 
abattoir effluent using 1000 mg/L of alum. 
Mahtaba, et al., [16] reported 99 % removal of 
suspended solids by using 400 mg/L of alum and 
30 mg/L of polymer. However, it has been noted 
that using these synthetic coagulants have 
adverse health consequences. According to 
Katayon et al. [17], several negative effects 
linked with the application of chemical coagulants 
include Alzheimer's disease, excess sludge 
production, cost inefficiency, and the introduction 
of significant changes in chemical characteristics 



 
 
 
 

Chime et al.; J. Eng. Res. Rep., vol. 24, no. 1, pp. 30-48, 2023; Article no.JERR.94359 
 

 

 
32 

 

of water resulting from reactions with the OH- 
and basicity of water. Therefore, using bio-
coagulants will potentially greatly reduce the 
regular issues associated with the usage of metal 
salts and synthetic coagulants [17].  
 
Several scientists have developed a range of 
organic coagulants for the treatment of severely 
turbid waste water. Some of which are crab-shell 
chitin (Saritha, et al., 2015), snail shell extract 
[12], Dromedary bone [18], Periwinkle shell [12]. 
Recently, scientists' attention has been 
devoted to the use of animal bones for the 
treatment of different forms of wastewater [19, 
20]. Studies have shown that animal bones 
contain an active ingredient called hydroxyapatite 
(HAP), which has been proven to be very useful 
in surface driven wastewater treatment 
processes such as coagulation [18,20]. 
Hydroxyapatite (HAP) has a highly stable 
calcium phosphate hexagonal structure which 
can withstand extreme conditions of temperature 
and pH. Many researchers have successfully 
used HAP in removal of heavy metals [21, 20], 
turbidity [19], and dye wastewater [18]. 
Therefore, our present study is essential in order 
to further give a remedy to the environmental 
degradation caused by the potential for 
inappropriate release of slaughterhouse 
effluents. The study examines the production of 
chicken bone (CB) coagulant and its possible 
application in the coag-flocculation treatment of 
abattoir-effluent. Although the effectiveness of 
numerous natural coagulants in the treatment of 
abattoir effluent via coag-flocculation process 
have been widely reported in literature, however, 
to the best of our knowledge, there has not been 
any reported use of chicken bone coagulant 
(CBC) in the treatment of abattoir-effluent.  

 
Previously, “one-factor at a time” (OFAT) was the 
strategy that most researchers used to determine 
the best experimental parameters. However, the 
OFAT method is typically time- and labor-
intensive. Also, It rarely provides the desirable 
optimum that is sought after. Utilizing empirical 
design methodological approaches, these 
limitations related to the usage of the OFAT 
technique can be overcome. RSM and ANN have 
lately been combined as an empirical design 
optimization algorithm in wastewater treatment 
research [22, 23, 24; 25, 26]. RSM is employed 
in industrial processes to either produce high-
quality items or run a process more efficiently 
[27, 28]. RSM's primary goal is to use 
experimental methods to optimize an uncertain 
and noisy parameter using simpler approximate 

functions that are viable over a constrained 
region. Numerous studies have reported using 
the RSM method to successfully optimize 
process variables [29, 30]. Additionally, as a 
result of the transdisciplinary expansion of 
modern analytical approaches, artificial neural 
networks (ANNs), which are common artificial 
intelligence (AI) algorithms, have emerged as a 
contemplated method for modeling resilient and 
non-linear systems (Ohale et al., 2022a). The 
capability of ANN to learn from previous events 
and its general structure are its key 
characteristics. It is often believed that ANN 
could require much more number of experiments 
than RSM to build an efficient model [31]. 
However, research has shown that a 
comparatively smaller amount of data can still be 
utilized if it is statistically properly distributed 
throughout the input vector (Shafi et al., 2018; 
Onu et al., [32]). Also, the experimental data of 
any well-defined RSM would be sufficient to build 
an effective ANN model. Literature studies have 
shown that ANN model consistently worked 
better than RSM model in predicting the 
response of non-linear systems [33, 34].  
 
This study therefore intends to critically analyze 
and derive a model for final turbidity reduction of 
abattoir-effluent using the most significant 
process factors. The accuracy of ANN and RSM 
techniques in modelling the coag-flocculation 
process will be comparatively assessed. Also, 
the formulated objective function would be 
optimized using hybrid ANN-Genetic algorithm 
(ANN-GA) technique.  
 

2. MATERIALS AND METHODS 
 
2.1 Materials  
 
The abattoir effluent was collected from a local 
slaughterhouse located at Amasea in Anambra 
state, Nigeria. Chicken bones were collected 
from refuse were collected from fast food waste 
around Awka, in Anambra state, Nigeria. 
Furthermore, analytical grade chemical reagents 
utilized in the experiment were obtained from the 
Chemical Engineering Laboratory of Nnamdi 
Azikiwe University, Awka, Nigeria. 
 

2.2 Sample Pre-Treatment and Storage 
 

The collected abattoir-effluent was preserved by 
refrigeration. Prior to each stage of treatment, the 
effluent was allowed to sediment for 24 h and 
afterwards decanted. Sediments which are 
majorly composed of very fine particles which 
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could not undergo gravity settling were 
afterwards stored (in refrigerator) for coag-
flocculation treatment. The chicken bones (CB) 
were washed with deionized water to remove the 
marrow and inherent dirt, afterwards they were 
cut into fragments of 2–5 g mass, boiled in 
distilled water and dried at a temperature of 90 
0
C for 8 h onto constant weight.  

 
2.3 Extraction of Active Coagulant 
 
The procedure reported by Brezinska-Miecznik et 
al., [35] was adopted in the extraction of 
hydroxyapatite (HPA) from chicken bones (CB). 
Briefly, the dried CB fragments were treated with 
4M NaOH solution at 90 

o
C for 12 days. The 

sample to solution ratio of the treatment was kept 
1 g of sample to 90 cm

3
 of solution. At the end of 

the treatment procedure, the treated samples 
were repeatedly washed with distilled water until 
the pH of the filtrate approached neutrality. The 
washed samples were dried at 150 

o
C for 10 h, 

after which they were crushed using mechanized 
crusher to particle size of 70 µm (using a Particle 
Size Distribution Analyzer - Model 117.08, 
MALVERN Instruments, USA) and then stored in 
an air tight container. 
 

2.4 Abattoir-Effluent Sample Calibration 
and Characterization 

 
In order to establish a logical link between the 
units of turbidity (NTU) and those of 
concentration (mg/L), serial dilution of the raw 
effluent was obtained. For each of the dilute 
solutions, characteristic concentration in NTU 
and the corresponding amount (mg) per volume 
of the sample were obtained using turbidity meter 
(Hanna Instruments, Model: LP2000) and 
sensitive weighing balance (JA-SARIES, Model: 
JA203H), respectively. Results obtained from the 
effluent calibration were supplied in section 3.1. 
Furthermore, American Public Health Association 
(APHA) standard procedure as reported by 
Clesceri, et al., [36] was adopted for the 
physicochemical characterization of the abattoir-
effluent. Elaborate discussion of findings from the 
physicochemical characterization of the effluent 
was presented in section 3.2. 
 

2.5 Coagulant Characterization 
 
The physicochemical properties and degree of 
effectiveness of the chicken bone coagulant 
(CBC) extraction process was ascertained by 
characterization. The structural vibration, 

topographical stabilization, and the crystallinity of 
the CB and CBC were determined using Fourier 
Transform Infra-red Spectroscopy (FTIR) 
(ThermoNicolet Nexus Model 470/670/870), 
Scanning Electron Microscopy (SEM) (Model 
Zeiss Evo®MA 17 EDX/WDS microscope), and 
X-ray Diffraction (XRD) (PHILIPS X PERT X – 
RAY diffraction unit with Cu Kr radiation), 
respectively. All the instrumental analysis was 
carried out according to ASTM E1508 and ASTM 
E168 standards.  

 
2.6 Jar Test Procedure and Experimental 

Design 
 
The jar test procedure was carried out based on 
standard Bench scale nephelometric technique 
for investigation of water and waste water 
(AWWA, 2005 and WST, 2003), using Model LP-
2000 Hanna Instruments Turbidimeter, Search 
tech Instruments 78 HW-1 magnetic stirrer and 
PHS-3C 005399 pH meter.   
 

The pH of the effluent was adjusted to pH 3, 4, 6, 
8 and 10 using 1 M H2SO4 and 1 M NaOH, after 
which appropriate amounts (0.7, 1.0, 1.6, 2.2, 
and 2.5 g/L) of CBC were added to each 500 ml 
beaker containing different concentrations of 
abattoir effluent (100, 184, 350, 517, 600 mg/L) 
as illustrated in Table 2. 
 

Central Composite Design (CCD) was applied in 
this work to model the coagulation process of 
turbidity removal from abattoir effluent. The 
design consists of a 2n factorial or fraction 
(coded to the usual ±1 notation) augmented by 
2n axial points (±α, 0, 0,..., 0), (0, ±α, 0,..., 0),..., 
(0, 0,..., ±α), and nc centre points (0, 0, 0,..., 0). 
The statistical relevance of each parameter was 
evaluated using analysis of variance (ANOVA) 
(Ohale, et al., 2017). If all variables are assumed 
to be measurable, the response surface can be 
expressed as Eq. (1). RSM optimizes the 
response variable (y) and searches for a suitable 
approximation of the functional relationship 
between the independent variables and the 
response surface.  
 

    jiijiiiiii XXbXbXbby 2

0      
(1) 

 
For statistical analysis, the experimental variable

iX  has been coded as ix  as shown in Eq. 2: 
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Where
ix is the coded value (dimensionless) of 

the ith independent variable,
iX is the un-coded 

value of the ith independent variable,
nX is the 

real value of an independent variable at the 

centre point and
iX is the step change value of 

the real variable i. The relationship between the 
coded value and level of variance is presented in 
Table 1. 
 

Where; Xmin and Xmax are minimum and 
maximum values of X, respectively. Applying the 
relationships in Table 1, the values of the codes 
were calculated and shown in Table 2. 
 

The experimental plan was generated using the 
Design-Expert program 11.0 trial version (Stat-
Ease Inc., Minneapolis, USA). 
 

2.7 Artificial Neural Network (ANN) 
 

The creation of ANN utilized the Multi Layer 
Perceptron (MLP) with the Marquardt Levenberg 
method employing back propagation algorithm. 
The MLP was performed in MATLAB (The 
mathworks, inc., 2009 b), having five input 
variables comprising the input layer, and the 
ultimate turbidity being the sole output neuron. 
The biases and the total of a neuron's weighted 
inputs make up the input weights. The neuron is 
described by the mathematical statement in Eq. 
(3). 
 

 


n

i iiii xY
1

             (3) 

 

Where; iY  is the net input to the node, i in the 

hidden layer, ),1( niwi  are the connection 

weights, i  is the bias and ix  is the input 

parameter. The weighted output was passed 
through a nonlinear activation process by 
applying the logistic output function given in Eq. 
(4); 

 

 
 sum

sumf



exp1

1
                   (4) 

 
The artificial neural network's structural 
framework utilized in this study is described in 
Fig. 1. Fig. 1 shows that the output from the input 
layer formed an input for the hidden layer. 
Similarly, the output layer receives an input from 
the hidden layer.  
 

A acceptable number was determined via 
predictive and error function testing, with the 
concealed number of neurons randomly ranging 
from 2 to 11 (see Eqs. 5 & 6, respectively) on the 
outputs obtained (by varying the number of 
neurons). The tests compare the deviation of 
their predictions from the experimental values 
[37]. 
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Where n is the number of data points, prediciy ,  

is the network prediction at a specific number of 

hidden neurons, exp,iy is the real experimental 

response, avy is mean value of experimental 

data and i is the data index.  

 
3. RESULT AND DISCUSSIONS  
 
3.1 Calibration of Abattoir Effluent 
 
The result of effluent calibration was presented in 
Fig. 2. Fig. 2 shows the existence of a direct 
proportional relationship between the amount of 
particles (mg) and the turbidity (NTU). Linear 
correlation models given in Eqs. (7) and (8) were 
obtained from the calibration analysis and were 
subsequently utilized in converting the 
concentration of abattoir effluent from NTU to 
mg/L. 
 

368.11841.1/  NTULmg CC            (7) 

 

NTULmg CC 81.1/              (8) 

 
Where; Cmg/L and CNTU are the effluent 
concentrations in mg/L and NTU, respectively. 
Eq. (8) strictly applies to abattoir effluent with 
very low concentrations (NTU < 6.18), while Eq. 
(7) applies to abattoir effluents with turbidity 
concentration higher than 6.18.  
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Table 1. Relationship between coded value and the level of variance 
 

Coded value Level of variance 

-α Xmin 
-1 [(Xmin + Xmax)/2] – [(Xmax – Xmin) / 2b] 
0 [(Xmin + Xmax)/2] 
+1 [(Xmin + Xmax)/2] + [(Xmax – Xmin) / 2b] 
+ α Xmax 

    
Table 2. Levels of independent variables for CCD experimental design 

 

 
Independent variables 

Symbol Coded variable levels 

-α -1 0 +1 +α 

pH  1x  3 4 6 8 9 

Dosage g/L 2x  0.7 1.0 1.6 2.2 2.5 

Initial conc.  mg/L 3x  100 184 350 517 600 

Temperature K 4x  301 310 327.5 345 354 

Settling time min 5x  6.3 15 32 50 59 
 

 
 

Fig. 1. Architecture of the developed artificial neural network 
 

 

Fig. 2. Abattoir-effluent calibration plot 
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Table 3. Physicochemical characteristics of abattoir-effluent 
 

Parameters  Concentration FEPA 

Initial turbidity concentration (mg/L) 599 <100 
Total suspended solids (mg/L) 1030.8 <100 
Total solids (mg/L) 1614.8 <500 
Biological oxygen demand (mg/L)5 220 210 
Chemical oxygen demand (mg/L) 692 <180 
pH 7.5 6 – 9 
Odour Objectionable Odorless 
Colour Dark red - 

 

3.2 Waste Water Characteristics 
 

The physicochemical characteristics of the raw 
effluent prior to treatment is presented in Table 3. 
A close observation of Table 3 shows that only 
the effluent pH is within the permissible 
discharge limit as stipulated by the 
Environmental Protection Act (EPA). The total 
suspended solids (TSS) and the total solids (TS) 
which bear major influence on the effluent 
turbidity, were significantly higher than the 
tolerable EPA threshold for effluent discharge; 
thus justifying the need for treatment.  
 

3.3 Instrumental Characterization of the 
CSC 

 

3.3.1 FTIR spectra analyses 
 
The FTIR spectra of CB and CBC are shown in 
Figs. 3 (a) and 4 (b), respectively. Visual 
inspection of the spectra results show that the 
obtained CBC spectra fall within the frequency of 

3325 – 650 cm
-1

. According to Coutts [38], the 
observation peaks below 600 cm

-1
 are not 

applicable for characterizing wavebands. The 
vibrational peak at 663.5 cm

-1
 which is attributed 

to OH functional group, became more 
conspicuous in CBC following NaOH treatment. 
The absorption intensity at 1241.2 cm

-1
 in the 

raw CB shifted to 1244.9 cm
-1

 after the HAP 
extraction process. This waveband (1241.2 cm

-1
) 

demonstrates the presence of CO3
2-

 which 
indicates a major characteristic property of HAP. 
The peak at 1032.5 cm

-1
 indicates the presence 

of C–O bending of the glucose molecule due to 
C–O–C linkage. The presence of phosphorus 
compound (P–F stretching) is displayed on 898.3 
cm

-1
, while its presence in the CBC (HPA) 

spectra shows the presence of N – H wagging 
band of the protein compounds. The C–O 
stretching band at 1159.2 cm

-1
 indicates the 

presence of anhydrides in the CBC;                        
while those at 3324.8 cm

-1
 suggest the presence 

of N – H amides (Brzezińska-Miecznik et al., 
2014). 

 

 
 

Fig. 3. FTIR spectra of (a) CB (b) CBC 

Fig. 3. A plot of abattoir effluent calibration 
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Fig. 4. SEM micrograph of (a) CB (b) CBC 
 

 
 

Fig. 5. XRD pattern for (a) CB (b) CBC 
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3.3.2 SEM image analyses 
 
Figs. 4 (a) and (b) represents the scanning 
electron micrograph of CB and CBC, 
respectively. The SEM image of CB reveals the 
appearance of irregular platelet. This suggests 
that CB possesses rough edges, with crispy 
properties; a unique feature of animal tissues 
with high calcium content. Similarly, comparison 
of Fig 4 (b) and Fig 4 (a) shows characteristic 
improvement in the morphological features. 
Some of these improvements such as the 
formation of better cohesion, reduced individual 
lamella and the presence of a highly porous dark 
field matrix could be a direct consequence of 
HPA extraction process. This improved porous 
property is important for enhanced particle 
sticking required for surface phenomenon driven 
matrices like coagulation. 
 

3.3.3 XRD analyses 
 

The polymorphic features of a compound with 
different crystalline structures are determined 
using x-ray diffraction technique. The XRD 
pattern of CB and CBC are depicted in Figs. 5 (a) 
& (b), respectively. The XRD pattern of CB 
depicts a well organized spectral pattern with 
strong reflections 2Ө values at 8 – 10, 17 – 19, 
23 – 35 and 33 – 37

0
. While the XRD pattern of 

CBC shows similar reflections as those of CB at 

2Ө values but with low intensity peaks. The 
unorganized nature of the CBC spectral pattern 
and its low intensity values indicates that the 
CBC is a less crystalline poly-morph when 
compared to CB. 
 

3.4 RSM Modelling 
 
The combined effects of effluent pH, coagulant 
dosage, initial concentration, coagulation 
temperature and settling time on effluent turbidity 
reduction was studied using central composite 
design. The five-input experimental (consisting of 
16 factorial points, 10 axial and 6 centre points) 
as well as the predicted values of percentage 
turbidity removal are presented in Table 4. Also, 
Table 5 shows the relevant parameters 
generated from the analysis of variance 
(ANOVA). It should be noted that ANOVA 
technique employs the p-value and F-value to 
determine the adequacy and fitness of the 
empirical model. Hence, by comparing the model 
and lack of fit parameters, an F-value of 189.043 
and a low p-value of 0.0001 as shown in Table 5 
implies that the model is significant. The model 
p-value of 0.0001 indicates that there is only 
0.01% chance that the model F-value could 
occur due to noise. The values of “prob > F” less 
than 0.0500 indicate that model terms are 
significant. 

 

Consequently, 2

5

2

2

2

1534352425141315321 ,,,,,,,,,,,, andxxxxxxxxxxxxxxxxxxxxx are significant 

model terms. The lack of fit f-value of 0.91 implies the lack of fit is not significant relative to pure error, 
and there is 58.59% chance that a lack of fit f-value this large could occur due to noise. This value of 
lack of fit implies that the model is well fitted (Ohale et al., 2022a). The smaller the magnitude of p-
value, the greater the significance of the corresponding model term. From Table 5, effluent pH and 
coagulation temperature have the highest and the least influence respectively, on the final turbidity of 
the effluent, which is in agreement with the findings of other researchers [9, 11]. The predicted R-
squared of 0.9675 is in reasonable agreement with the adjusted R-squared of 0.9765 because they 
are < 0.2 apart (Ohale et al., 2022a). 
 

Table 4. The CCD matrix along with the experimental and predicted values 
 

Std 
order 

Point type pH Dosage 
(g)  

Initial 
Conc. 
(mg/L) 

Temp.   
(K) 

time 
(min) 

 EXP  RSM  ANN 

1 Factorial -1 -1 -1 -1 1 197.9 201.1 197.9 
2 Factorial 1 -1 -1 -1 -1 19.3 23.6 19.3 
3 Factorial -1 1 -1 -1 -1 167.9 171.1 167.9 
4 Factorial 1 1 -1 -1 1 64.1 66.4 63.3 
5 Factorial -1 -1 1 -1 -1 294.7 300.7 294.7 
6 Factorial 1 -1 1 -1 1 88.8 84.0 88.8 
7 Factorial -1 1 1 -1 1 117.1 113.2 118.7 
8 Factorial 1 1 1 -1 -1 101.1 108.4 101.1 
9 Factorial -1 -1 -1 1 -1 30.8 32.3 30.8 
10 Factorial 1 -1 -1 1 1 82.3 81.8 81.9 
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Std 
order 

Point type pH Dosage 
(g)  

Initial 
Conc. 
(mg/L) 

Temp.   
(K) 

time 
(min) 

 EXP  RSM  ANN 

11 Factorial -1 1 -1 1 1 137.0 135.3 137.0 
12 Factorial 1 1 -1 1 -1 111.5 112.2 111.5 
13 Factorial -1 -1 1 1 1 156.6 157.8 156.6 
14 Factorial 1 -1 1 1 -1 61.0 54.5 61.0 
15 Factorial -1 1 1 1 -1 424.1 418.5 424.1 
16 Factorial 1 1 1 1 1 100.9 103.3 101.7 
17 Axial -1.5 0 0 0 0 285.3 283.6 285.3 
18 Axial 1.5 0 0 0 0 118.1 115.7 118.1 
19 Axial 0 -1.5 0 0 0 122.0 120.2 122.0 
20 Axial 0 1.5 0 0 0 177.2 175.0 177.2 
21 Axial 0 0 -1.5 0 0 47.8 48.9 47.8 
22 Axial 0 0 1.5 0 0 144.0 155.5 144.0 
23 Axial 0 0 0 -1.5 0 118.6 100.2 118.6 
24 Axial 0 0 0 1.5 0 106.2 105.3 106.2 
25 Axial 0 0 0 0 -1.5 66.5 60.3 66.5 
26 Axial 0 0 0 0 1.5 5.9 8.1 5.9 
27 Center 0 0 0 0 0 102.1 102.7 102.6 
28 Center 0 0 0 0 0 95.8 102.7 102.6 
29 Center 0 0 0 0 0 116.8 102.7 102.6 
30 Center 0 0 0 0 0 93.1 102.7 102.6 
31 Center 0 0 0 0 0 104.6 102.7 102.6 
32 Center 0 0 0 0 0 94.1 102.7 102.6 

 

Table 5. Analysis of variance table 
 

Source Sum of 
squares 

dF Mean square F – value p-value  

Model 214254.700 15 14283.647 189.043 < 0.0001 Significant 
x1 64261.909 1 64261.909 850.502 < 0.0001  
x2 6852.238 1 6852.238 90.689 < 0.0001  
x3 22364.783 1 22364.783 295.996 < 0.0001  
x4 59.070 1 59.070 0.782 0.3897  
x5 6205.656 1 6205.656 82.131 < 0.0001  
x1x3 9225.041 1 9225.041 122.093 < 0.0001  
x1x4 778.620 1 778.620 10.305 0.0055  
x1x5 7744.497 1 7744.497 102.498 < 0.0001  
x2x4 21981.617 1 21981.617 290.925 < 0.0001  
x2x5 15970.407 1 15970.407 211.367 < 0.0001  
x3x4 3257.661 1 3257.661 43.115 < 0.0001  
x3x5 20251.712 1 20251.712 268.030 < 0.0001  
x1

2
 22189.884 1 22189.884 293.682 < 0.0001  

x2
2
 4751.627 1 4751.627 62.887 < 0.0001  

x5
2
 11103.631 1 11103.631 146.956 < 0.0001  

Residual 1208.922 16 75.558    
Lack of Fit 806.794 11 73.345 0.912 0.5849 not significant 
Std. Dev. 8.69  R-Squared 0.9944   
Mean 123.54  Adj R-Squared 0.9891   
C.V. % 7.04  Pred R-Squared 0.9765   

 

The final equation in terms of the coded factors is expressed as Eq. 9; 
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Fig. 6. Effect of the neuron numbers in the hidden layer on the performance of the neural 

network 
 

 
 

Fig. 7. Regression analysis for ANN predicted values versus exp. (target) values 

 
3.5 ANN Modelling 
 
Data set employed in ANN modeling was 
identical to those used in design of experiment 
(see Table 5). The graphical expression for the 
topological analysis is displayed in Fig. 6. Data 
partitioning as training set and test set were 
conducted to eliminate the issue of over-training 
and over parametrization. The 7 selected hidden 
neuron numbers produced the highest correlation 
coefficient (0.988) and the least root mean 
square error (RMSE) value (0.3701). Also, the 

regression plot (Fig. 7) showed a relatively high 
correlation coefficient (R

2
> 0.95); thus suggesting 

a good correlation between the experimental and 
ANN predicted values. 
 

3.6  Combined Effect of Operating 
Parameters on Final Turbidity 

 

The contour plot in Figs. 8 – 11 shows the result 
for the combined effects of various process 
variables on the abattoir effluent final turbidity. 
The reduced effluent final turbidity (80.3 mg/L) 
observed in Fig. 8 was occasioned by an 
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increased coagulant dose (from 1.0 g/L to 1.3 
g/L) at a constant pH. Further increase in 
coagulant dosage (beyond 1.3 g/L) impacted the 
final effluent turbidity negatively, as the removal 
efficiency of suspended particles decreased 
significantly (see Fig. 11). The observed 
decrease in final turbidity with increase in the 
coagulant dose (up to 1.3 g/L) could be due to 
the availability of more active sites necessary for 
coagulation process. According to Menkiti and 
Ejimofor [12], re-turbidization is caused by 
charge reversal due to over concentration of 
positively charged coagulant particles. This 
explains the reduction in turbidity removal 
efficiency (re-turbidization) when the coagulant 
dose is augmented beyond 1.3 g/L. 

 
The combined effect of effluent pH and initial 
concentration is shown in Fig. 9. It could be 
observed that the coagulant displayed maximum 
turbidity reduction (58.6 mg/L) at neutral 
environment (pH 6.7) and at constant effluent 
initial concentration of 183.0 mg/L. Such 
observation could be explained by the fact that 
the buffer nature of the effluent tends to enhance 
the precipitation of the coagulant around neutral 
pH            . However, the adjustment of 
the effluent pH either to the acidic or alkaline 

region was met with a significant reduction in 
turbidity removal efficiency                  
          . This is due to the disappearance of 
the effluent buffer nature at pH values outside 
the neutral environment; thus resulting in 
coagulant precipitation difficulties. The effect of 
initial effluent concentration shows that low initial 
concentration of raw effluent results in a low final 
turbidity. However, an increment in the effluent 
initial concentration results in low removal 
efficiency and a high final turbidity value. This 
phenomenon could be attributed to lack of 
sufficient active site for the removal of turbid 
particles at high concentration.  
 
The effect of coagulation temperature and 
settling time is shown in the 2-D contour plot of 
Fig. 10. It could be observed that at high 
temperature, an accelerated settling rate was 
recorded; thus resulting in low final turbidity of 
the treated effluent. This observation could be 
explained by the fact that temperature increase 
bears positive effect on coagulation and 
flocculation process by altering the solubility and 
also reduces the effluent viscosity, thereby 
allowing for higher dispersion of CBC particles 
which aided floc formation and cell enmeshment 
(Ohale et al., 2020). 

 

 
 

Fig. 8. 2D contour for the combined effects of coagulant dosage and effluent pH 
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Fig. 9. 2D contour for the combined effects of effluent initial concentration and effluent pH 

 

 
 

Fig. 10. 2D contour for the combined effects of settling time and coagulation temperature 
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Fig. 11.Effect of coagulant dosage on the final turbidity. 
 

3.7 ANN and RSM Comparative Analyses 
 

In order to ascertain the superiority of either of 
the optimization tools (ANN and RSM) over the 
other in predicting the non-linear behavior of the 
present system, error functions were employed. 
The coefficient of determination (R

2
), mean 

square error (MSE), and absolute average 
relative deviation (AARD) were the error 
functions used to compare the predictions 
accuracy of both models. MSE and AARD values 
were evaluated from Eqs.10 & 11, respectively; 
while the coefficient of determination (R

2
) values 

was estimated from Fig. 12. From the values of 
R

2
, MSE and AARD shown in Table 6, the ANN 

predictions produced a higher regression 
coefficient and a negligible deviation from 
experimental values when compared to the RSM 
predictions. This confirms that ANN technique as 
against RSM technique portrayed better 
accuracy in capturing the non-linear nature of the 
coagulation process.  
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Where; ., prediciy , .exp,iy  and n are final 

turbidity obtained by the predicted model, the 
experimental data and the number of 
experimental data, respectively. 
 

Fig. 13 shows the comparative parity plot for the 
RSM, ANN models and the experimental data 
versus experimental run number. High 
correlation could be observed between the ANN 
and experimental data points. Meanwhile, in 
comparison with the experimental data point, the 
RSM data point showed significant deviations 
especially at run numbers 14, 22 and 23; with 
magnitudes of 5.6, 11.4 and 18.4, respectively. 
The correlation depicted by ANN data points in 
relation to the experimental values further gave 
credence to the superiority of ANN model over 
the RSM model with respect to the present study. 
 

3.8 Optimization using ANN-Genetic 
Algorithm (ANN-GA) Technique 

 

The objective of process optimization is to search 
for the optimum process conditions to establish 
the minimum final turbidity. In this approach, the 
ANN-GA was used to generate the model values. 
Eqs. 12 – 16 show the selected range of 
constraints for each variable. Also, the technique 
of hybrid ANN-GA algorithm used in this work is 
illustrated in Fig. 14. 
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5.75.6  pH  
          (12) 

 

LgdosageLg /5.1/0.1             (13) 

 

LmgcinitialconLmg /250./183          (14) 

KTempK 345.310           (15) 

 

.min50.min30  timesettling          
(16) 

 

However, based on afore mention evaluation an 
optimal final turbidity of 4.96 mg/L was obtained 

pH = 6.7, dosage = 1.003 g/L, initial conc. = 
182.2 mg/L, coagulation temperature = 345 K 
and settling time = 36 min. Duplicate validation 
experiments were conducted in order to uphold 
the optimal predicted value. Using the optimum 
variable conditions, the average final turbidity 
obtained was 5.53 ± 0.24 (mg/L). The treated 
effluent obtained after the validation experiment 
was characterized and the results are shown on 
Table 7. The characterization result shows that 
the model prediction was in agreement with the 
experimental value. 

 
 

Fig. 12. RSM and ANN model appraisal 
 

Table 6. Comparison of predictive competency of RSM and ANN 
 

 RSM ANN 

MSE 37.78 13.11 
R

2
 0.9644 0.9981 

AARD 5.93 1.43 
 

 
 

Fig. 13. A plot depicting the comparison between the experimental and predicted values for the 
ANN and RSM models 
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Fig. 14. Flow chart of combining ANN-GA optimisation technique 
 

Table 7. Post optimal characterization results of the abattoir waste water 
 

Parameter Treated abattoir 

Final turbidity concentration (mg/L) 5.3 
Total suspended solids (mg/L) 2.5 
Total solids (mg/L) 3.1 
Biological oxygen demand (mg/L) 8.6 
Chemical oxygen demand (mg/L) 152 
pH 8.1 
Odour Slightly alkaline 
Colour Clear colourless  

 

4. CONCLUSION  
 
In this work, the coag-flocculation of abattoir 
waste water was studied using HPA derived from 
raw CB. RSM and ANN modelling techniques 
were comparatively used in predicting the final 
turbidity of the effluent. Statistical techniques (R

2
 

and RMSE) were employed in selecting the most 
appropriate hidden number of neurons. Multi-
layer neural network (5-7-1) was chosen to 
develop accurate and complex nonlinear 
relationship. From the results of the comparative 

analysis, ANN model was found to perform better 
in capturing the non-linear nature of the system. 
Process optimization using ANN-GA technique 
gave an optimum value of 4.92 mg/L for final 
effluent turbidity at pH = 6.7, dosage = 1.003 g/L, 
initial conc. = 182.2 mg/L, coagulation 
temperature = 345K and settling time = 36 min. 
This value was validated by a set of duplicate 
experiments producing an average value of 5.53 
± 0.24 (mg/L) which is in close agreement with 
the predicted value. 
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