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.is work demonstrates rapid sensing of kaempferol using active sensing material synthesized using the one-pot surface-im-
printing synthesis method. .is sensor consisted of molecularly imprinted polymer (MIP) consisting of mesoporous molecular
sieves (SBA-15) loaded with carbon dots (CDs). Fourier transform infrared (FT-IR) spectroscopy confirmed successful in-
corporation of CDs onto the surface of imprinted mesoporous molecular sieves. Ordered hexagonal arrays of CDs@SBA-15@MIP
mesopore structure were confirmed with transmission electron microscopy. Fluorescence intensity of CDs@SBA-15@MIP
composites linearly correlated with kaempferol content in the 0.05–2mg/L range. Detection limit was 14 μg/L. MIPs were used for
efficient detection of kaempferol in fruit and vegetable samples with recovery values from 80% to 112%. .e method has high
sensitivity, low cost, good selectivity, and many application potentials useful for research and development of flavonoid monomer
presence in food.

1. Introduction

Kaempferol, a polyphenolic antioxidant present in vegeta-
bles and fruits, is a very beneficial dietary component be-
cause it is able to reduce risk of cancer and various chronic
illnesses [1]. Epidemiological studies showed direct corre-
lation between amount of consumed kaempferol and cancer
reduction [2]. Kaempferol helps to fight cancer and chronic
diseases by boosting antioxidant-based defense of the or-
ganisms against aggressive and cancer-causing free radicals,
which, at molecular level, translates into kaempferol control
of key factors of cellular signal transduction routes linked to
apoptosis, inflammation, angiogenesis, and metastasis [3, 4].

Most common kaempferol detection methods are
high-performance liquid chromatography (HPLC) com-
bined with UV-detection, mass spectrometry, colorime-
try, etc [5–10]. Chromatography is accurate for detection
of single or multiple components. However, it requires
complex and tedious preprocessing steps and expensive

equipment. Colorimetric methods are fast and easy and
are the most common detection methods. Yet, they only
detect total flavonoid contents. A technique to specifically
and selectively detect kaempferol in food sample as well as
to distinguish kaempferol from other flavonoids is ur-
gently needed to screen and describe food nutritional
contents. Such technique also needs to be very sensitive to
variety of kaempferol contents as well as to be simple,
inexpensive, and convenient. Previous work has high-
lighted the excellent potential for the application of
fluorescence spectroscopy to food safety evaluations; as
such, an approach can be employed both effectively in
research contexts and in assessments of food quality [11].
When assessing food quality, this approach can be used to
monitor the egg freshness during storage, to explore the
evolution of extra virgin olive oils under illumination, to
detect aflatoxin and related secondary metabolites, and to
measure total amino acids in herbicide-stressed oilseed
rape leaves [12–15].
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At present, nanotechnology has facilitated the devel-
opment of sensors with improved sensitivity and selectivity,
thus offering novel opportunities for substantial innovation
[16]. Two materials, used in this work to develop such
technique, are mesoporous molecular sieves and carbon dots
(CDs). Mesoporous molecular sieves are excellent extraction
materials because of their ordered structures, high surface
areas, uniform and adjustable pore sizes, and outstanding
chemical stability [17, 18]. CDs-based composites are rela-
tively recently developed fluorescent materials, which
demonstrate better photostability, brighter photo-
luminescence, better biocompatibility, and lower back-
ground noise in comparison to traditional organic dyes [19].

In this work, using these two materials, we created
molecular imprinted polymers (MIPs) with the goal to
obtain an effective and simple one-stage technique of ma-
terial preparation for sensing. We created MIP based on
mesoporous molecular sieve (SBA-15), which was loaded
with CDs. Our main aim was to create a sensor capable to
detect kaempferol accurately as well as with high sensitivity
and selectively (Scheme 1). Surface molecular imprinting
technique was used to obtain MIP composite. .e resulting
CDs@SBA-15@MIP composites consisted of highly ordered
hexagonal mesopore arrays aligned as one-dimensional
channels. At optimized conditions, linear correlation be-
tween sensor response and kaempferol concentration in the
0.05–2.0mg/L range was observed. In this kaempferol
concentration range, the sensor demonstrated rapid re-
sponse time and excellent selectivity to distinguish
kaempferol from its structural analogues. Fluorescence-
based detection of kaempferol using CDs@SBA-15@MIPs as
active sensing material demonstrates novel strategy for se-
lective and sensitive kaempferol analysis in vegetable and
fruits without need of bulky and expensive equipment such
as liquid chromatography and mass spectrometry.

2. Materials and Methods

2.1. Materials. N-(β-aminoethyl)-c-aminopropyl methyl-
dimethoxysilane (AEAPMS), 3-methacryloxypropyl-
trimethoxysilane (MPS), and 2, 2-azobisisobutyronitrile
(AIBN) were purchased from Tianjin Kermel Chemical
Reagent (China). SBA-15 was obtained from Xfnano Re-
agents (Nanjing, China). Kaempferol was acquired from TCI
Development (Shanghai, China). Citric acid (CA), acryl-
amide (AM), tetra-ethoxy-silane (TEOS), ethylene glycol di-
methacrylate (EGDMA), and other chemicals were obtained
from Sinopharm Chemical Reagent (Tianjin, China). Fruits
and vegetables were purchased from a local grocery store.

2.2. Characterization. Fourier transform infrared (FT-IR)
spectroscopy was performed using VECTOR-22 (Bruker,
Germany). Fluorescence (FL) spectra were recorded using
.ermo Scientific Lumina FL-4500 spectrometer (.ermo
America, USA) with the 365nm wavelength, 10nm wide ex-
citation, and emission slits as well as using 700Vphotomultiplier
tube voltage. Absorbance was measured using.ermo Scientific
Evolution 300 UV-vis spectrophotometer (USA).

2.3. Carbon Dot Synthesis. CDs were obtained by a one-step
reaction synthesis first implemented byWang et al. [20]. For
this purpose, 10mL of AEAPMS was degassed by flushing
the 100mL three-necked flask with nitrogen gas for 5
minutes, after which the reaction solution was heated to
240°C and 0.5 g of CA was quickly added under constant
vigorous stirring for 1 minute. After that, the system was
allowed to cool naturally. Final CDs-containing products
were collected by petroleum-ether-assisted precipitation
performed 3 times. Samples were stored at 4°C until they
were used and/or analyzed.

2.4. SBA-15-MPS Synthesis. SBA-15-MPS was fabricated
using method reported by He et al. [21]. For this purpose,
500mg of SBA-15 was mixed with 50mL of toluene. .en,
10mL of MPS was added, and the mixture was stirred at
55°C for 24 h under nitrogen gas atmosphere. Final solid
product formed was centrifuged, rinsed with toluene and
methanol, and then dried at 45°C in a vacuum furnace for
24 h.

2.5. Synthesis of CDs@SBA-15@MIPs and CDs@SBA-15@
NIPs. 0.28mmol kaempferol and 1.55mmol AM were
dispersed in 25ml of tetrahydrofuran/ethanol mixture (2.5 :
1 volume ratio) under constant stirring for 4 h at room
temperature. .e resulting suspension was named “mixture
A.” 5.7mmol of EGDMA, acting as a cross linker, 70mg of
AIBN initiator, and 0.1 g of SBA-15-MPS were dispersed in
25mL of tetrahydrofuran/ethanol mixture (with 3 : 2 volume
ratio). .is suspension was named “mixture B.”

Mixture B was transferred into mixture A, and 20 μL of
CDs was added in A. .e resulting solution was first stirred
for 10min and then flushed with nitrogen gas for 15min. To
allow polymerization to proceed, the reaction vessel was
sealed and kept for 24 hours at 60°C in a water bath, after
which the final product was washed with methanol/acetic
acid mixture (with 9 :1 volume ratio). To ensure complete
removal of the template, discarded liquid was analyzed by
UV-vis spectroscopy (Scheme 1). .us, rinsing of the final
product stopped when no template was detected in the
decanted solution. Final CDs@SBA-15@MIPs were dried at
60°C in vacuum for 10 h. For comparison, CDs@SBA-15@
NIP was synthesized following the same route as described
above without addition of kaempferol.

2.6. Measurements of FL. To evaluate adsorption and se-
lectivity of the synthesized materials, 1mg CDs@SBA-15@
MIP or CDs@SBA-15@NIP was thoroughly dispersed in
4mL of kaempferol (and its analogues) at different con-
centrations. .e solutions were shaken for 2 hours at room
temperature, and FL intensity of each solution was measured
before and after its reaction with kaempferol.

2.7. Sample Preparation. Fruits and vegetables were crushed
in a mixer grinder. 1 g of each sample was then placed into a
50mL disposable screw-capped polypropylene tube. .en,
25ml of 80% ethanol was added for a 30min extraction
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process performed in an ultrasonic bath. Extraction step was
repeated two times. .e obtained filtrate was then evapo-
rated using a rotary evaporator. .e resulting solid residue
was dissolved in 2mL of ethanol and filtered through a nylon
micropore membrane with 0.45 μm micropores. Samples
were stored in a clean glass bottle until further
characterization.

2.8.HPLCAnalysis. Extracts were purified using C18 column
to eliminate matrix interferences. Eluent obtained from the
column was dried on a rotary evaporation, dissolved again in
2mL of ethanol, and finally filtered using a nylon membrane
with 0.45 μm micropores for further HPLC-UV tests.

High-performance liquid chromatography (HPLC)
coupled with UV was performed by using the LC-20AT
(Shimadzu) chromatograph. Samples sizes were 20 μL.
Analysis was performed using a diode array detector (SPD-
20A, Shimadzu) at 360 nm. Mixture of water and methanol
at 2 : 3 volume ratio was used as a mobile phase, flow rate of
which was of 1.0mL/min.

3. Results and Discussion

3.1. Properties of Obtained CDs@SBA-15@MIP. FT-IR
analysis of CDs@SBA-15@MIP and CDs@SBA-15@NIP
composites showed similar patterns with characteristics
bands of MIPs and NIPs at 1658, 1255, and 1460 cm−1

(Figure 1). .us, structures and compositions of CDs@SBA-
15@MIP and CDs@SBA-15@NIP were similar, and the only
difference was that template molecules were extracted from
MIPs during the imprinting process.

Figures 2(a) and 2(b) show SEM images exhibiting the
surface morphology of CDs@SBA-15@MIP and CDs@SBA-
15@NIP. Both samples had a rough surface and a relatively
narrow size distribution. .e morphology of SBA-15
revealed via TEM indicated the presence of highly ordered
hexagonal mesopore arrays aligned so as to form one-di-
mensional channels (Figure 2(c)). TEM of CDs@SBA-15@
MIP also revealed a well-ordered morphology, in which the
one-dimensional mesopore structure of SBA-15 was still
visible (Figure 2(d)).

CDs@SBA-15@MIP was then used for the detection of
kaempferol as shown in Figure 3. Fluorescence spectrum of
CDs@SBA-15@MIP significantly changed upon kaempferol
presence in the matrix judging by its significantly decreased
intensity (Figure 3(c)), which decreased more at higher
kaempferol concentration (Figure 3(d)). After the template

was extracted, fluorescence intensity of CDs@SBA-15@MIP
(Figure 3(a)) became similar to the intensity of fluorescence
of CDs@SBA-15@NIP (Figure 3(b)). Furthermore, the de-
gree of quenching is affected by the concentration of
kaempferol.

Fluorescence quenching upon kaempferol presence
might be because of energy resonance transfer (FRET),
which occurs between two fluorescent molecules in prox-
imity to each other. UV-vis spectrum of kaempferol and
CDs@SBA-15@MIP has similar absorption band gap values
(Figures 4(a) and 4(b), respectively). .us, energy resonance
transfer would be easy between these two molecules. When
the UV absorption peaks of kaempferol and FL peak of
CDs@SBA-15@MIP overlap, nonradiative energy transfer
occurs [22].

Analysis of adsorption kinetics helped us to evaluate FL
quenching response rate of MIP. Fluorescence quenching
value (F0/F) of the MIPs and NIPs was studied at different
adsorption times. Sensor based on CDs@SBA-15@MIP
showed higher fluorescence response to kaempferol than
sensor based on CDs@SBA-15@NIP because of higher
cavitation density and specific recognition sites (Figure 5).
Adsorption of CDs@SBA-15@MIP was fast, and adsorption
balance was achieved within 30 minutes. .erefore, 30min
was selected as the best detection time. Materials synthesized
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Figure 1: FT-IR spectra before (a) and after (b) extraction
kaempferol of CDs@SBA-15@MIP. FT-IR spectra of CDs@SBA-15@
NIP after extraction (c) as well as of CDs (d) and kaempferol (e).
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Scheme 1: Preparation of CDs@SBA-15@MIP.
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by traditional bulk polymerization techniques usually
demonstrate slower adsorption rates: sometimes up to
24 hours are needed to achieve equilibrium [23].

3.2. Specificity and Selectivity Experiments. Specificity and
selectivity are the key characteristics demonstrating how
successful molecular imprinted polymers are. .us, we
studied sensitivity of CDs@SBA-15@MIP relative to
kaempferol and its structural analogues (such as myricetin
(MYR), rutin (RT), and chlorogenic acid (CHA). FL

responses (presented as F0/F) of CDs@SBA-15@MIP and
CDs@SBA-15@NIP to kaempferol (KAE), MYR, RT, and
CHA are shown in Figure 6. FL response of CDs@SBA-15@
MIP relative to 0.5mg/L of kaempferol was much larger than
for its structural analogues, which confirms better adsorp-
tion capacity. High specificity of CDs@SBA-15@MIP to-
wards kaempferol was probably because shapes of MIP
cavities fitted very well with kaempferol molecular structure.
Other analogues did not bind strongly enough on the
imprinted cavities.

Metal ions can also cause quenching of carbon point
fluorescence. To investigate resistance of CDs@SBA-15@
MIP and CDs@SBA-15@NIP to interference from metal
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Figure 2: SEM micrographs images of (a) CDs@SBA-15-MIP and (b) CDs@SBA-15@NIP. TEMmicrographs of (c) SBA-15 and (d) CDs@
SBA-15@MIP.

400 450 500 550 600

0

5000

10000

15000

20000

25000

30000

35000

FL
 in

te
ns

ity
 (a

.u
.)

Wavelength (nm)

a

b

c

d

Figure 3: FL spectra of (a) CDS@SBA-15@MIP (after extraction),
(b) CDS@SBA-15@NIP, (c) CDS@SBA-15@MIP (before extrac-
tion), and (d) CDS@SBA-15@MIP in the presence of 1.0mg/L of
kaempferol.
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Figure 4: UV-vis spectra of kaempferol (a) and CDs@SBA-15@
MIP (b).

4 International Journal of Analytical Chemistry



ions, fluorescence of CDs@SBA-15@MIP and CDs@SBA-
15@NIP was measured under the presence of Na+, Ca2+,
Mg2+, Fe3+, Cu2+, Zn2+, and K+. Binding capacity of CDs@
SBA-15@MIP and CDs@SBA-15@NIP towards kaempferol
in the presence of different metal ions is shown in
Figure 7(a). Figure 7(b) shows metal ions on CDs@SBA-15@
MIP and CDs@SBA-15@NIP.

.ese results illustrate that metal ions did not change FL
signals of CDs@SBA-15@MIP and CDs@SBA-15@NIP
under the kaempferol presence. Statistical analysis showed
no signification difference between the groups (p> 0.05).
.us, CDs@SBA-15@MIP seems to be an ideal sensor for the
highly selective detection of kaempferol.

3.3. Kaempferol Detection Using Calibration Curve.
Changes in FL intensity of CDs@SBA-15@MIP and CDs@
SBA-15@NIP after adsorption of different concentrations of
kaempferol are shown in Figure 8.

FL intensity decreased significantly as kaempferol con-
centration increased. FL quenching of any system typically
follows the Stern–Volmer equation [24]:

F0

F
� Ksv[Q] + 1, (1)

where F0 and F are FL intensities in the absence and presence
of kaempferol, respectively; Ksv is the Stern–Volmer con-
stant, and [Q] is the quencher concentration. We used this
equation to quantify various quenching constants as well as
Ksv ratios for MIP and NIP (Ksv-MIP/Ksv-NIP), which was
used to define imprinting factor to determine selectivity.

A linear relationship between FL response and
kaempferol concentration from 0.05 to 2.0mg/L showed
correlation coefficient equal to 0.9973. .e corresponding
equation was as follows: F0/F� 1.016Q+ 1.056.

Limit of detection (LOD) was 14 μg/L which is equal to
3σ/k, where σ is standard deviation of the response and k is
the intercept of the calibration curve.
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Figure 5: Kinetic uptake of kaempferol molecules by (a) CDs@SBA-15@MIP and (b) CDs@SBA-15@NIP.
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Figure 8: FL spectra of CDs@SBA-15@MIP (a) and CDs@SBA-15@NIP (b) in the presence of different kaempferol concentrations.

Table 1: Recovery data for kaempferol detection in various food samples obtained using CDs@SBA-15@MIPs and HPLC.

Sample Added (μg·kg−1)
FL HPLC

Found (μg·kg−1) Recovery (%, n� 3) RSD (%) Found (μg·kg−1) Recovery (%, n� 3) RSD (%)

Coriander
5 4.7 94 3.47 5.6 112 7.5
25 24.9 99.6 1.73 26.2 104.8 6.3
50 50.1 100.2 2.48 44.6 89.2 5.5

Strawberry
5 4.9 98 5.22 3.5 90 15.1
25 21.6 86.4 7.41 20 80 6.9
50 48.4 96.8 3.98 47.5 95 5.8

Orange
5 4.4 88 1.48 4.6 92 13.7
25 23.6 94.4 1.61 28.1 112.4 9.4
50 52.4 104.8 1.48 45.4 90.8 6.8
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3.4. Kaempferol Detection in Fruits and Vegetables Using
CDs@SBA-15@MIPs. To test practical application of our
sensor, seven fruits and vegetables samples were selected. To
ensure accuracy, we selected samples with low concentration
of kaempferol for standard recovery experiment to eliminate
matrix interference [9, 25]. .ree high concentrations of
kaempferol were used to obtain sensor FL in order to later
calculate its recovery rate. Recovery and RSD of kaempferol
were 80–112% and 1.48–7.41%, respectively. .ese values
show feasibility of the kaempferol detection method in
actual food samples. FL and HPLC results are shown in
Table 1.

Detection results of CDs@SBA-15@MIP as a sensing
material with fluorescence response in all seven food
samples agreed very well with the HPLC results. .us, the
method developed in this work demonstrated high accuracy
and can be used for practical applications because it satisfies
detection requirements for the actual food samples. De-
tection procedure of this method was simple, accurate, and
fast. .us, it has a strong potential to be widely used in
variety of practical applications.

4. Conclusions

Composites based on MIPs containing CDs-embedded
SBA-15 were fabricated using a simple, one-stage, and one-
pot surface-imprinting synthesis technique. .e resulting
CDs@SBA-15@MIP material was used to fabricate sensor
for fast and simple detection and concentration determi-
nation of kaempferol in food. SBA-15 used in this work had
a well-defined mesoporous structure, which demonstrated
excellent affinity and high capacity towards kaempferol as
well as overall stability, all of which makes it an excellent
adsorbent relative to kaempferol. Advantages of the sensor
are reduced analysis time, excellent recovery, and repeat-
ability, all of which eliminate complex multistep prepa-
ration of food samples required for equipment-intensive
methods such as HPLC and MS. A method like ours offers
rapid identification and quantification of a single com-
ponent; thus, we strongly believe it has future in practical
applications.
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