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Abstract 

 
The HMM is generally applied to forecast the hidden system of observation data. In this paper, we deal with 

the development of HMM for a proper understanding of finance variables in the stock market. Formulation of 

relationships between and within both the changing share values of Housing Development Finance 

Corporation Bank Limited (HDFC Bank Ltd) as visible/observed states influenced by the indicators of S&P 

Bombay Stock Exchange Sensitive Index (Sensex) as invisible/influencing states. Stochastic modeling with 

hidden Markov models is carried out for exploring various parameters of the model. Mathematical 

derivations for all the required statistical measures are obtained using the method of moments for the 

proposed probability distribution. Deducing mathematical formulation of initial probability vector, transition 

and observed probability matrices were carried out with the empirical data sets. Probability distribution for 

visible states of various lengths is obtained. It is observed from the empirically analysis that there is the 

maximum likelihood of rising the share prices of HDFC bank in consecutive two days. Furthermore, an 

attempt is made to estimate the long-run steady-state behavior of both the SENSEX and HDFC Bank share 

prices. The share value of HDFC bank will be on rising state from the 19
th

 day onwards and it may be 

recommended for good investment choice for the long run. The findings of these studies will be valid for 

effective decision-making in portfolio management. 
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1 Introduction  
 

The stock market is a global network that facilitates practically all significant economic activities at a dynamic 

and effective rate known as the stock value on the basis market stability. The stock market is a common term 

that now encompasses the entire world's economic activities. In other words, a stock market is a venue where 

individuals buy and sell equity shares of firms through stockbrokers. The participants of market are investors 

and traders who are looking for short-term and long-term rewards on their investments. Traders are looking for 

rapid rewards by keeping an eye on slight changes in the share price. Investors, on the other hand, have a long-

term perspective and benefit from capital appreciation. Market pressures cause stock values to fluctuate every 

day. The legal platform on which equities are transacted and traded is the stock exchange. The Bombay Stock 

Exchange (BSE) and the National Stock Exchange (NSE) handle the majority of the Indian share market's 

transactions. Since 1875, the BSE has been in operation. The NSE was established in 1992 and began trading in 

1994. Sensex and Nifty are two popular Indian stock market indicators for the two exchanges. 

 

Stock markets are now an important aspect of the world economy. The market's volatility has an impact on our 

individual and company financial lives, as well as economic progress of a nation. The greater the significance of 

a stock's variance in relation to market swings, the more volatile it is. To put it in another way, it's a risky 

investment. In order to mitigate this investment risk, stochastic data analyses can be useful [1]. Due to its large 

returns, the stock market has traditionally been one of the most commercial and popular investments, according 

to Kuo. R J et.al in 1996 [2]. Financial analysts rarely have a complete understanding of stock market activity. 

Both financial analysts and investors, according to Umar MS and Musa TM in 2013, require daily data in 

predicting the stock prices trend behaviour [3]. Dar, Q et. al in 2020 used A time series regression approach in 

[4] for the visualization and forecasting of South Korean international trade using the time series data regarding 

the amounts of exports and imports. In this study have analyzed the impact of imports and exports on the 

country’s GDP.  

 

 Predicting the value of stock offers substantial potential profit opportunities, which is a major driver of study in 

this area. Information of stock prices, even before a second, can result a good profit from the investment. 

Several factors influence stock prices in the stock market, such as political considerations, economic conditions 

of the state, performance of the company, industry factors, corporate factors, quality of health in the nation and 

investor psychological issues. The Markov chain model and HMM appear to be quite beneficial in analyzing 

and predicting future stock price behavior in this financial market. In HMM, these influencing elements that 

affect stock prices are referred to as hidden states of the model. These states are hidden in an HMM and follow 

the Markov property, but the states that are dependent on them are observable. In an HMM the observation or 

the visible state has a probability distribution that corresponds to a probable state at time t. The study is based 

on Sensex closing share prices (hidden state) influencing HDFC Bank share prices. The major goal of this 

article is to forecast HDFC Bank's share prices in the near future and to examine its long-term prospects by 

applying HMM containing three hidden states and three visible states. 

 

1.1 Literature review 
 

In recent years, a significant amount of research has been published in the hopes of finding an ideal (or nearly 

optimal) stock market analysis and prediction model. The statistical time series analysis approaches including 

linear regression, ARMA [5] and multiple regression models have been used in the majority of forecasting 

research. Traditional statistical prediction models are based on linear time series data. 

 

When evaluating market situations and the transition law between different states, HMM can be used to solve 

problems involving time series data, regardless of whether the data is linear or nonlinear. HMM can be defined 

as the statistical Markov chain model where the system being modeled is assumed to be a Markov process with 

hidden or invisible states. Initially, the concept of Markov chain (MC) was introduced by a Russian 

mathematician after his name Andrei Andreevic Markov (1856–1922). Later, Leonard E. Baum and other 

academics researchers published a series of studies [6] on Markov chain model in the late 1960s and early 

1970s. In 2014, Juan et al. demonstrated the use of a Markov model in decision process [7] to determine the 

best strategy for orange farm management. Because it takes fewer calculations to arrive at the best solution, 
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policy iteration is more efficient than linear programming. The change in states of MC that is from one state to 

another in discrete time is referred to as state transitions and according to Alghamdi in [8], the Markov chain 

follows memory less property or Markov property, which states that the probability of going from one state to 

another depends only on its current state and not on its history. 

 

A number of researchers have recently used HMM to analysis and predict the share prices in the stock market. 

In 2005, Hassan and Nath applied an HMM for the prediction of share prices of interconnected markets in [9]. 

The HMM is utilized with the four states of observations, such as close, open, high, and low prices, to forecast 

the future closing price of several airline stocks. In 2006, Guidolin and Timmermann applied HMM with four 

states and numerous observations to investigate asset allocation decisions on the basis of state-switching in 

market return [10]. In 2012, Kritzman et al. used a two-state HMM to forecast the inflation rate, volatility in the 

market and the industrial production index [11]. In 2012, Gupta, A., and Dhingra, B. proposed a Posterior 

hidden Markov prediction model in [12] for the time series analysis data. The share prices that occur within one 

day, such as the high and low values of the shares, are used in this model to forecast the next day’s share price. 

Kavitha G et. al in 2013 applied HMM the trend analysis of stock market behaviour in [13]. They found out the 

hidden sequence given the observation sequence for analysis of trend movement of share price using the steady 

state probability distributions. Again, in the same year, Nobakht et al. [14] applied an HMM where they used 

different observation or visible data such as open price, close price, low price, high prices of share in order to 

forecast its closing price. Tuyen applied a normally distributed HMM in [15] on VN-Index historical data in 

2013 to obtain the best Markov model. In 2014, Nguyen used HMM to estimate economic states and share 

prices using both single and multiple observations in [16] and later in 2015, Nguyen et. al used the HMM to 

forecast the invisible state of market data and choose stocks on the basis of the projected state [17]. Holzmann 

et al. observed the states and state space in an HMM in 2016 and discovered the state with the highest volatility, 

which corresponded the financial crisis [18]. Liu et al. [19] employed a three state HMM in order to explain the 

time changing distribution of Chinese stock market returns in 2017. In 2018, Nguyen, N discussed the 

application of HMMs [20] in stock trading based on stock price predictions. To obtain an ideal number of states 

in HMM, this technique starts by applying the four principles such as the Akaike information criterion AIC, 

Bayesian information criterion BIC, Hannan Quinn information criterion HQIC, and the Boz Dogan Consistent 

Akaike Information criterion BDCAIC. Huang et al. [21] investigated non-homogeneous HMMs and proposed 

a better EM approach for detecting bull and bear market movements in 2019. Suda and Spiteri in 2019 make 

similar comparisons in [22] to S & P 500 (Standard & Poor's 500), the standard stock index that has been the 

subject of various finance research. In this regard, a technique for predicting future stock market patterns is 

being developed. In 2020, Liu et al. proposed an HMM in the context of a transition in the states of an economy 

and investigated option pricing as the pricing system shifted risks [23]. 

 

From the existing literature, it is clearly observed that the HMMs are applied for the stock market data. The 

trend analysis of the stock market is obtained using HMM in this study by taking into account the one-day 

difference in closing price for a period of time. In this approach, HMM is used in order to predict the behavior 

of the visible states by using the effect of invisible states. The present study is done using HMM, its parameters 

(A, B, ), and the probability distribution for the sequence of visible states in order to analyze and predict the 

long-run behavior of stock movement of HDFC Bank in the stock market.  

 

2 Methodology  
 

2.1 Markov chain model (MC model)  
 

 A MC model is a random/stochastic model that describes a series of possible events, with the likelihood of each 

current event exclusively depends upon its instantaneous previous event and forgets about its history. The 

Markov chain means that given    the state        depends only upon    but not on       , . . .,   ,   . Because 

of its Markovian features, powerless interest in accurate information, and predicting behavior with many 

preferences, the Markov model is important in statistics. Mathematically, the Markov property represents if 

{ , 0}nX n  is a random process with discrete state space S, then

1 1 1 1 1 1 0 0( / , ,..., , )t t t t t tP X x X x X x X x X x         1 1( / )t t t tP X x X x     for all t = 0, 1,2, 

3, … and for all states 
0 1 1, ,..., ,t tx x x x 

. The state-space is defined as the countable set S containing all 
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possible values of Xi. The condition of the any state of the system may change over time. The transition 

probability, represented as aij, is the likelihood that the process will move from state i in the n
th

 step to state j in 

the (n+1)
th

 step. Hence 
1( | )ij n na P X j X i   for all ,i j S and 0n  , 1 ,i j N  . 

 

2.2 Hidden Markov Model (HMM) 
 

Hidden Markov model is a statistical Markov model in which the system under consideration is assumed to be a 

Markov process, which we refer to X, with hidden, or invisible states. It is assumed that there is another 

process, we call it Y, whose movement is influenced by the hidden process X. Suppose
nX  and 

nY  be two 

stochastic processes such that n 1 , then the pair  ,n nX Y is an HMM if the first process
nX  follows Markov 

property whose trend behaviour is not directly visible and

1 1 2 2( / , ,..., ) ( / )m m m m m m m mP Y y X x X x X x P Y y X x       for every 1n  . In our probabilistic 

model, HMM allows us to discuss about both visible and hidden events that we think of as causal factors. 

Therefore, the HMM is defined as a stochastic model in which the invisible or hidden states are supposed to 

follow a Markov Property, and it outperforms the other models in terms of accuracy. The parameters of an 

HMM (λ) are A, B and π and are determined using the supplied or given input values. The overall HMM is 

written as λ = (S, V, A, B, π) where the set S ={H1,H2, … ,HN} contains of N possible hidden/invisible states, 

the set V={V1,V2,…,VM} are M possible visible states, A is a square matrix of dimension N that is called the 

transition matrix or (TPM), B is also an N M  rectangular matrix of observation probabilities which is termed 

as observed probability matrix (OPM) and finally the N dimensional vector   contains the probability of 

hidden which is known as the initial probability vector (IPV). These parameters A, B and π of HMM satisfy 

1

1
N

ij

j

a


 , 

1

1
M

ij

j

b


 and 

1

1
N

i

i




 , 0i  for 1 i N  . 

 

3 Description of the Model 
 

The present study deals with three hidden states, namely the influencing states such as loss (H1), no change 

(H2), and Gain (H3) of share prices in Sensex. The impact will result in getting the observed states like Fall (V1), 

remain same (V2), and rise (V3) in the share prices of HDFC bank. The three invisible and three visible states 

for the paper are defined in the following sections 3.1 and 3.2 respectively. 

 

3.1 Hidden states 
 

These three hidden states are defined on the basis of the difference between the next day’s and the previous day 

closing share prices of Sensex. Symbolically, we write these three states as follows. 

 

H1: When 1( ) 1t tx x    , the Sensex share price is in the state of loss (L). 

H2: When 11 ( ) 1t tx x      , the Sensex share price is in the state of no change (N). 

H3: When 1( ) 1t tx x    , the Sensex share price is gaining (G). 

Where, tx  is the current and 1tx  is the previous closing share price of Sensex.  

 

3.2 Visible states 
 

 In the same way, the three visible states are obtained by the difference between the next and the previous day’s 

closing share prices of HDFC bank. Symbolically, we write these three states as follows. 

 

V1: When 1( ) 1t ty y    , the HDFC bank share price is in the state of fall (F) 

V2: When 11 ( ) 1t ty y      , the HDFC bank share price remains same (S). 
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V3: When 1( ) 1t ty y    , the HDFC bank is in the state of rise (R). 

Where, ty  is the current and 1ty  is the previous closing share price of HDFC bank.  

 

 The schematic diagram or state transition diagram of the transitions of hidden states and visible states is 

displayed below in Fig. 1. The arrow marks are depicting the connectivity from and to the states. 

 

 
Fig. 1. Schematic diagram of HMM 

 

In this paper, H1=L, H2=N and H3=G and Similarly, V1=F, V2=S and V3=R. 

 

Three fundamental problems: 

 

I. Given the observation or visible sequence V = {Vt, t = 1,2, 3, …, T} and model λ= (A, B, π); calculate P 

(V| λ), that is to compute probability of visible sequence
1 2 3... TVV V V . 

II. Given the visible sequence V = {Vt, t = 1, 2, 3, …, T} and HMM λ= (A, B, π), choose the most likely 

hidden sequence H= {Ht, t = 1,2, 3, …, T} that best explains the visible sequence. 

III. Given the visible data V = {Vt, t = 1,2, 3, …, T}, how do we adjust the parameters λ= (A, B, π), in order 

to maximize P (V| λ). 

 

Whare, A, B and π are TPM, OPM, and IPV. Either forward or backward algorithms developed by Baum et al. 

in 1967 and in 1968 [24,25] can be applied to solve problem (I) whereas both forward and backward algorithms 

which is also known as Baum–Welch algorithm is used to solve problem (III). The Viterbi algorithms given by 

Forney, G.D in 1973 and Viterbi, A.J in 1967 solves Problem (II) [26,27]. In the present paper, the probabilities 

of the visible state sequences of specific length are obtained using the parameters of HMM. 

 

4 Probability of visible state sequences of length One and Two 
 

In this section, we have obtained the formula for computing the probability of visible states (V j, j = 1, 2, 3). 

These probabilities are obtained by the effect of hidden states (Hj, j = 1, 2, 3). Hence the probability expression 

of visible states is obtained in equation 4. 

 
3

1

( ) 0, 1,2,3j i ij

i

P V b for j


    such that 

3

1

( ) 1j

j

P V


                                                       (4) 

 

Since the visible states occur by the influence of hidden/invisible states. Therefore, probability of the sequence 

of two visible states can occur by the happening of nine different possible combinations of invisible states. 

Symbolically, we write the probability of  u vV V for all (u, v = 1, 2, 3) can happen jointly with the happening of 
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(H1H1), (H1H2), (H1H3), (H2H1), (H2H2), (H2H3), (H3H1), (H3H2) and (H3H3). The probability of the sequence of 

two visible states is obtained in following expression 4.1: 

3 3

1 1

( ) ( )( ) , , 1,2,3 , 1,2,3u v ju jv i ij

j i

P V V b b a i j u v
 

 
    

 
                                                   (4.1) 

 

For a specific combination say (V1V1), the formula is given in equation 4.2. 

 

3 3

1 1 1 1

1 1

( ) ( )( ) , , 1,2,3j j i ij

j i

P VV b b a i j
 

 
  

 
                                                                         (4.2)

  

 

Similarly, we can also find the probability of all possible sequences of length two such as (V1V2), (V1V3), 

(V2V1), (V2V2), (V2V3), (V3V1), (V3V2) and (V3V3) by using equation 4.1. 

 

5 Probability distribution of Visible States 
 

Let ( )kX  be a random variable that represents the number of times the state Vk occurs in a sequence of 

length T=2. Then ( ) 0,1,2,...,kX T  where 'T' denotes the length of the visible sequence. Thus, the random 

variable ( )kX  is said to follow the derived probability distribution if it takes the integral values of 0,1, 2 and 

its P.M.F is given by  

 

 2 2

1

(1 ) ( ) , 0,1,2
( ( ) )

0 ,

M
x x

x jk jk

jk k

C b b for x
P X x

otherwise









 

  




        (5) 

 

Where 
1

N

i ij

i

a 



 

 

This is the general probability distribution for the visible states. The probability distribution for the visible state 

V1, V2 and V3 are obtained by putting the k=1,2,3. In the present paper, the number of hidden states N=3, the 

number of visible states M=3 and the length of visible sequence T=2. 

 

5.1 Statistical measures for the derived probability distribution 
 

In this section, the moments and various statistical parameters are obtained for the derived probability 

distribution. The r
th

 moment about origan of the above probability distribution is derived using the equation 5.1.  

 

  ' 1

1 1

2 1 2 1 , 1,2,3,4...
M N

r

r jk jk i ij

j i

b b a r 

 

  
     

  
                             5.1) 

 

The formula for the mean and the variance for the derived probability distribution are in equations 5.2: 
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    

'

1

1 1

2

2

1

2

2 1 2

M N

jk i ij

j i

M

jk jk

j

b a

b b

 

  

 



  
   

  

   
 

 


                                                                                    (5.2) 

Similarly, to find the shaping and peakedness measures of the distribution, we need to find the third and fourth 

central moments. The expression for the third and the fourth central moments are derived in equation 5.3; 

 

         
3

2 2

4

2 (4 )(2 1) 6(2 1)

2 4 1 3 2 6 1 12 2 24 2 7

     

       

   

       
                                 (5.3) 

 

Hence the measure of skewness   
 
 , measure of kurtosis   

 
  ,  

 
  nd  

 
 of the above probability distribution 

are obtained in the following expressions 5.4 respectively. 

 

       

           

      

           

2 3

1

22 2

2

3

2
1

22 2

2

2 4 2 1 6 2 1

2 4 1 3 2 6 1 12 2 24 2 7

2 4 2 1 6 2 1

2 4 1 3 2 6 1 12 2 24 2 7 3

A

A

A

A

     

       

     

       









   

        
 

   

         
 

              (5.4) 

 

Where     
2

1

2 1 2
M

jk jk

j

A b b  


   
  , 

1

N

i ij

i

a 


  ;  
1

M

jk

j

b 


 ,  2

1

M

jk

j

b 


  ,
ija , 

ijb and i are respectively the elements of TPM, OPM and IPV. In this study, we have N=M=3 and K=1,2,3.

 
 

6 Empirical Data Modelling and Statistical Analysis  
 

In the present paper, the daily data of share prices of Sensex were used as hidden states, which influence the 

closing share price of HDFC bank. We have collected 494 observations of both the Sensex and HDFC bank 

from 3 April 2017 to 29 March. 2019, i.e., for almost three years of data from the BSE (www.bseindia.com & 

www.yahoofinance.com). The data is of a discrete time-discrete state. The summary statistics of the two 

daily date sets of HDFC bank and Sensex are presented in Table 1.  

 

Table 1. Summary Table of Sensex closing prices and HDFC bank share values. 

 

 

From the Table 1, we observe that the correlation between the two data sets the invisible (Sensex) and the 

visible states (HDFC bank), is 0.936. This means that the two states are highly positively correlated, i.e., the 

change in Sensex influences the likelihood of HDFC bank.  
 

Table 2. Frequency table of the F, S, R, L, N, G and the combination of two 
 

States Frequency States Frequency States Frequency States Frequency 

L 255 LL 133 NL 1 GL 113 

 Closing share Prices 

Minimum Mean Variance Maximum CV Correlation 

HDFC Bank  1433.4 1915.6 34699.41 2316.5 9.725 0.936 

SENSEX 29319.1 29788 5186222 38896.63 7.646 

http://www.bseindia.com/
http://www.yahoofinance.com/
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F 212 LF 144 NF 0 GF 70 

N 2 LN 1 NN 0 GN 1 

S 31 LS 14 NS 0 GS 17 

G 267 LG 110 NG 1 GG 153 

R 251 LR 67 NR 2 GR 180 

 

The daily data regarding the closing share prices of Sensex and HDFC bank are converted in to states labels 

such as L, N, G and F, S R defined in section 3.1 and 3.2 in MS excel using IF command. Frequency table 

for all the three hidden states L, N, G and F, S, R is collected by COUNTIF function in MS excel and is 

displayed in Table 2. 

 

6.1 Transition probability matrix  
 

The TPM of a MC model gives the probabilities of moving from one state to another in a single  time unit. 

Since we have applied the HMM, the TPM is the matrix of transition probabilities of reaching to hidden 

state j from hidden state i. The elements of TPM are denoted by a ij and are defined as 

1( | )ij t ta P X j X i   . Note that all the elements of the TPM are positive and the row sum must add 

up to one.  

 

The transition frequency matrix is given by. 

 

133 1 110

1 0 1

113 1 15

244

2

23 67

L N G

L

P N

G

 
 


 
    

 

TPM from Xn-1 to Xn is obtained in matrix A.  

 

0.545082 0.004098 0.45082

0.5 0 0.5

0.423221 0.003745 0.573034

L N G

L

A N

G

 
 


 
  

 

 

In the above matrix A, it can easily be seen that there will be loss, no change and gain with respective 

probability 0.54, 0.004 and 0.57 in the share prices of Sensex in the next day when it was in the state of loss in 

the previous day. In the third row, we can say that the share prices of Sensex will be in the state of L, N, or G 

with probabilities 0.42, 0.003 and 0.57 respectively in the next day given that it was in the state of G in the 

previous day. It is observed from matrix A that when the system is in the state of gain, there is highest 

probability of gaining the share price of Sensex in the next day. 

 

6.2 Observed probability matrix  
 

OPM is also the matrix of observed or emission probabilities from hidden states to visible states. The elements 

of OPM are the conditional probabilities of observed states given hidden states. In the present paper, the hidden 

states are L, N and G of Sensex which influence the change in visible states such as F, S and R of HDFC bank. 

The elements of OPM are denoted by bij and are defined as ( | )ij t tb P Y j X i   . Observed frequency 

table from the invisible states of Sensex to the visible states of HDFC bank are obtained in the following matrix 

O.  
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144 14 67

0 0 2

70 17 18

225

2

20 67

F S R

L

O N

G

 
 


 
    

 

Therefore, OPM from state Xn of the Invisible state to state Yn of the visible state is also calculated using MS 

Excel and R and is given by 

 

0.64 0.062222 0.297778

0 0 1

0.262172 0.06367 0.674157

F S R

L

B N

G

 
 


 
  

 

 

This matrix shows us how and to what extent the change in invisible states is influencing the change in the 

visible states. In this study, HMM is used to predicting the share prices of HDFC bank by identifying the 

change in the share prices of Sensex by obtaining TPM and OPM. It is observed from the matrix B that when 

the closing price of Sensex is in the state of gain, there is 67% probability of rising the share price of HDFC. 

 

6.3 Initial probability vector  
 

In order to calculate the IPV, we need to obtain the initial frequency table. The initial frequency table is the 

frequency of invisible states which is presented in Table 3.  

 

Table 3. Initial frequency table 

 

States Loss (L) No change (N) Gain (G) Total 

Frequency 267 2 225 494 

 

IPV is the probabilities of the hidden states. Therefore, from the above initial frequency table, we obtained the 

vector π which is the probability of loss, no change and gain in the closing prices of Sensex.  

 

 0.540486 0.004049 0.455466

L N G

 
 

 

This vector reveals that there are 54% chances of losing and 45% chances gaining the share price of Sensex. 

The schematic diagram of our model parameters is presented empirically in Fig. 2. The numbers on the 

respective arrows represents the probabilities from one state to another state.  
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Fig. 2. Schematic diagram of the HMM 

 

6.4 Probabilities of the sequence of visible states 
 

Probabilities of the visible states that is the probability of fall (F) in the share values of HDFC bank, the 

probability that the share value remains same (S) and the probability of rise (R) the share values of the HDFC 

bank are obtained using the equation 4 from section 4 are.  

Table 4. Probabilities of the sequence of single visible states 

 

P(F)=0.465321 P(S)=0.06263 P(R)=0.472049 

 

From above, we have observed that the probability of falling and raising the share values of HDFC bank are 

almost same which represents the volatility of share market. Again, using the equation from section 4, the 

probability of the sequence of two visible states are also obtained in the following Table 6. 

 

Table 5. Probabilities of the sequence of two visible states 

 

P (F, F) = 0.235283 P (S, F) = 0.02795 P (R, F) = 0.182822 

P (F, S) = 0.027947 P (S, S) = 0.003949 P (R, S) = 0.030817 

P (F, R) = 0.182822 P (S, R) = 0.030817 P (R, R) = 0.277598 

 

P (F, F) is the probability of fall in the share prices of HDFC bank for the two consecutive days. From the table-

6, it is observed that the rising share prices of HDFC bank for the two consecutive days is maximum. It reveals 

that there is highest probability associated with rising the share prices of HDFC bank tomorrow, if the share 

values of HDFC bank is in the state of rise today.  

 

6.4.1 Descriptive statistical measures 

 

The values of the parameters like mean and variance of the derived probability distribution for the real time data 

using the equations 5.2 derived in section 5.1 are also obtained. In this section, we will discuss the parameters 

of the falling state only. The mean 
'

1 0.57889   and 
2 0.714343  are obtained using R and Excel. The 

coefficient of skewness and the coefficient kurtosis of the probability distribution of falling state (F) are 

presented in Table 6. 

 

Table 6. Statistical parameters of the model 

 

Parameters Values Parameters Values Parameters Values 

3  0.14983 
1  0.061587 

1  0.248167 

4  
1.0242 

2  2.007112 
2  0.99289 

 

6.5 Long term or steady state behavior in Sensex prices 

 

Forecasting of long run behavior of Sensex is very meaningful for investors. The long run behavior of Sensex is 

observed by determining the higher order TPM. The TPM obtained in section 6.1 is given by 
 

0.545082 0.004098 0.45082

0.5 0 0.5

0.423221 0.003745 0.573034

A

 
 


 
  

 

 

This TPM is an Ergodic Markov chain, which means it is irreducible, positively recurrent, aperiodic, and time 

homogeneous. That is for an ergodic Markov chain, 
( )lim n

ij
n

a


exists and is independent of i. This assumption of 
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ergodicity helps in the predicting of the share prices in the long-term behaviour. Here the stationary matrix for 

the share values of Sensex is obtained as follows.  

 

8

 0.4822932   0.003900978   0.5138058

 0.4822932   0.003900978   0.5138058

 0.4822932   0.003900978   0.5138058

L N G

L

A N

G

 
 


 
  

 

From the above matrix, we observe that the stationary is reached at 8
th

 step that is the steady-state is obtained at 
8A  which represents that after the 8th trading days since 494 trading days, the TPM tends to the state of 

equilibrium or steady state. After then the TPM remains unchanged for the onwards trading days. This steady 

state TPM of Sensex reveals the following information. 

 

1. The probability of loss in the closing price of Sensex in near future and in the long run irrespective of its 

initial states weather it was in L, N or G is 0.48. 

2. There are 0.003 likelihood that Sensex prices will have no change in future irrespective of its initial. 

3. The probability of gain in the closing price of Sensex future no matter what the initial states is weather L 

or N or G is 0.51. 

 

We can conclude from the above information that probability of gaining (G) in the closing prices of Sensex is 

having greater likelihood in future irrespective of its initial state it was, whether Loss, No change or Gain. 

 

6.6 Steady state behavior of HDFC bank 
 

Since the matrix B is also an irreducible that is independent of where we start from, if we let the chain run for a 

long period of time, then the distribution of Y  will converge to a matrix of identical column elements. The 

OPM is obtained in section 6.2 as 

 

0.64 0.062222 0.297778

0 0 1

0.262172 0.06367 0.674157

F S R

L

B N

G

 
 


 
  

 

 

Similarly, as in section 6.5, the stationary behavior of the share prices of HDFC Bank are obtained after 

multiplying 19 number of times as given in the following matrix. 

 

19

 0.396386   0.05931947   0.5442946

 0.396386   0.05931947   0.5442946

 0.396386   0.05931947   0.5442946

F S R

L

B N

G

 
 


 
  

 

 

The steady-state is obtained at
19B  and it represents that after the 19th trading days since 494 days, OPM tends 

to the state of equilibrium or the steady state. The OPM remains unchanged after then, for the onwards 

consecutive trading days. The above stationary distribution reveals the following information. 

 

1. There are 40% chances that closing share prices of HDFC bank will fall (F) in the near future and in the 

long run irrespective of its initial states whether there is L, N or G in the price of Sensex. 

2. There are 5% chances that share prices of HDFC bank will remain in the same state (S) in the future 

irrespective of its initial states. 

3. There are 55% probability that the closing share prices of HDFC bank will be rise (R) in future no matter 

whether there is loss, no change or gain in the share value of Sensex. 
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The above information clearly reveals that rising (R) in the share prices of HDFC bank in future has maximum 

probability. It can hence be recommended that investing in HDFC Bank for the long run is a good choice for the 

investors and share value of HDFC Bank is on rising from the 19
th

 day onwards, it may be suggested for selling 

of HDFC Bank share after the 19
th

 day. 

 

 

7 Findings and Conclusion 
 

Existing literature shows that HMMs are applied in order to forecast the stock market trend, and the calculation 

is done up to the HMM parameters (A, B, ). The present work is based on HMM along with the development 

of probability distribution obtained in section-5. The expression for all the statistical parameters is obtained in 

section 5.1 for the derived probability distribution. 

 

Observing the data on the share values of HDFC Bank and the closing price of Sensex for two finance years 

from April 2017- Mar 2019, we have around 495 observations which revealed the significant correlation (95%) 

between HDFC Bank share values and Sensex prices. The coefficient of variation for HDFC bank share values 

and Sensex closing prices are 9.724 and 7.645, respectively presented in Table 1. Results of TPM is disclosed in 

section 6.1 regarding the transits of Sensex closing prices. The OPM regarding the visible states of HDFC bank 

share values is disclosed in section 6.2. The IPV presented in section 6.3 reveals that the state of loss has 

54.05% likelihood and the state of gain percentage is 45.55% observed with Sensex prices. The probabilities of 

visible sequences with one value disclosed in Table 4 section 6.4 reveal that the chance for rise and fall in the 

share prices of HDFC are 0.47, and 0.46 respectively. As per the results in Table 5 in section 6.4, It is observed 

that there is the maximum likelihood of rising the share prices of HDFC bank in consecutive two days. 

 

Stationary probabilities, presented in section 6.5, reveals that transition probabilities become stationary with 

order 8 (8
th

 step transition). Steady state TPM of Sensex concludes that there is 48% likelihood of losing and 

51% of gaining the prices of Sensex in future irrespective of its initial state. The steady-state for OPM is 

obtained at
19B  in section 6.6. This stationary distribution of OPM for the share prices of HDFC bank reveals 

that there are 40% chances that share values of HDFC Bank will fall and 55% probability that share values of 

HDFC bank will rise in the near future irrespective of its initial state. It may be interpreted that share value of 

HDFC bank is on rising from the 19
th

 day onwards and it may be suggested that investing in HDFC bank in the 

long run could be the best choice for investors.  

 

The results in section-6.4.1 reveal that, on average, the HDFC bank share value falls having mean time 0.57889 

with variance 0.714343 , which indicates that the share value is always in the raising state. As per the values 

of  
 
         ,  

 
         , which implies that there exists negative skewness on the price value 

distribution. Hence, we can infer that the average rising value is always less than the model raising values. The 

coefficient of  
 
 and  

 
 reveals that the consistency or peakedness of the distribution curve is just below the 

normal. 
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