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ABSTRACT 
 

The SARS-CoV-2 virus’s prominence, severity, and unique characteristics—including its ability to 
mutate quickly and cause idiosyncratic symptoms—has prompted researchers to fully focus on 
understanding the pathological process behind infection and developing an effective vaccine. To 
achieve this objective, several animal models, from small animals to non-human primates (NHPs), 
have been developed to identify different immunizing agents, which can provide protection against 
coronavirus disease (COVID-19). In this review, we discuss the possible advantages and 
drawbacks of these animal models including their susceptibility to infection, and pathological 
manifestations. While vaccination efforts have been successful, there still remain several 
limitations and areas for improvement. The individuals at the high risk of contracting viral infection 
may need individualized immunization plans and newer antigenic targets must be discovered to 
combat the virus’s mutations. Animal models can serve as a valuable tool to develop better 
vaccines that can provide protection against COVID-19. 
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1. INTRODUCTION 
 
The COVID-19 pandemic, caused by the novel 
Coronavirus SARS-COV-2, has burdened the 

world with its presence, afflicting 486 million 
people and claiming the lives of 6.1 million, as of 
April 2022 (covid19.who.int). The rapid 
emergence of this coronavirus, coupled with the 
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existence of its ever-changing variants, has 
necessitated a concentrated effort in 
understanding the pathogenesis of viral infection 
as well as developing a safe and effective 
vaccine [1]. Most current COVID-19 vaccines 
approved by North America and Europe target 
the SARS-CoV-2 full-length spike (S) protein, 
which allows the virus to attach to ACE2 
receptors and enter host cells. These vaccines 
use either inactivated virus, protein, or virus 
vectors with nucleic [2] and induce an 
immunoglobulin G (IgG) response.  

 
Before releasing a vaccine to the public, 
however, several challenges have to be 
addressed. Researchers must understand 
potential pathways for SARS-CoV-2 infection and 
how an infection causes immunopathogenesis in 
the respiratory system and must keep in mind 
that different host immune responses might 
induce different outcomes of an infection. As 
studies suggest that protection from a vaccine 
can be present as early as 10 days after the first 
shot, understanding immunity after a single dose 
is important. Furthermore, mutations can 
increase transmission, infectivity, and severity of 
viral variants, as well as increase resistance to 
vaccine-induced neutralizing antibodies (NAbs) 
[3-12]. 

 
All of these questions require an appropriate 
animal model to understand viral evolution, 
mutation sites, and off-target effects of current 
vaccines. Indeed, one central focus of vaccine 
research has been finding a model that recreates 
the pulmonary changes of human infections [13-
18]. Small animal models (rabbits, mice, 
hamsters) as well as non-human primate (NHP) 
models have been used to study viral replication, 
transmission, pathology, and vaccine efficacy. 
Assessing how COVID vaccines work in NHP 
models is especially useful due to the 
phylogenetic closeness of NHPs to humans, 
translating into a better understanding of how 
COVID interacts with humans than smaller 
animal models would provide [19]. Generally, 
these animal models demonstrate a reduction of 
viral load and efficient augmentation of NAbs. 
Specific details of vaccine testing in                    
various animal models have been outlined in 
Table 1. 

 
All vaccine candidates mentioned in this review 
have been efficacious to some extent—in 
reducing viral shedding, transmission, tissue 
lesions, and preventing weight loss—in their 
respective animal models (Table 1). 

The various animal models used in preclinical 
testing have their advantages and disadvantages 
(Table 2). While mice are smaller, less 
expensive, and easy to reproduce and work with, 
their ACE2 receptor does not have high affinity 
for the SARS-CoV2 spike protein. The need to 
introduce a genetically engineered hACE2 limits 
their utility. Syrian hamsters, besides being 
small, less expensive, and quick to reproduce, 
also have another advantage that their ACE2 
receptor easily binds to the S-protein. The 
natural history of the disease in hamsters also 
resembles that of humans. But the limitation of 
this model is that they clear the virus quickly from 
their bodies. It is difficult to study the 
extrapulmonary disease in Syrian hamsters due 
to lack of any tissue changes in their brain, heart, 
liver or kidneys. Ferrets have a natural 
susceptibility to SARS-CoV2 infection, and their 
pattern of infection is similar to humans. They 
also form a good model to study asymptomatic 
carriers due to low viral load in lungs and milder 
infection in the lungs and lower respiratory 
passages. Ferrets, however, are more 
expensive, and have a limitation of infecting only 
the upper respiratory passages. Macaques and 
marmosets are closer to humans, genetically as 
well as physiologically. The infections (clinical as 
well as pathological) in them and other non-
human primates (NHPs) resemble those 
observed in humans. While they may form the 
best models to study the disease and vaccines, 
their use is affected by greater ethical and 
financial concerns. 
 
While comparing various vaccines and animal 
models studied so far, we observed wide 
variations not only in the types of vaccines used, 
but also in the dosage administered and routes 
of administration. Using the same vaccine and 
similar doses to immunize NHPs and humans 
may allow us to better demonstrate vaccine 
efficacy and similarity in the immune response 
among animal models [28,30]. Furthermore, 
observed results from NHP models do not 
always directly translate to humans in clinical 
trials. In fact, several clinical symptoms such as 
asymptomatic infection, gastrointestinal infection, 
diarrhea, and vomiting were reported in human 
patients but not observed in NHP models. 
Patients with pre-existing conditions and 
diseases have higher severity and mortality after 
COVID infection. Therefore, these individuals 
may need a different immunization strategy—
consisting of more boosters or higher doses—
that can prevent SARS-CoV-2 infection. There is 
a need to establish animal models which very 
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Table 1. Pre-clinical trials of COVID vaccines using animal models 
 

Animal Model Vaccine Type Dose Results References 

BALB/c mice Rhesus adenovirus 
serotype 52 vector 
(encodes variations of 
SARS-CoV-2 S protein) 

10
9
 viral 

particles 
- 100% of mice exhibited SARS-CoV-2 S-specific binding antibodies by the 
ELISA assay 
- Mice that received two doses exhibited one log higher median antibody 
titers compared with mice receiving one dose  
- Weights of vaccinated mice remained generally stable (regardless of 
whether they received one or two doses) compared with a median loss of 
15.2% of body weight in control group 

[20] 

CoviVac, β-
propiolactone-
inactivated whole virion 
vaccine 

5-6 µg in 
safety study 
and 1.5-6 µg in 
efficacy study 

- 40% developed NAbs 14 days after first dose, and 100% developed NAbs 
14 days after second dose 
- Mice in both control and experimental groups gained weight, and their 
behavior did not differ significantly 
- Vaccination of mice resulted in the formation of SARS-CoV-2-specific 
lymphocytes 
- No significant decrease in NAb titers over one-year period 

[21] 

Antigens based on RBD 
in S protein (NG19) 

20 µg IgG in serum of immunized mice with neutralization values of 17.1-66.9% 
against 2.1-9.6% in control 

[22] 

hACE2 mice h11B11 monoclonal 
antibody (MAb) 

5 or 25 mg/kg - Viral titers were under the detection limit in the lungs of mice in preventive 
group regardless of dose 
- 10-fold reduction in viral titres in the lung tissue of treatment group 
compared with controls 
- Mild interstitial pneumonia, infiltration, and alveolar thickening in controls, 
but minimal pneumonia in the antibody group; even more limited changes at 
higher dose of antibody 

[23] 

K18-hACE2 
transgenic 
mice 

DNA plasmid encoding 
a secreted monomeric 
form of SARS-CoV-2 S 
protein receptor-binding 
domain (RBD) 

20 µg - Positive anti-RHD IgG after the first dose, further boosted by second dose 
- Stable body weight in immunized mice but 20% weight loss in controls 

[2] 

Syrian 
hamsters 

COH04S1, a synthetic 
multiantigen modified 
Vaccinia Ankara-based 
SARS-CoV-2 vaccine 

1×10
8
 plaque 

forming units 
(PFU) 

- High binding antibodies to both the Spike (S) and Nucleocapsid (N) 
antigens, and S-receptor binding domain (RBD) after first vaccine, further 
boosted by the second shot 
- Vaccinated hamsters did not have a severe weight loss after being exposed 
to SARS-Cov-2 virus, compared with controls 

[24] 
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Animal Model Vaccine Type Dose Results References 

- 10
3
-10

4
 lower viral gRNA levels seen in lung tissues of immunized animals 

- Viral sgRNA was undetectable in lung tissue in vaccinated hamsters (10
3
-

10
6
 decrease compared with controls) 

- Nasal viral load not significantly affected with either vaccine route 
- Inflammation, consolidation and hyperplasia on histopathology of lungs in 
control animals; no pathology noted in vaccinated ones 

ChAdOx1 nCoV-19, 
adenovirus genome 
vector (encoding human 
optimized S protein) 

100 µl of 
2.5×10

8
 

infectious units 
of vaccine 
intramuscularly 
or 50 µl of 
2.5×10

8
 

infectious units 
of vaccine 
intranasally 

- High IgG titers with no difference observed between vaccination routes 
- High neutralizing antibody titers for vaccinated hamsters, higher in those 
that received intranasal inoculation compared with intramuscular 
- Control group started losing weight at 3 days post inoculation (dpi) and 
didn’t regain it until 8 dpi. None of the vaccinated animals lost weight 
- Much less infectious virus detected in swabs of intranasal- and 
intramuscular-vaccinated animals compared to controls 
- Pneumonia and pulmonary lesions found in control animals (40-70% of 
tissue) but no lesions found in lung tissue of vaccinated hamsters 
- Amount of viral RNA detected in nasal swabs of of vaccinated animals 
lower than that of control animals, and no viral RNA or infectious virus found 
in pulmonary tissue after direct contact with infected hamsters 

[25] 

CoviVac, β-
propiolactone-
inactivated whole virion 
vaccine 

5-6 µg in 
safety study 
and 1.5-6 µg in 
efficacy study 

- 87% developed NAbs 14 days after first dose, and 100% developed NAbs 
14 days after second dose 
- Vaccinated hamsters gained weight, whereas unvaccinated hamsters lost 
weight 
- Inflammation in lungs in all infected animals. However, control group 
experienced tissue damage, loss of alveolar structure, pneumonia, and mild 
perivascular fibrosis while vaccinated hamsters saw minor tissue damage 
and no pneumonia 
- No significant decrease in NAb titers over one-year period 

[21] 
 

 mRNA vaccine 
candidate based on the 
spike (S) glycoprotein of 
SARS-CoV-2 

Four vaccine 
formulation at 
dose levels of 
0.15, 1.5, 4.5 
and 13.5 µg  

- Elicitation of potent Nabs 
-  These NAbs provided protection against SARS-CoV-2-induced 

weight loss and lung pathology 

[26] 

New Zealand 
rabbits 

Antigens based on 
receptor binding domain 

200 µg  - Detection of antigen with IgG at 1:10
6
 dilution; even stronger detection after 

a second dose  
[22] 



 
 
 
 

Aggarwal and Mittal; IJPR, 9(3): 21-32, 2022; Article no.IJPR.86468 
 
 

 
25 

 

Animal Model Vaccine Type Dose Results References 

(RBD) in S protein 
(NG06 and NG19) 

Spike (S1+S2) 
ectodomain, S1 domain, 
RBD domain, and S2 
domain (control) 

50 μg - After second vaccination, all rabbit sera contained anti-spike antibodies that 
were at least 80% IgG 
-  Sera from S ectodomain, S1, and RBD (but not S2) showed 50 to 60% 
virus neutralization after a first dose and 93 to 98% virus inhibition after 
second 

[27] 

Ferrets SARS-CoV-2 RBD-
ferritin nanoparticles 

15 µg - Vaccinated ferrets produced strong neutralizing antibodies after booster 
- Control ferrets saw an increase in body temperature and a decrease in 
body weight whereas vaccinated ferrets saw no change in either 
-  Immunized ferrets showed rapid viral clearance in the 
nasal washes and lungs 
- Immunized ferrets showed significant reduction of viral RNAs in lungs 
compared to control ferrets. At 6 dpi, lung tissues of vaccinated 
ferrets showed complete clearance of viral RNAs 

[28] 

Ferrets RBD vaccine 400 µg - After an intranasal infection with SARS-Cov-2, viral subgenomic RNA in 
nasal washes and throat swabs at day 7 was significantly lower in vaccinated 
ferrets compared with controls. 

[2] 
 

Rhesus 
macaques 

Stabilized, recombinant, 
full-length 
SARS-CoV-2 S 
glycoprotein (NVX-
CoV2373) 

5 or 25 µg - Lower replicating virus (sgRNA) in all animals regardless of dose, in all 
tissues except nasopharyngeal swabs 
- 25 ug dose cleared sgRNA in nasopharyngeal swabs and bronchoalveolar 
lavage (BAL), but 5 ug dose cleared sgRNA only in BAL 
- No detectable viral load in any tissue on any day and with any dose in 
prime/boost regimen 
- No gRNA in nasal cavity, lungs or trachea tissue sample on necropsy, in 
prime/boost regimen irrespective of dose 
- Few animals with single vaccine had detectable gRNA in the tissues 
- Elevated anti-S IgG after a single vaccine (any dose) 
- 21-35x increase in anti-S IgG titers after a second shot (any dose) 

[29] 

ChAdOx1 nCoV-19, 
adenovirus genome 
vector (encoding human 
optimized S protein) 

2.5×10
10

 virus 
particles 

- Reduced virus concentrations in nasal swabs and reduction in viral loads in 
bronchoalveolar lavage and lower respiratory tract tissue 
- 3 of 4 control animals developed viral interstitial pneumonia and pulmonary 
lesions 
- No pulmonary pathology or COVID antigen detected in vaccinated animals 

[19] 



 
 
 
 

Aggarwal and Mittal; IJPR, 9(3): 21-32, 2022; Article no.IJPR.86468 
 
 

 
26 

 

Animal Model Vaccine Type Dose Results References 

- High IgG titers found in nasosorption samples from animals that received 
two doses 
- SARS-CoV-2 specific IgA antibodies weakly detected in samples upon first 
vaccination but further increased upon second vaccination 
- Viral load in lungs significantly lower for vaccinated animals than for control 
animals 
- No SARS-CoV-2 antigen detected by immunohistochemistry in vaccinated 
animals, but viral antigen observed in pneumocytes in all control animals 

mRNA vaccine 4 µg - No adverse events observed 
- No remarkable differences noted between control and vaccinated group 
- No binding antibodies detected 14 or 28 days after first dose 
- 14 days after second dose, low levels of spike-specific binding but not 
NAbs detected in 4 of 6 vaccinated monkeys 

[25] 

Common 
marmosets 

CoviVac, β-
propiolactone-
inactivated whole virion 
vaccine 

5-6 µg in 
safety study 
and 1.5-6 µg in 
efficacy study 

- 83% developed NAbs 14 days after first dose, and 100% developed NAbs 
14 days after second dose 
- No significant decrease in NAb titers over one-year period 

[21] 
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Table 2. Advantages and disadvantages of COVID-19 animal models 
 

Animal Model Advantages Disadvantages 

Mice  COVID infection can induce pulmonary, immunological, chemical, 
and weight(-loss) changes similar to those in humans with mild 
COVID 

 Show efficacy of neutralizing antibodies (Nabs) and inactivated 
vaccines 

 Small size, established understanding of genome, and ease of 
genetic manipulation 

 Demonstrates different severities of infection based on age 
differences 

 Viral DNA was consistently seen in the mice tissue 

 Reproduce fast 

 Low affinity of mouse ACE2 for S protein, so mice 
cannot be efficiently infected with wild-type viruses 

 Risk of misplaced expression of hACE2 

 Low expression of hACE2 

 Difficult to replicate role of hACE2 in humans with 
other medical conditions like hypertension, diabetes, 
cardiac disease etc. 

 Limited availability     

Syrian 
Hamsters 

 S protein binds tightly to hamster ACE2 receptors 

 Show similar pathology as pneumonia caused by COVID in humans 
(progression of symptoms and clearance of the virus during the first 
week after inoculation) 

 Model appears to mimic gender- and age-dependent differences in 
human patients 

 susceptible to virus 

 Highly reproductive 

 Requires less space to breed 

 Anatomy and structure of the hamster lower 
respiratory tract differs from that of humans 

 No histopathological changes seen in brain, kidney, 
heart or liver in infected animals. 

 Virus is quickly cleared out of their bodies. 

New Zealand 
Rabbits 

 Docile 

 Widely bred 

 Economical 

 Frequently used to assess pharmacology/toxicology of vaccine 
antigens 

 None found in COVID literature 

Ferrets  Naturally susceptible to COVID infection 

 Infected ferrets show clinical symptoms similar to those of humans 
due to similar structure of the respiratory tract 

 High transmission between animals 

 Viral replication only in upper respiratory tract; low 
viral load in lungs 

 Relatively more expensive than other small animal 
models 
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Animal Model Advantages Disadvantages 

 Good to study asymptomatic carriers due to low viral load and 
prolonged lung infection 

Rhesus 
macaques 

 Clinical symptoms, immune responses, and pathology is similar to 
those of humans 

 Evolutionarily close to humans 

 Demonstrate different severities of infection based on age 
differences 

 Variables such as age, gender, species, and host 
immune statues need to be tested in a larger sample 
size to make a better conclusion on accuracy of 
animal model 

 Ethic restriction, high costs, low breeding efficiency, 
large size, individual variation among NHPs 

 NHP models infected with highly infective pathogens 
such as SARS-CoV-2 must be operated in isolation 

 High cost 

Cynomolgus 
macaques 

 Disease pattern similar to humans 

 Evolutionarily close to humans 

 High cost 

Common 
marmosets 

 Evolutionarily close to humans 

 Small; reproduce well in captivity 

 Somewhat resistant to COVID infection 
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closely recapitulate these human clinical 
conditions for the development of appropriate 
immunization paradigms for these high-risk 
populations. The present mRNA-based vaccines 
have proven to be very useful and provide 
protection against viral infection, but the 
immunity they induce is short lasting. There also 
exists the issue of frequent mutations in the 
virus, bringing us face to face with new variants 
of the virus every few months. In order to have a 
continued edge over the spread of the infection, 
the scientific community needs to search for new 
antigenic targets, in order to obtain more 
sustainable immunity. The road to achieving an 
effective vaccine has been a long one, filled with 
difficulties and successes, and the use of these 
animal models for vaccine research is a major 
stepping-stone in our journey of defeating COVID 
for good. 
 

2. CONCLUSIONS AND FUTURE DIREC-
TIONS 

 

Animal models have played a pivotal role in 
understanding the pathogenesis of viral infection 
and developing as well as testing the efficacy of 
novel vaccines for SARS-CoV-2. However, most 
of the studies have been carried out with the 
classical strain of SARS-CoV-2. Future studies 
using emerging variants of SARS-CoV-2 are 
needed, which may facilitate in the identification 
of new antigenic epitopes that may help in the 
mitigation of pandemic through the development 
of novel therapeutics. In addition, there is a need 
to further refine the available animal models for 
Coronavirus so that these models fully 
recapitulate the human clinical conditions 
especially in terms of lung pathology mimicking 
acute respiratory distress syndrome, 
inflammatory processes and coagulopathy. The 
availability of these novel animal models will 
pave the way to develop effective vaccines as 
well as lead to preclinical identification of 
promising interventions which can be tested in 
human subjects during clinical trials. 
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