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The effects of pulsatile pressure gradient in the presence of a transverse magnetic field on unsteady blood flow through an inclined
tapered cylindrical tube of porous medium are discussed in this article. The fractional calculus technique is used to provide a
mathematical model of blood flow with fractional derivatives. The solution of the governing equations is found using integral
transformations (Laplace and finite Hankel transforms). For the semianalytical solution, the inverse Laplace transform is found
by means of Stehfest’s and Tzou’s algorithms. The numerical calculations were performed by using Mathcad software. The flow
is significantly affected by Hartmann number, inclination angle, fractional parameter, permeability parameter, and pulsatile
pressure gradient frequency, according to the findings. It is deduced that there exists a significant difference in the velocity of

the flow at higher time when the magnitude of Reynolds number is small and large.

1. Introduction

The flow of blood into arteries is important in medical
research. Computational blood flow simulation across vessels
is one tool for integrating and interpreting clinical results.
Specific hemodynamic flows may be predicted, which helps
in disease detection. By deciding the form and design of
blood vessels, it can also aid in the development of instru-
ments that mimic or alter them. Blood movement in multi-
stenosis arteries affected by pulsatile pressure gradient is
one of the most difficult problems of fluid dynamics and bio-
physics. In the analysis that was carried out by Hatami et al.
[1], blood was considered as a third grade non-Newtonian
fluid conveying gold nanoparticles through a hollow porous
vessel, and it was revealed that increase in the magnitude
of the MHD (megnotohydrodynamics) parameter corre-
sponds to a decrease in the velocity profile. The transient
fluid dynamic equations of blood flow through stenosis
geometry considering the non-Newtonian viscosity of blood
and both magnetization and Lorentz forces was studied by

Amlimohamadi et al. [2]. They studied the real heart beating
rate, the time-dependent inlet velocity alters, and the impact
of the magnetic field on different heart cycles. In the pres-
ence of the external magnetic field, finite element simulation
has been carried out by Alimohamadi and Imani [3] to inve-
sigate the pulsatile blood flow through stenosed artery.

A simple theory that models the flow of a magnetohydro-
dynamic blood through pump can be found in Roberts [4],
Korchevskii, and Marochnik [5] while an explicit scientific
report on the influence of a magnetic field on blood flow, flow
of blood in branched arteries, blood flow with periodic body
acceleration, flow of blood in the collapsed of veins, impact of
slip velocity factor on the flow of blood in the microcircula-
tion, combined effects of curved boundary on the tempera-
ture distribution, metabolic heat production, and blood
flow has been deliberated upon by [6-11]. Tzirtzilakis [12]
investigated the mathematical model for blood flow in
the presence of the magnetic field. In consistent with the
principles of magnetohydrodynamics, ferrohydrodynamics,
and by involving the electrical conductivity, Mekheimer
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FIGURE 1: Schematic diagram of the flow geometry.

[13] discussed the influence of the uniform magnetic field on
the peristaltic blood flow model. A mathematical governing
model of blood flow in narrow and stenosis arteries under
the influence of the magnetic field is presented by Jain et al.
[14]. A numerical study of blood flow in stenosis tube due
to the magnetic field is studied by Varshney and Gaurav
[15]. Many other papers discussed blood flow models in
stenosed arteries [16-19].

The effect of the magnetic field on parameters of blood in
presence of magnetic particle through a circular tube is given
by Sharma et al. [20]. The two-phase blood flow through a
circular tube with magnetic properties has been studied by
Zafar et al. [21]. He found the comparison of the analytical
and semianalytical solutions of the classical model. The exact
solutions of the blood flow model with fractional derivatives
along with magnetic nanoparticles in the cylindrical domain
have been found by Shah et al. [22].

Flow across a porous medium has a wide range of
industrial applications. Blood flow through several stenosed
porous arteries under the influence of a transverse magnetic
field has been studied by Sinha et al. [23]. Magnetohydrody-
namic MHD blood flow through porous vessel has been
carried out by Ramamurthy and Shanker [24]. The peristaltic
non-Newtonian Maxwell fluid flow through porous tube has
been introduced by Eldesoky and Mousa [25].

In bioengineering, peristaltic blood flow in an inclined
medium is a useful model. As a result, numerous studies
of peristaltic blood flow models have been published.
Through introducing a computational investigation of
unsteady pulsatile blood flow through porous artery
medium see [26]. Some important recent contributions
to the mentioned topic are referenced in [27-30]. Gener-
ally, a fractional derivative model is obtained from the
ordinary model by interchanging the derivatives of integer
order with noninteger order.

Fractional dynamical systems demonstrate promise in the
study of fluid flow models. In architecture and manufacturing,
the fractional calculus approach has been used to obtain a use-
ful generalization of physical concepts. Many students are
interested in using fractional dynamics to solve problems in
classical dynamics. However, Riemann-Liouville and Caputo
fractional derivatives are commonly used, and this generaliza-
tion can be done by using different other fractional approa-
ches/definitions [31, 32].

Many models used fractional calculus to solve fluid flow
problems [33, 34]. In the year 2016, Shah et al. [22] used
Caputo-Fabrizio derivative to obtain the exact solutions of
pulsatile blood flow in a circular cylinder. In the study,
Laplace and Hankel transform was successfully used to fur-
ther solve the momentum and energy equation. In that study,
the influence of MHD, porous medium, and inclined surface
was ignored. Motivating by Shah et al. [28], we have obtained
the analytic and semianalytical solutions of unsteady MHD
blood flow through an inclined porous tube that has been
studied in the presence of peristaltic pressure gradient. The
analysis is made by employing Laplace transformation
method, and some valuable predictions have been carried
out from the study. For the semianalytic solution, the inverse
Laplace transform has been calculated by using numerical
package though Mathcad because the velocity expressions
of Laplace transform are in the complex form of modified
Bessel functions. Therefore, it is almost impossible to find
inverse Laplace analytically. To show the accuracy of our
obtained results of inverse Laplace transform, these results
are compared with two other inverse Laplace transform
numerical algorithms, named as Stehfest’s [35] and Tzou’s
[36] algorithms. Finally, the effect of pertinent physical
parameters is discussed in detail.

2. Formulation of the Problem

Consider an inclined tapered axisymmetric cylindrical tube
of radius R, with an unsteady pulsatile blood flow in a porous
medium.

Figure 1 shows how a fluid subjected to a uniform trans-
verse magnetic field behaves in a perpendicular direction to
the tube. The induced magnetic field as well as the external
electric field is not taken into account. The cylindrical coordi-
nate system (r,6,z) is introduced with the z-axis that lies
along the center of the artery and r transverse to it. The
unsteady magneto hydrodynamic incompressible flow of
blood through an inclined tapered artery defined by follow-
ing governing equations:

V.V =0,
_ (1)
DV

v
pE:V.T—%+]xB+pgsin[3,
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where V is the velocity vector of the fluid, p is the fluid den-
sity, D/Dt is the material time derivative, and g is the external
body force. Maxwell equations are written as

- - — - 0B
V-B=0VXxB=uy,J,VXxE=-—

3 (2)

where p, is the magnetic permeability, ] is the current den-

sity, § is the magnetic field, and E is the electric field. The
electric current density can be written by Ohm’s law as [37]

7:0<E+17><§>, (3)

where o is the electric conductivity. The electromagnetic

force Fp,,, can be expressed as

Femag=J xB:a(E+\7xE) x B=-oBw(r,t)k, (4)

where Z is the unit vector in the z direction, and \7=u(r, t)z
is the velocity of the blood along the axis of the cylindrical
tube. The governing equation of the motion for flow in cylin-
drical polar coordinates [20-22, 38] is given by

ou(r, t) B
ot

op lort,(r,t) u
oty kY

—oBju(r, t) + pg sin f3,

+

(5)
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FIGURE 3: Profiles of dimensionless velocity for « versus r at Re=3,5, Ha= 0.5, K = 1, n = 0.8, for small and large values of time ¢.

o ou(r, t) (6) The boundary conditions that must be satisfied by the
Trz(r’ ) =4 or

blood on the wall of artery are following

where the pressure gradient of the form as —dp/oz =S, + S, ou(r, t)

cos (&t), S, and S, are amplitudes of pulsatile systolic or dia- u(r, 0) =0, u(Ry, ) =0, I =0. (8)
stolic pressure gradient, and & is the frequency of the pulse. r=0

The above model becomes also that we can write

Let us introduce the following dimensionless variables:

ou(r, t) 10r7,(r,t) u r t u gt £6S t6S Ryt

—2=8,+S, cos (&) + —— "2 — Zu(r,t e = ut= gt = 20 5= 00 g s O s O

P—5; o0t o1 (&)  or 2 (1) (7) R, to Uy 9 uy 0 puy "t puy pkg
—oBju(r, t) + pg sin f.

©)
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where u,, is the characteristic velocity, and ¢, is the character-
istic time. Using the above dimensionless variables and
parameters and after dropping out the * notation in Egs.
(6), (7), and (8), we obtain

ou(r,t) 1 10r7,(r,t)
5 =S, +S; cos (&) + Rer  3r (10)
— Ku(r, t) - Ha’u(r, t) + m,
ou(r, t)
= 11
Trz(r’ t) ar 2 ( )
u(r,0)=0,u(1, ) =0, 240 g, (12)
or r=0

where Ha = B/t vo/u represents the Hartmann number,
Re = Ry?/vt, describe the Reynolds number, and m=t,g
sin f/uis the inclination parameter.

In the following, we develop a fractional model in which
the classical constitutive Egs. (9) and (11) are generalized by
using the constitutive shear stress equation

T,(r, 1) = CD;% (aué; t)) ;0<a<l, (13)

proposed by Scott-Blair [39]. The Caputo fractional deriva-
tive formula of order « is defined as [40]

t
Fll— J t_l aau(ay,‘r)d_[; O<ac<l,
Dtau()/) t) — ( 06) 0 ( T) T
du(y,t) _
ot a=l
(14)

where I" denotes the Gamma function.

Using Eq. (12) in Eq. (10), we obtain

ou(r, t)
ot

_ 1 ¢ 1-af0%u(r,t) 10u(nt)
=5, +S, cos(Et)+§ D ( 372 +; 5

— Ku(r, t) - Ha’u(r, t) + m.

(15)

3. Analytical Solution

Taking Laplace transformation of Eq. (13), we obtain

S . Sq 1
gu(r,q) =2 + 2+

4 g8 R

1o (OH(rq) | 19u(r q)
or? r or

- Kiu(r, q) — Ha*u(r, q) + %

(16)

Applying finite Hankel transform to Eq. (16) and using
initial and boundary conditions in Eq. (12), we obtain

- _h(”n) (SO+ S1q +ﬂ)
9 ¢+ q
1
g+ (r2/Re)q"* + K + Ha®’

(17)

where iy(r,,q) = Ll)it(r, q)r]o(rr,)dr is the finite Hankel
transform of function #(r,q) and r,, n=1,2 --- is the posi-
tive roots of the equation J,(x) =0, and ], being the Bessel
function of the first kind and order zero.
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Using the series formula 1/z+a= 2 0(_1)ka a5 |z here * represents the convolution product and
a| < 1,, Eq. (17) can be written as ,
p
-d

d

00 k k—a Gu Cd,t :L—l{ C},R >0,R(ac-0b)>0,|—

iy (r q):h(rn) (So + 519 +ﬁ) (-1)*(r2/Re)"¢* k. bel( 1) o —d) ) (ac=b) Iz
1 (T o \4 ¢@+& 4)(S (g+K+Ha)"

18 is the generalized G-function of Lorenzo and Hartley [41].
(18) Taking inverse Hankel transform of Eq. (19), we obtain

<1, (20)

n

Applying inverse Laplace transform to Eq. (18), we
obtain

n=1 ] (rn)
Ji(r, o
uy(r,,t) = %) (So + Sy cos (Et) + m) . =2y r]o](lr(r:)) (Sy +, cos (&t) + m) (21)
0 2\ k 19 n:(l)on ! x
* kz (-1 <1:—ne> Gy peaen (K + Ha', 1), x Y (-1)F (%) Gy kit (K + Hal, ).
=0 k=0
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4. Semianalytical Solution

Taking Laplace transformation of Eq. (13), we obtain

Sy, S 11_a<azu<r,q>+3au<nq>>

i) = st g

or? r or
- Ku(r,q) - Hazﬁ(r, q)+ %
(22)
By rearranging Eq. (22), we have

0%u(r, q)

10u(r, q)
.

5, ~A@un(na)=B(q).  (23)

where  A(g) =Re (Kg*' + Ha’q* ! + ¢*) and B(q) =-Re
((ma®Iq?) + (Soq®I19) + ($19°1 +E7))..

The solution of above nonhomogeneous second order
differential Eq. (23) by using the initial and boundary condi-
tions (12) in the transform domain is written as

By writing #(y, q) in suitable and simple form, we can
determine its inverse Laplace transform traditionally but
Eq. (24) is in a complex form of the modified Bessel function,
and it is not easy to use for some practical applications.
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TaBLE 1: Comparison of two Laplace inverse numerical algorithms with analytical solution.

r u(r, t) [Eq. (21)] ug(r, t) [Stehfest’s] ur(r, t) [Tzou’s] |u(r, t) —ug(r, t)] lu(r, t) —up(r,t)]

0 0.684151 1.099209 0.827544 0.415058 0.143394

0.1 0.802388 1.096127 0.82701 0.293739 0.024621

0.2 0.747556 1.086239 0.824787 0.338683 0.077232

0.3 0.791451 1.06753 0.818938 0.276079 0.027487

0.4 0.74445 1.036351 0.805933 0.291901 0.061483

0.5 0.787414 0.986957 0.780184 0.199542 7.230026e-3

0.6 0.734645 0.910795 0.733327 0.17615 1.318152¢-3

0.7 0.790328 0.79549 0.653183 5.161311e-3 0.137146

0.8 0.706713 0.623425 0.522325 0.083288 0.184388

0.9 0.767713 0.3698 0.316108 0.397913 0.451604

1 0 1.479346 x 1077 0 1.479346e-7 0

Moreover, the numerical Laplace method is considerd as an
effective tool in computing the fractional differential equa-
tions. Sheng et al. [42] reported that the numerical inverse
Laplace transform algorithms are efficacious and reliable
for fractional-order differential equations. Stehfest’s algo-
rithm [31] successfully used by Tong et al. [43] and Jiang
et al. [44]. Therefore, in this work, we apply the numerical
algorithm of the inverse Laplace transform method to Eq.
(24) and analyze the flow properties. Stehfest’s formula is
defined as

where m is a positive integer.
min (j,m) .m
. 2n)!
d. = (-1 o .
i=(1) i—%l] (m—=i)lil(i-1)!1(j—i)!(2i - j)!

(26)

=
™

and [r] denotes the integer value function or bracket function.
Tzou’s formula can be defined as

= o 3 e[S 7|

(27)

The numerical solutions of transformed Eq. (24) have
been obtained by using algorithms (25) and (27), and results
are presented in tables.

5. Numerical Results and Discussion

In this section, the analyses of physical parameters on the
fluid flow are presented as Figures 2-6.

In Figure 2, we present the effect of the fractional param-
eter o for different small and large values of time f. From
Figure 2(a), it is observed that for a small value of time, the
ordinary fluid velocity is maximum than fractional fluid flow.
While by increasing the value of time, the fluid flow velocity

decreases. In Figure 2(b), the influence is opposite than
Figure 2(a), for a large value of time. A further attempt was
made to quantify the effect on the velocity profile by using
the slope of linear regression through the data points as pre-
sented by Animasaun and Pop [45]. In between the artery
(-0.2<r<0.2), the optimal effect is seen when t=5.0 the
slope of regression line through the data in known
velocity and the order of Caputo fractional derivatives
is —0.3173000. When f = 5.2, a decrease in the velocity field
is also noticed, and the rate is estimated using the same
approach as —0.2705067. Due to the singular kernel of the
fractional derivative for small values and large values of the
time t, the flow has opposite influence. It is worthy to note
that the effects of fractional parameter « as reported in this
study complement that of ref. [46] in which heat transfer in
the flow of a fractional viscous fluid over an infinite vertical
plate with exponential heating using a fractional derivative
with nonsingular kernel is deliberated upon. Consecutively,
the effect of Reynolds number Re on the flow is presented
in Figure 3, for small and large values of time. It is
deduced that there exists a significant difference between
the flow when t=5,Re=3 and t=5,Re=5. At the initial
time (¢ =5), it is seen that the velocity of the flow increases
with the order of Caputo fractional derivative when Re =3
and Re = 5, see Figure 3(a). It is worth pointing out that the
maximum velocity field is obtained at larger values of Reyn-
olds number. At larger values of time, it is interesting to
reveal that a decrease in the velocity field is guaranteed, see
Figure 3(b). When Re=3, the slope of regression line
through the data in known velocity and the order of Caputo
fractional derivatives is —0.4527000. However, when Re =5,
the rate of decrease in the velocity field is quantified using
the slope of regression line as —0.7884667.

The effect of the porous parameter K is presented in
Figure 4, for small and large values of time. For a small time,
it is seen that the velocity increases due to an increase in the
magnitude of the porous parameter K. For large values of
time, interesting results found that in the medium of the cyl-
inder for fractional parameter less than 0.7 by increasing K,
the velocity increases on the other hand, and for fractional
parameter greater than 0.7 by increasing K, the velocity
decreases. Figure 5 reveals the influence of Hartman number
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TaBLE 2: Effect of noninteger order of fractional parameter on the velocity field.

o u(r, t) [Eq. (21)] ug(r, t) [Stehfest’s] ur(r, t) [Tzou’s] |u(r, t) —ug(r, t)] lu(r, t) —up(r,t)]
0 0.659024 0.986618 0.769764 0.327593 0.11074
0.1 0.74445 1.036351 0.805933 0.291901 0.061483
0.2 0.814984 1.074099 0.831608 0.259115 0.016623
0.3 0.872347 1.102689 0.849336 0.230342 0.023011
0.4 0.918044 1.124687 0.861515 0.206643 0.056529
0.5 0.953435 1.142488 0.870428 0.189053 0.083007
0.6 0.979774 1.158389 0.878262 0.178615 0.101513
0.7 0.998231 1.174669 0.887155 0.176438 0.111077
0.8 1.009872 1.19366 0.899271 0.183787 0.110601
0.9 1.01565 1.217833 0.916927 0.202184 0.098723
1 1.016406 1.249903 0.942799 0.233496 0.073608

Ha. It is observed that by increasing the value of Ha, the
velocity of the fluid is found to be an increasing function
when t = 5 and a decreasing function when ¢ = 10. Physically,
the negligible increasing effect in the velocity field can be
traced to the fact that the effects of Lorentz force have not
been fully materialized at initial time. The effect of the incli-
nation parameter # is represented in Figure 6. It is clear from
Figure 6(a) by increasing the value of # the velocity increases
by considering the small value of time . By increasing the
value of time ¢ = 10, the influence of n is much more.

In Tables 1 and 2, we make a comparison between analyt-
ical solution in Eq. (21) with numerical algorithms, named as
Stehfest’s [35] and Tzou’s [36] algorithms. It is found that the
analytical solution in Eq. (21) is in a good agreement with
Tzou’s algorithm.

6. Conclusion

The effect of a uniform magnetic field on unsteady blood flow
through a peristaltic pressure gradient in an inclined porous
tube has been investigated. The solution was discovered
using the Laplace transformation technique, and the analysis
yielded some useful predictions. For the semianalytical solu-
tion, the inverse Laplace transform has been calculated by
using numerical package though Mathcad, since the velocity
expressions of Laplace transform are in the complex form of
modified Bessel functions. Therefore, it is very difficult to
find inverse Laplace analytically. To show the accuracy of
our obtained result, the result was compared with two other
inverse Laplace transform numerical algorithms, named as
Stehfest’s [33] and Tzou’s [34] algorithms. The effects of per-
tinent physical parameters are discussed in detail. These are
some main results of the study:

(1) For small values of time, the fractional parameter « is
inversely proportional to the velocity field, and it
shows an opposite behavior for greater values of time

(2) There exists a significant difference in the velocity of
the flow at a higher time when the magnitude of
Reynolds number is small and large

(3) The effect of porous permeability and inclination is
opposite to the velocity field as compared to the mag-
netic field. By increasing these parameters, the higher
velocity field is ascertained

(4) Hartman number has dual effects on the velocity of
the flow due to the fact that the impact of Lorentz
force at the initial time is infinitesimal

(5) By comparing the analytical solution in Eq. (21) with
numerical algorithms, named as Stehfest’s and Tzou’s
algorithms, it is found that the analytical solution in
Eq. (21) is in a good agreement with Tzou’s algorithm
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