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Under investigation in this paper is the higher-order Broer-Kaup(HBK) system, which describes the bidirectional propagation of
long waves in shallow water. Via the standard truncated Painlevé expansion method, the residual symmetry of this system is
derived. By introducing an appropriate auxiliary-dependent variable, the residual symmetry is successfully localized to Lie point
symmetries. Via solving the initial value problems, the finite symmetry transformations are presented. However, the solution
which obtained from the residual symmetry is a special group invariant solutions. In order to find more general solution of
HBK system, we further generalize the residual symmetry method to the consistent tanh expansion (CTE) method and prove
that the HBK system is CTE solvable, then the resonant soliton solutions and interaction solutions among different nonlinear
excitations are obtained by the CET method.

1. Introduction

Since the Lie group theory was proposed by Sophus Lie to
study differential equation, the symmetry theory has been
widely developed to study nonlinear equation. As is known,
thanks to the classical or nonclassical Lie group method [1,
2], Lie point symmetries of a differential system can be
obtained, from which one can reduce the dimensions of par-
tial differential equations and proceed to construct group
invariant solutions by similarity reductions [3–8]. Neverthe-
less, for the integrable system, there may exist nonlocal sym-
metries which are related to inverse recursion operators [9,
10], Darboux transformation(DT) [11], Bäcklund transfor-
mation(BT) [12–15], conformal invariance [16], negative
hierarchies [17, 18], and so on. Recently, it is found that Pain-
levé analysis can also be applied to obtain nonlocal symme-
tries, and this type of nonlocal symmetries corresponds to
the residues with respect to the singular manifold of the trun-
cated Painlevé expansion, which are also called residual sym-
metries [19–23].

One knows that the nonlocal symmetries cannot be
used to construct explicit solutions to differential equa-
tions directly; naturally, we need to transform the nonlo-
cal symmetries into local ones by introducing suitable
prolonged systems. In reference [24, 25], the authors has
considered the localizations of the residual symmetries
and found related finite transformation. Furthermore, by
developing the truncated Painlevé expansion, Lou intro-
duced the definition of consistent Riccati expansion solv-
able [26], and this method is greatly valid for
constructing both possible new integrable systems and
interaction solutions between a soliton and other types
of nonlinear excitations. A consistent tanh expansion is
a special simplified form of the consistent Riccati expan-
sion defined in literature [27]. So, through the relationship
of the nonlocal symmetry and the consistent Riccati
expansion solvable or the consistent tanh expansion solv-
able, one can construct the solutions of nonlinear evolu-
tion equations. On account of this, there are a lot of
papers here to study this problem [28–32].
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This paper concentrates on investigating the following
higher-order Broer-Kaup system

ut + 4 uxx + u3 + 6uv − 3uux
� �

x
= 0,

vt + 4 vxx + 3uvx + 3u2v + 3v2
� �

x
= 0,

ð1Þ

which was first derived and studied by Lou and Hu [33]. The
system (1) can be seen as an extension of the known Broer-
Kaup system which is often used to model the bidirectional
propagation of long waves in shallow water. Some special
solutions to the system (1) were given in reference [34],
huang [35] studied the explicit N-fold Darboux transforma-
tion and multisoliton solutions to the system (1), Li et al.
[36] investigated the Painlevé analysis and new analytic solu-
tions to the system (1), and the interaction solutions to the
system (1) were derived in reference [37]. However, the
residual symmetries, the consistent tanh expansion solvable,
and interaction solutions of the higher-order Broer-Kaup
system have not yet been studied, which is the prime objec-
tive of this paper.

2. The Residual Symmetry of the Higher-Order
Broer-Kaup System and Its Localization

The higher-order Broer-Kaup system is Painlevé integrable,
and its truncated Painlevé expansion can be expressed as

u = u0 +
u1
ϕ
, v = v0 +

v1
ϕ

+
v2
ϕ2

, ð2Þ

where u0, u1, v0, v1, v2 are functions of x and t, and ϕðx, tÞ = 0
is the singular manifold equation. Substituting equation (2)
into equation (1), then, collecting the power of ϕ and making
its coefficients equal to zero, we get two systems of ϕ, and the
concert expressions are in the appendix.

Vanishing the coefficients of 1/ϕ4 in the first one of sys-
tem (1) and the coefficients of 1/ϕ5 in the second one of sys-
tem in the appendix, we have

u1 = ϕx , v2 = −ϕ2x: ð3Þ

Vanishing the coefficients of 1/ϕ3 in the first one of the
system (1) and the coefficients of 1/ϕ4 in the second system
in the appendix and using (3) leads to

v1 = ϕxx: ð4Þ

Vanishing the coefficients of 1/ϕ2 in the first one of the
system (1) and the coefficients of 1/ϕ3 in the second system
in the appendix, then, by using (3), (4) leads to

ϕt = −12ϕxu
2
0 − 12ϕxxu0 − 24ϕxv0 + 12ϕxu0,x − 4ϕxxx, v0 = u0,x,

ð5Þ

using equations (3), (4), and (5), it is not difficult to find that
the coefficient of 1/ϕ2 in the second system of appendix iden-
tically becomes zero. The coefficients of ϕ0 in appendix are

nothing but the higher-order Broer-Kaup system (1) for u
= u0, v = v0, while the coefficient of 1/ϕ in appendix is just
the symmetry equation for system (1) with the symmetry

σu0 = u1, σv0 = v1: ð6Þ

That is to say, when u0, v0 are the solutions of system (1),
u1, v1 are the solutions to the corresponding symmetry equa-
tion. From above analysis and the standard truncated Pain-
levé expansion (2), the following Bäcklund transformation
theorem and residual symmetry theorem arise.

Theorem 1. If the function ϕ satisfies equation (5), then

u = u0 +
ϕx
ϕ

= u0 + ln ϕð Þx,

v = v0 +
ϕxx
ϕ

−
ϕ2x
ϕ2

= v0 + ln ϕð Þxx,
ð7Þ

are the Bäcklund transformation between solutions fu0, v0g
and fu, vg.

Theorem 2. The higher-order Broer-Kaup system (1) has the
following residual symmetry

σu = ϕx, σv = ϕxx, ð8Þ

where u, v, and ϕ satisfy the Bäcklund transformation (7).

Proof. From the coefficients of 1/ϕ in appendix, we find that
u1 = ϕx, v1 = ϕxx is just the solution of the symmetry equation
for the system (1), where u1, v1 are just the residual of trun-
cated Painlevé expansion (2) when u = u0, v = v0 are the solu-
tion of system (1); so based on the definition of residual
symmetry, the nonlocal symmetry (8) is also called residual
symmetry.

Since u1 and v1 are nonlocal symmetries, as we all know,
the nonlocal symmetries cannot construct explicit solutions
to differential equations directly. One can naturally believe
that we need to transform the nonlocal symmetries into local
ones. To this end, we introduce new variables f and g to
eliminate the space derivatives of ϕ by

f = ϕx, g = f x , ð9Þ

then the nonlocal symmetry of the higher-order Broer-Kaup
system (1) is localized to the following Lie point symmetries

σu = f , σv = g, σϕ = −ϕ2, σf = −2ϕf , σg = −2f 2 − 2ϕg, ð10Þ

for the prolonged systems (1), (7), and (9) with the Lie point
symmetry vector

V = f ∂u − g∂v − ϕ2∂ϕ − 2ϕf ∂f − 2 f 2 + ϕg
� �

∂g: ð11Þ

To proceed, we study the finite symmetry transformation
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of Lie point symmetries (10). According to Lie’s first theo-
rem, by solving the following initial value problems,

dû εð Þ
dε

= f̂ εð Þ, û 0ð Þ = u,

dv̂ εð Þ
dε

= ĝ εð Þ, v̂ 0ð Þ = v,

d f̂ εð Þ
dε

= −2 f̂ εð Þbϕ εð Þ, f̂ 0ð Þ = f ,

dĝ εð Þ
dε

= −2f∧2 εð Þ − 2bϕ εð Þĝ εð Þ, ĝ 0ð Þ = g,

dbϕ εð Þ
dε

= −ϕ∧2 εð Þ, bϕ 0ð Þ = ϕ, ð12Þ

one can easily obtain the symmetry group transformation
theorem as follows:

Theorem 3. If fu, v, ϕ, f , gg is a solution to the prolonged sys-
tem (1), (7) ,and (9), then so fû, v̂, bϕ , f̂ , ĝg is given by

û = −
f

εϕ + 1ð Þϕ +
uϕ + f

ϕ
, bϕ =

ϕ

εϕ + 1
, f̂ =

f

εϕ + 1ð Þ2 ,

v̂ =
vϕ2 + gϕ − f 2
� �

ε2 + 2ϕv + gð Þε + v

1 + εϕð Þ2 ,

ĝ =
g

εϕ + 1ð Þ2 −
2f 2ε

εϕ + 1ð Þ3 :

ð13Þ

Remark 4. From Theorem 3, we find an interesting phenom-
enon that the residual symmetry {u1 = ϕx, v1 = ϕxx} coming
from the truncated Painlevé expansion is just the infinitesi-
mal form of the group. Actually, the above group transforma-
tion is equivalent to the truncated Painlevé expansion (2) and
(3) since the singularity manifold equations (1), (7), and (9)
are form invariant under the transformation

1 + εϕ→ ϕwith εf → ϕx, εg→ ϕxxð Þ: ð14Þ

Remark 5. For given solutions u, v of (1), through the finite
symmetry transformation (13) will arrive new solutions û, v̂
. For example, we take a simple solutions as u = 0, v = 0 for
(1), and then from equation (5), through solving an ordinary
differential equation, we get ϕ; further, by equation (9), we
get the expression of f , and the concert form of ϕ and f is
as follows:

ϕ = C1 exp
−1
2
b1/31 i

ffiffiffi
3

p
+ 1

� �
x

� �
+ C2 exp

�
� 1

2
b1/31 i

ffiffiffi
3

p
− 1

� �
x

� �
+ C3b

1/3
1 exp

ffiffiffi
3

p
x

� ��
C4 exp −4b1tð Þ,

f =
−1
2
C1b

1/3
1 i

ffiffiffi
3

p
+ 1

� ��
exp

−1
2
b1/31 i

ffiffiffi
3

p
+ 1

� �
x

� �
+
1
2
C2b

1/3
1 i

ffiffiffi
3

p
− 1

� �
x exp

1
2
b1/31 i

ffiffiffi
3

p
− 1

� �
x

� �
+ C3b

1/3
1 exp

ffiffiffi
3

p
x

� ��
C4 exp −4b1tð Þ,

ð15Þ

then, by help of equation (13), we can get a pair of new
solution û and v̂ (the concrete expressions are omitted here
since of its prolixity), where Ci, ði = 1, 2, 3, 4Þ and b1 are arbi-
trary constants.

However, the solution obtained from (13) is only a spe-
cial group invariant solutions. Next, in order to obtain more
general solutions of equation (1), we generalize the residual
symmetry method.

In reference [26], Lou start from the truncated Painlevé
expansion to propose the definition of consistent Riccati
expansion (CRE) solvable. Inspired by this reference, we con-
sider the special case of CRE-consistent Tanh expansion
(CTE), which is a more generalized but much simpler
method to find interaction solutions between solitons and
other nonlinear excitations, such as soliton-resonant solu-
tions, soliton and condial wave, and soliton and sin-cosine
wave [38–40].

3. Consistent Tanh Expansion Solvability of the
Higher-Order Broer-Kaup System

In order to derive the interaction solution of the higher-order
Broer-Kaup system (1) by the consistent tanh expansion
method, we need to discuss the consistent tanh expansion
solvability of the system (1). The first step is to make the lead-
ing analysis of the system (1), by balancing the highest order
of tanh ðwÞ, and one can obtain the following truncated tanh
function expansions

�u = �u0 + �u1 tanh wð Þ +wx,

�v = �v0 + �v1 tanh wð Þ + �v2 tanh
2 wð Þ:

ð16Þ

For convenience later, in equation (16), we substitute �u0
for �u0 +wx (see (19), (20) where �u0 equation has been
decoupled). By vanishing all the coefficients of the like pow-
ers of tanh ðwÞ after substituting (16) into (1), we obtain
eleven overdetermined equations for only six unknown func-
tions �u0, �u1, �v0, �v1, �v2, and w. Vanishing the coefficients of
tanh4ðwÞ, tanh5ðwÞ leads to

�u1 =wx , �v2 = −w2
x, and �u1 = 2wx, �v2 = −2w2

x, ð17Þ

which have to be considered as two possible case separately.
To proceed, we consider the first case.

Case 6. Principle branch. �u1 =wx, �v2 = −w2
x .

In this case, by substituting the expression
{�u1 =wx, �v2 = −w2

x} into the remained nine equations, one
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can find that the variables �u0, �v0, �v1, and w are consistent and
the concert form reading

�v1 =wxx, �v0 = �u0,x +w2
x +wxx, ð18Þ

with �u0,w satisfying the following two equations

PSTO≔wt + 4 wxx + 3w2
x + 3�u0wx

� �
x

+ 16w3
x + 12�u0wx �u0 + 2wxð Þ = 0,

ð19Þ

STO≔ �u0,t + 4 �u0,xx + 3�u0�u0,x + �u30
� �

x
= 0: ð20Þ

From (20), we found thatwx has been separated out from
�u0 so that the �u0 equation is independent w, and w equation
(19) can also be linearized because it is the potential form of
the variable coefficient STO (Sharma-Tasso-Olver) equa-
tion—that is PSTO. Then, we have the consistent tanh
expansion solvable theorem for the system (1).

Theorem 7. The higher-order Broer-Kaup system (1) is consis-
tent tanh expansion solvable with the consistent tanh expan-
sion as follows:

u = �u0 +wx 1 + tanh wð Þð Þ,

v = �u0,x +wxx 1 + tanh wð Þð Þ +w2
x 1 − tanh2 wð Þ� �

, ð21Þ

and the �u0,w satisfies equations (19) and (20).

Case 8. Auxiliary branch. �u1 = 2wx , �v2 = −2w2
x .

For this case, it is easy to find that the four variables �v1,
�v0, �u0, and w are not consistent, and the concrete forms of
�u, �v are

�u =wx 1 + 2 tanh wð Þð Þ + wxx

wx
,

�v =
w2

xx

w2
x
−
wxxx

wx
+ 2wxx tanh wð Þ + 2w2

x 1 − tanh2 wð Þ� �
,

ð22Þ

while w satisfies the following equations:

wt + 4 4w3
x − 2wxxx + 3

w2
xx

wx

� �
= 0,

4w2
x − ∂2x

� � wxxx

wx
−
3
2
w2

xx

w2
x

� �
+ 10w2

xx = 0: ð23Þ

It is not difficult to check that this case is not a consistent
tanh expansion solvable. However, it is still a useful way to
construct the special type of exact solution to the higher-
order Broer-Kaup system (1) by solving the overdetermined
equations (23).

4. Explict Solution to the Higher-Order Broer-
Kaup System

The explict solutions of nonlinear PDE play an important
role in nonlinear science and engineering, and there are
many kinds of effective methods that have been established
to construct explict solutions for nonlinear equations, such
as symmetry reductions [30, 31], bilinear method [41–43],
Darboux transformation [44], and Painlevé analysis [45],
but most of them are more difficult to find interaction solu-
tions which are an important and meaningful research topic
[46–48]. Fortunately, the above consistent tanh expansion
(CTE) method can be easily applied to investigate interaction
solutions between a soliton and any other types of nonlinear
excitations. Next, we construct the interaction solutions to
the HBK system on the basis of CTE solvable Theorem 7.

According to Theorem 7, we find that the explicit solu-
tions to HBK system can be obtained by solving the w and
u0 equation (19), (20). In order to solve the w equation
(19), if we choose any fixed solution to the STO equation
(20), we will get the solution ofw by solving the variable coef-
ficient PSTO equation (19).

Now, we first restrict the simplest solution u0 = c to equa-
tion (20) and substitute it into equation (19), which will be
simplified in the following constant coefficient PSTO equa-
tion

wt + 4 wxx + 3w2
x + 3cwx

� �
x
+ 16w3

x + 12cwx c + 2wxð Þ = 0:
ð24Þ

From equation (24), we know that w has the following
trivial solution,

w = kx + qt + z0, andq = −4 3c2k + 6ck2 + 4k3
� �

, ð25Þ

where z0 is an arbitrary constant, and the corresponding
single soliton solution to the HBK system is as follows

u = k tanh kx + qt + z0ð Þ + k + c,

v = k2 sec h2 kx + qt + z0ð Þ: ð26Þ

In order to study the properties of the solution, we plot
the structure of the solution. Figures 1(a) and 1(b) display
this kind of single soliton solution for the fields u and v.

In what follows, we are interesting in finding another
kind of solution in the form

w = kx + qt +
p
2
, ð27Þ

which reflects the interaction solution between a solition and
an STO/PSTO wave. Substituting (27) into equation (24) will
lead to

pt + 4p3x + 4
3
2
p2x + 3c1px + 3c21p + pxx

� �
x

+ 12c1p2x = 0, ð28Þ
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with c1 = c + 2k. The corresponding solution to the HBK sys-
tem (1) is as follows:

u =
1
2

2k + pxð Þ 1 + tanh wð Þð Þ + c,

v = k +
1
2
px

� �2
sec h2 wð Þ + 1

2
pxx 1 + tanh wð Þð Þ: ð29Þ

Now, employing the known solutions to (28), such as res-
onant soliton solutions and multisoliton solutions from liter-
ature [49–52], we will construct the interaction solutions
between a soliton and STO/PSTO wave.

4.1. The Resonant Multisoliton Solutions. It can be verified
that equation (28) possesses the following multiple wave
solution

p = ln 〠
i=1

n
 

ci expð kix − 4 k3i + 3kic21 + 3c1k
2
i

� �
t + zi

� �
: ð30Þ

Substituting (27) and (30) into (29), the ðn + 1Þ resonant
multisoliton solutions to the HBK system can be directly
obtained, which displays soliton fission and fusion. For exam-
ple, if we take n = 2 in (30), with parameters: fc1 = −1/2, g1
= 1/15, k1 = 1, z1 = 1, g2 = 1/12, k2 = −1/13, z2 = 2g and k > 0
, then the solution (29) shows the two solitary wave fusion. It
shows that two solitons fuse into one soliton after collide,
which reflects the inelastic collision between solitons and is
displayed in Figure 2.

And when the k < 0, the solution (29) shows the soliton
fission, which also reflects the inelastic collision between sol-
itons and is displayed in Figure 3.

If we choose n = 3 in (30), as Figure 4, we derive the three
kink solitary wave fusion with parameters: fc1 = −2/3, g1 =

2, g2 = 10, g3 = 3/5, k1 = 1:2, k2 = 5/6, k3 = 1/3, z1 = 3:8, z2 =
3/4, z3 = 3g.
4.2. Soliton Interactions with Periodic Waves

4.2.1. Soliton Interactions with Sine-Cosine Periodic Waves. It
is not difficult to verify that equation (28) possesses the fol-
lowing explicit solutions

p = ln 〠
i=1

n

ai cos ki −x + 4 3l2i − k2i + 3 c1 + lið Þ2� �
t

� �	 

exp

(
� l1x − 4t l3i + 3 li c

2
1 − k2i

� ��
− c1 k2i − 2l2i
� �� �	 



,
ð31Þ

where ai, ki, li denote arbitrary constants. Substituting the
equation (31) into (29), we can obtain soliton interactions
with sine-cosine periodic waves.

4.2.2. Soliton Interactions with Cnoidal Periodic Waves. Inter-
action solution between soliton and cnoidal periodic waves
can display many more interesting physical phenomena, and
it can be difficult to obtained by other methods. Here, we take
p as the following special Jacobian elliptic function

p = l1x + l2t + μEπ sn k1x + k2t,mð Þ, n,mð Þ, ð32Þ

l1, l2, k1, k2, μ, andm are determined later, where snðz,mÞ
is the usual Jacobian elliptic sine function and

Eπ ζ, n,mð Þ =
ðζ
0

dt

1 − nt2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2ð Þ 1 −m2t2ð Þp ð33Þ

0.8

0.7

0.6

0.5
u

0.4

−15
−10

−5
0

5
10

15 15

x t

10
5

0
−5

−10
−15

(a)

u

0
−15

−10
−5

0
5

10
15 15

0.01
0.02
0.03
0.04
0.05

x t

10
5

0
−5

−10
−15

(b)

Figure 1: Plot (a) refers to the single kink solutions of u, and (b) refers to bell solitary wave of v in equation (26), with parameters:
{c = 4/5, k = −4/17, z0 = 2}.
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Figure 2: Plot (a) and (b) to the resonant soliton solution of u and v with k > 0. (a) is a graph of u, which shows that two kink solitary waves
collide and fuse into a resonant soliton solution at t = 0. (b) is a graph of v, which shows that two bell solitary waves collide and fuse into a
resonant soliton solution at t = 0.

u

−0.6

−15
−10

−5
0

5
10

15 15

−0.4
−0.2

0
0.2
0.4

x t

10
5

0
−5

−10
−15

(a)

u

0
−15

−10
−5

0
5

10
15 15

0.1
0.2
0.3
0.4
0.5
0.6
0.7

x t

10
5

0
−5

−10
−15

(b)

Figure 3: Plot (a) and (b) to the resonant soliton solution of u and v with k < 0. (a) is the two kink solitary wave fission solution for u, and (b)
is the solitary wave fission for v.
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Figure 4: Plot (a) and (b) to the resonant soliton solution of u and v. (a) is a graph of u, which shows that three kink solitary waves collide and
fuse into a resonant soliton solution at t = 0. (b) is a graph of v, which shows that three bell solitary waves collide and fuse into a resonant
soliton solution at t = 0.
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is the third type of incomplete elliptic integral. Substituting
(32) into (28) and solving the overdetermined equations with
the help of maple will come the following result

k2 = −
1
μ

4k31μ
3 + 12c1k

2
1μ

2 + 12k21l1μ
2 + 12c21k1μ

�
+ 24c1k1l1μ + 12k1l

2
1μ + 12c21l1 + 12c1l

2
1 + 4l31 + l2

�
,
ð34Þ

with n = 0, and l1, l2, k1,m, μ are arbitrary constants.
Substituting equation (32) and (34) into (29), we can obtain
soliton interactions with cnoidal periodic waves. It is con-
cluded that the CTE solutions (29) present the interaction
solutions to multiple solitons and multiple periodic waves by
substituting (31), (32), and (34). Here, we plot the structure
of the solution, and Figures 5(a)–5(d) display the two kinds
of interactions solution for the field u.

In a word, according to equations (19) and (20), tak-
ing any solution u0 to the STO equation and the variable
coefficient PSTO system, one can get the corresponding
interaction solutions to the HBK system (1) via the theo-
rem 7.

For the non-CTE case, we can still find some special exact
solutions for the overdetermined system (23), such as the sys-
tem (23) possessing the following exact solution

w1 =
1
2
ln

s1x + s2 − 4
s1x + s2 + 4

+ s3, ð35Þ

w2 = −
1
2
ln 2 +

1
4
ln

tan
ffiffiffi
2

p
/8

� �
2x + t + 1ð Þ + 1

� �2
tan

ffiffiffi
2

p
/8

� �
2x + t + 1ð Þ + 1 − 8

ffiffiffi
2

p� �2 :
ð36Þ
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Figure 5: (a) The interaction solution between soliton and sine-cosine wave of u in equation (29) by substituting (27) and (31), with
parameters: {a1 = 1/3, a2 = 1/3, c1 = −6, k1 = 1/4, k2 = 1/4, l1 = 3/20, l2 = 3/20}. (b) The interaction solution between soliton-cnoidal wave of
u in equation (29) by substituting (27) and (32), with parameters: {μ = 50, k1 = 1/4, l1 = −1, l2 = 0:37, c1 = 2/3,m = 0:7}. (c) and (d) are the
overhead view of the wave (a) and (b).This interaction solution reflects the elastic collision.
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Substituting the expressions (35) and (36) into (22) yields
the special rational solutions to a single soliton solution,
respectively.

5. Summary and Discussion

It is summarized that the residual symmetry of the higher-
order Broer-Kaup (HBK) system is obtained from the stan-
dard truncated Painlevé expansion. For the original nonlinear
system, the residual symmetries are nonlocal. However, it can
be localized to Lie point symmetries by introducing a properly
auxiliary dependent variable, and the finite transformation of
the residual symmetry is obtained by solving the standard Lie’s
initial value problem, and the group invariant solutions of
HBK are derived. Furthermore, in order to study other types
of solutions for the HBK system, we did not employ the gen-
eral symmetry reduction method, but use the CTE method,
by discussing the consistent tanh expansion solvable of the
HBK system, we derive abundant exact solutions to the HBK
system, and these solutions reveal the interaction among soli-
tons and other types of nonlinear excitations especially the
STO/PSTO wave such as the multiple resonant solitons and
periodic waves. These kinds of solution can be easily applica-
ble to the analysis of physically interesting processes.

The method presented in this paper would be applied to
other various interesting integrable models. One can also con-
sider the relationship between residual symmetry and other
nonlocal symmetries. And more research should be done on
the CTE method and more types of the interaction solutions.

Appendix

1
ϕ

� �0
: u0t + 4u0xxx + 24u0v0x + 24u0xv0 − 12u20x

− 12u0u0xx + 12u20u0x = 0,

1
ϕ

� �1
: u1t + 4u1xxx + 24u1v0x + 24u0v1x + 24u1xv0 + 24u0xv1

− 12u1u0xx − 12u0u1xx + 24u0u0xu1 + 12u20u1x = 0,

1
ϕ

� �2
:−12u20u2ϕx − 24u0v1ϕx + 24u0ϕxu1x

+ 24u0u1u1x + 12u0u1ϕxx − 24v0u1ϕx
+ 24u0xϕxu1 + 12u0xu21 + 24u0v2x + 24u0xv2
+ 24v1xu1 + 24v1u1x − u1ϕt − 12u1xxϕx
− 12u21x − 12u1xxu1 − 12u1xϕxx − 4u1ϕxxx = 0,

1
ϕ

� �3
:−24u0u1ϕ2x − 24u0ϕxu

2
1 − 48u0v2ϕx − 48v1u1ϕx

+ 24u1xϕ2x + 48ϕxu1xx + 24u1ϕxϕxx + 12u1xu21
+ 12ϕxxu

2
1 + 24u1v2x + 24v2u1x = 0,

1
ϕ

� �4
: 2ϕ2x + 3u1ϕx + u21 + 6v2 = 0,

1
ϕ

� �0
: v0t + 4v0xxx + 12u0xv0x + 12u0v0xx + 24u0v0u0x

+ 12u20v0x + 24v0v0x = 0,

1
ϕ

� �1
: v1t + 4v1xxx + 12u1xv0x + 12u0xv1x + 12u1v0xx

+ 12u0v1xx + 24u1v0u0x + 24u0v1u0x
+ 24u0v0u1x + 12u20v1x + 24u0u1v0x
+ 24v1v0x + 24v0v1x = 0,

1
ϕ

� �2
:−12u1v0xϕx − 12u20v1ϕx + 24u0v2u0x − 24u0v1xϕx

+ 24u0v1xu1 + 24u0v1u1x − 12u0v1ϕxx
− 24v0v1ϕx + 24v0u1u1x − 12u0xv1ϕx + 24u0xv1u1
− 24u0v0u1ϕx + 12u0xv2x + 24v0xv2 − 12v1xxϕx
+ 12u1v1xx + 24v1v1x + 12v1xu1x − 12v1xϕxx
− v1ϕt − 4v1ϕxxx + 12u20v2x + 12v0xu21 + 12u0v2xx
+ 24v0v2x + v2t + 4v2xxx = 0,

1
ϕ

� �3
: 24u0v1ϕ2x − 24u20v2ϕx − 24v0u21ϕx − 48u0v2xϕx

+ 24u0u1v2x + 24u0v2u1x − 24u0v2ϕxx
− 48v0v2ϕx − 24u0xv2ϕx + 24u0xv2u1
− 36u1v1xϕx − 12v1u1xϕx + 24v1ϕxϕxx
+ 24v1u1u1x − 12u1v1ϕxx − 48u0u1v1ϕx
− 2v2ϕt + 24v1xϕ2x + 12u21v1x − 24v21ϕx
− 24v2xxϕx + 12u1v2xx + 24v1v2x
+ 12u1xv2x − 24v2xϕxx + 24v2v1x
− 8v2ϕxxx = 0

1
ϕ

� �4
: 72u0v2ϕ2x − 72u0v2u1ϕx − 24v1ϕ3x + 36v1u1ϕ2x

− 36v1u21ϕx + 72v2xϕ2x − 60v2xϕxu1
+ 12v2xu21 − 72v2v1ϕx − 24v2ϕxu1x
+ 72v2ϕxϕxx + 24v2u1u1x − 24v2u1ϕxx

+ 24v2xx = 0,
1
ϕ

� �5
: v2

+ u21 − 2u1ϕx + 2ϕ2x = 0:
ðA:1Þ
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