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The main aim of our study is to explore some relativistic configurations of compact object solution in the background of f ðRÞ
gravity, by adopting the Krori-Barua spacetime. In this regard, we establish the field equations for spherically symmetric
spacetime along with charged anisotropic matter source by assuming the specific form of the metric potentials, i.e., νðrÞ = Br2

+ C and λðrÞ = Ar2. Further, to calculate the constant values, we consider the Bardeen model as an exterior spacetime at the
surface boundary. To ensure the viability of the f ðRÞ gravity model, the physical characteristics including energy density,
pressure components, energy bonds, equilibrium condition, Herrera cracking concept, mass-radius relation, and adiabatic
index are analyzed in detail. It is observed that all the outcomes by graphical exploration and tabular figures show that the
Bardeen black hole model describes the physically realistic stellar structures.

1. Introduction

In modern cosmology, the discussion of accelerated evolu-
tion of the universe is considered as the most significant
topic. One can believe that the formation of the universe
depends upon ordinary matter, dark matter, and dark
energy [1–4]. Various astronomical observations suggested
that the key intent of this mysterious expansion of our uni-
verse is dark energy, as it preserves huge negative pressure
as compared to the pressure of dark matter. Although gen-
eral relativity (GR) provides many realistic results in explor-
ing the nature of the universe, in the case of dark energy, GR
fails to provide satisfactory outcomes. Thus, to achieve the
fruitful results, numerous modified theories have been pro-
posed and gained much popularity in the preceding decades.
These gravitational theories are formulated by modifying the
Einstein-Hilbert action and provide the natural replacement
of GR. The extensive range of these modified theories of
gravity is f ðRÞ, f ðR, TÞ, f ðGÞ, f ðR,GÞ [5–12]. However, f ðR
Þ theory of gravity is one of the most famous and realistic
alternatives to GR and gains the trust of researchers by pro-
viding the most interesting outcomes in the field of dark
energy problems. Several forms of f ðRÞ theory have already
been presented by many researchers [13–15]. This theory

has shown the significant outcomes in dealing with different
cosmological constraints, such as galactic scale, the cosmic
microwave background test, early time inflation, the late-
time cosmic evolution, phantom fields, and most impor-
tantly in the exploration of the mystery of expansion of the
universe [16–23]. It is worthwhile to mention here that sev-
eral physical aspects like Newtonian limit [24–26], the solar
system test [27–29], formulation of singularities [30], and
gravitational stability [31–33] were comprehensively
explored through f ðRÞ gravity. The f ðRÞ theory of gravity
was first introduced by Buchdahl [34]. Later on, this modifi-
cation was used to solve some cosmic acceleration and early
inflation problems [35, 36]. Moreover, Nojiri and Odintsov
[37] generalized the Einstein-Hilbert action by using the
Ricci scalar function and observed some interesting results.
Erickcek et al. [38] obtained the unique solution for the exte-
rior spacetime of the stellar structure by using the matching
constraints in the background of matter distribution. In this
regard, Kainulainen et al. [39] discussed the interior space-
time of compact objects in the Palatini formulation of the
f ðRÞ theory of gravity. Some auxiliary features in the study
of the massive compact objects have been added by the f ð
RÞ gravity modeling [40]. Moreover, some viable f ðRÞ theory
of gravity rainbow models was demonstrated by Hendi et al.
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[41]. A class of nonlinear electrodynamics ranging from
three-dimensional spacetime is also explored by the same
authors [42]. Starobinsky [43] presented a new family of f ð
RÞ theory models that represented the interesting outcomes
for the solar system laboratory testing.

In astrophysics, the gravitational collapse of stellar
objects and the formulation of new compact stars is always
considered as the most interesting topic. The gravitational
collapse appears at the point where internal pressure of the
stellar objects fails to keep up the pressure against the outer
gravitational force. The degeneracy pressure produces stabil-
ity against the collapsing of the star, and the outcomes of
collapsing of these compact stars lead to the birth of white
dwarfs, neutron stars, or black holes. These stars emerged
with apex densities because these stars were considered to
be massive objects but volumetrically smaller. However,
the exact features of these compact stars are yet to be
explored, one can believe that they are actually the massive
ones with a very small radius. All these types of objects other
than black holes are commonly categorized as degenerate
stars. To investigate the vital existence of such stellar sys-
tems, the solutions of Einstein field equations (EFE) are
mandatory. The very first solution of these EFE was deter-
mined by Schwarzschild [44]. In this regard, the realistic
and complex nontraversable models of the celestial objects
have been investigated by Tolman [45] and Oppenheimer
and Volkoff [46] in the frame of observational data. Later,
Oppenheimer and Snyder [47] demonstrated the effects of
gravitational collapse with a homogeneity-based dust sphere.
The realistic features of the compact objects show the con-
nection between the interior pressure and the force of grav-
itation that ultimately led to an equilibrium state. This
phenomenon has considerable importance in the study of
interior structure of compact objects. Further, Baade and
Zwicky [48] examined the compact stellar system and pro-
posed that the supernova might convert into a smaller stellar
structure once observing the strongly magnetized spinning
neutrons. Folomeev and Singleton [49] analyzed the spheri-
cally symmetric polytropic matter distribution for nonmini-
mal coupling and showed that the stellar system had regular,
static, and asymptotically flat behavior. Dzhunushaliev et al.
[50] explored the stability features of symmetric matter fluid
by using scalar fields. Moreover, the idea that nuclear density
of the compact object illustrates anisotropic nature at the
center of the star was first presented by Ruderman [51].

For modeling of static objects, the spherical symmetric
geometry is considered as a very natural and effective source
while there are several possibilities in the choice of matter
distribution. In the beginning, it has been assumed that the
formulation of a star’s core consists of perfect fluid which
leads to the isotropic state. However, isotropy might be a
suitable attribute, but it does not show a usual characteristic
of a stellar compact, whereas, in case of pressure anisotropic
and viscosity fluid, the anisotropy disturbs the stability of the
structure relative to local isotropic cases. Anisotropy in fluid
normally arises due to the existence of a combination of var-
ious kinds of fluids, rotation, magnetic field, viscosity, etc.
Many models of anisotropic compact stars have been intro-
duced in the literature [52–58]. The modeling of the mass-

radius relation of the neutron star was studied by Egeland
[59], and he claimed that density of the vacuum space is
the main cause of cosmological constant. Mak and Harko
[60] discussed the physical features of the strange stars and
obtained an exact solution by using spherical symmetric
matter distribution. Yet, the presence of electric charged
anisotropy enhances the equilibrium state and stability of
the celestial system [61–63]. Hossein et al. [64] described a
couple of useful characteristics of anisotropic fluid with cos-
mological constants. Rahaman et al. [65] discussed the
Chaplygin gas equation of state (EoS) and presented the
extended version of the Krori-Barua [66] model. Further,
Herrera and his collaborators [67–69] investigated the inter-
esting physical aspects of anisotropic stars in different con-
texts. Lobo [70] studied the compact stars along with a
barotropic EoS and provided the extension of Mazur-
Mottola Gravatar models by employing the matching condi-
tions between static source and Schwarzschild spacetime.
Later, Sunzu et al. [71] investigated the theory of MIT bag
EoS for quark stars and they concluded that an increase in
anisotropic parameters will gradually decrease the energy
density, due to which the EoS becomes stiffer. Later, Illyas
[72] also discussed the charged anisotropic fluid for compact
stars by considering some viable f ðGÞ gravity models. In
particular, either to demonstrate the core of the astrophysi-
cal elements or to explore different aspects of the astrophys-
ical elements, charged anisotropic fluid is always considered
as the most favourable condition.

The concept of the black hole is considered as a crucial
topic in literature. However, one can believe that there are
two different classifications of black holes, one consisting
of a horizon having a singularity inside it and the other with-
out any singularity. In general, regular black holes are those
black holes which are singularity free. The Bardeen black
hole [73] was the very first example of the regular black hole,
and this idea came to light by Bardeen in 1968. Later, the sta-
bility features of the Bardeen model were discussed by Mor-
eno and Sarbach [74]. Later, Zhou et al. [75] analyzed the
geodesic configuration of test objects in the context of the
Bardeen spacetime. Further, the Bardeen model in the frame
of GR has been studied by Shamir et al. [76] and they pro-
vided some interesting observations of a viable celestial sys-
tem in the light of charged perfect fluid. The theory about
the Bardeen model states that this model can be defined as
a gravitational collapsing magnetic monopole produced by
the certain structure of nonlinear electrodynamics and was
introduced by Ayon-Beato and Garcia [77]. Some literature
is available in the context of the Bardeen model [78–81].
In addition, the charged stellar structure along with the Bar-
deen sphere in the background of conformal motion was
explored [82]. In a recent paper [83], compact star solutions
have been discussed for the Bardeen sphere by using the
famous Karmarkar approach. Being motivated from the
above literature, here, we explore the studies of Mustafa
et al. [83] in the context of modified f ðRÞ theory by assum-
ing the charged compact structures along with the Bardeen
model.

The aim of this study is to explore some realistic stellar
charged anisotropic model in the context of f ðRÞ gravity,
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by utilizing the Krori-Barua [66] spacetime. The illustration
of metric potential confirms that the metric tensors exhibit
continuous, nonsingular, and well-behaved nature. In partic-
ular, we study the physical attributes of the compact objects
against various values of M for different ranges of R, i.e., R
= 10:10 km with M = 1:2,1:3,1:4,1:5ðMeÞ, R = 9:10 km with
M = 1:2,1:4ðMeÞ, and R = 8:10 km with M = 1:2ðMeÞ. For
this purpose, we take specific electric fields E2 = kQr [83]
and establish physically appropriate models of compact
stars.

The arrangement of our current study is as follows: in
the following portion, the field equations for the f ðRÞ gravity
have been presented for anisotropic configuration. A realis-
tic f ðRÞ theory of gravity model is also presented in the same
section. Section 3 is dedicated to the Bardeen charged model
and junction conditions. In segment IV, we explore the
physical features and graphical responses of the compact
stars. In the last segment, we summarized our work.

2. Some Basic Modified Field Equations

Firstly, we evolve the field equations of the f ðRÞ gravity. In
this regard, we assume the action of f ðRÞ theory of gravity
[10] shown as

S =
ð

f Rð Þ
2κ +Lm

� � ffiffiffiffiffiffi
−g

p
d4x: ð1Þ

Here, f is a function of Ricci scalar andLm is the matter
of the Lagrangian field. By varying the action (1) respecting
the metric potential gηζ, we develop the following f ðRÞ field
equation:

FRηζ −
1
2 f Rð Þgηζ − ∇η∇ζF + gηζ□F = −κTηζ, ð2Þ

where ∇η and □ indicate covariant derivative and D’Alem-
bertian symbol, i.e., □≡∇η∇η and F = df ðRÞ/dR: Further-
more, for the investigation of the stellar objects, we assume
the static spherically symmetric spacetime as

ds2 = −eν rð Þdt2 + eλ rð Þdr2 + r2 dθ2 + sin2θdϕ2
� �

: ð3Þ

Here, νðrÞ and λðrÞ are functions of r only. We divide
the energy-momentum tensor into two parts, i.e.,

Tηζ = Tηζ
afð Þ + Tηζ

efð Þ: ð4Þ

Anisotropic fluid is considered as the basic generaliza-
tion of isotropic perfect fluid, in which the transverse pres-
sure is not equal to radial pressure. In comparison with
isotropic fluid, anisotropic spheres are assumed to describe
more compact stellar objects like neutrons and gravastars
[84, 85]. In case of necessity, anisotropic fluid narrates the
inner structure of spherical symmetric spheres and the solid
crust of the compact stars [86]. In the field of stellar objects,
local pressure anisotropy is considered to be the most realis-
tic assumption for demonstrating the nature of matter distri-

bution [87–99]. The stress-energy tensor corresponding to
an anisotropic matter distribution, in an orthonormal basis,
is presented by the density and pressure (radial and trans-
verse) of the compact star which is correlated with the met-
ric potential functions νðrÞ and λðrÞ given in Equation (3).

Tηζ = ρ + prð Þuηuζ + ptgηζ + pr − ptð ÞXηXζ, ð5Þ

where ρ, pr , and pt designate the energy density, radial, and
transverse pressure component, respectively. Further, uη and
Xη are its timelike four velocity and a spacelike unit vectors
orthogonal to uη, respectively, which fulfill the following
correlations:

uη = e−ν rð Þ/2δη0,
Xη = e−λ rð Þ/2δη1,

uηuη = −XηXη = 1:
ð6Þ

The energy-momentum tensor for electromagnetic field
is given as

Tηζ
efð Þ = 1

4π gηηF
ημFζμ −

1
4gηηδ

η
ζFμνF

μν

� �
: ð7Þ

Moreover, Fημ is the Maxwell stress tensor and its equa-
tion can be represented as

Fημ = βμ,η − βη,μ,

Fημ ;μ = −4πJη:
ð8Þ

Here, β is the four potential and Jη is the four current
which is presented as Jη = σνη, where σ indicates as charge
density. Now, for spherically symmetric static line element,
the nonzero components of four potential are J0 and for
Maxwell tensor is F01, described as

F01 = −F10 = q
r2
e ν+λð Þ/2, ð9Þ

where

q = 16π
ðr
0
σρ2eλ/2dρ: ð10Þ

The term q denotes charge within the core of compact
objects corresponding to r. Furthermore, the expression for
electric field can be considered as E2 = kQr [83] and E2 =
F10F01, which is expressed as E2 = q2/r4: The f ðRÞ field equa-
tions for (3) are given as

8πρ + E2 = e−λF
ν″
2 + ν′

r
+
ν′ ν′ − λ′
	 


4

0
@

1
A

+ 1
2 f Rð Þ − e−λF″ − e−λF ′ λ′

2 + 2
r

 !
,

ð11Þ
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8πpr − E2 = e−λF −
ν″
2 + λ′

r
−
ν′ ν′ − λ′
	 


4

0
@

1
A

−
1
2 f Rð Þ + e−λF ′ ν′ + 2λ′

2 + 2
r

 !
,

ð12Þ

8πpt + E2 = F
1 − e−λ

r2
+ e−λ

λ′ − ν′
	 


2r

0
@

1
A

−
1
2 f Rð Þ + e−λF″ + e−λF ′ ν′ + λ′

2 + 1
r

 !
,

ð13Þ

σ = e−λ/2

4πr2 r2E
� �′, ð14Þ

here, “prime” symbolizes the r derivative. Further, the aniso-
tropic factor Δ is presented as

Δ = 8πpt − 8πpr: ð15Þ

Next, by utilizing Equations (12) and (13), the following
equation is generated:

Δ = F
1 − e−λ

r2
+ e−λ

ν″
2 −

ν′ + λ′
	 


2r +
ν′ ν′ − λ′
	 


4

0
@

1
A

2
4

3
5

+ e−λF ′′ − e−λF ′ λ′
2 + 1

r

 !
:

ð16Þ

It is worthwhile to mention here that to simplify these
Equations (11)–(14), we have considered Krori-Barua [66]
spacetime, i.e., νðrÞ = Br2 + C and λðrÞ = Ar2, where A, B,
and C are any arbitrary constants. The formulation of singu-
larities inside the compact star is believed as the key feature
in the investigation of stellar objects. The geometry of any
spacetime is actually presented by its metric potentials. For
the realistic model of the f ðRÞ theory of gravity, the metric
potentials grr and gtt should exhibit positive and regular
behavior. Thus, in our case, Figure 1 shows that these metric
potentials narrate the monotonically increasing, singularity-
free graphical illustration and attain maximum value at the
surface boundary which confirm that the model under con-
sideration reveals physically realistic behavior. Further, to
investigate the nature of the compact stars, here, we consider
a realistic model of f ðRÞ theory of gravity [100].

f Rð Þ = R − 1 − γð Þξ2 R

ξ2

� �γ

, ð17Þ

here, ξ and γ are any constant. This model (17) actually
relates f ðRÞ gravity with scalar-tensor gravity and is
employed to explore the gravitational impacts of cosmic
acceleration [100]. Faulkner et al. [100] argued that confor-

mal coupling is the significant aspect of this model (17).
Moreover, this model also showed consistent outcomes for
the Chameleon mechanism and solar system constraints
[101]. To probe the stellar object existence for (17) model,
the constant parameters selected in such a way that ρ, pr ,
and pt reveal the positive and finite nature.

3. Matching Conditions

In this section, we assume the Bardeen black hole model as
an exterior spacetime of the compact objects given by [73].

ds2 = −h rð Þdt2 + h rð Þ−1dr2 + r2 dθ2 + sin2θdϕ2
� �

, ð18Þ

where hðrÞ = 1 − 2Mr2/ðq2 + r2Þ3/2. The Bardeen model can
be derived as exact solutions of suitable nonlinear electrody-
namics coupled to gravity. The nonzero Einstein tensor in
the Bardeen black hole can be related to the energy-
momentum tensor of a nonlinear electromagnetic Lagrang-
ian [74]. Moreover, the existence of Bardeen model solutions
does not deny the singularity theorems [102]. It is notable
that the sphere asymptotically responses as

h rð Þ = 1 − 2M
r

+ 3Mq2

r3
+O

1
r5

� �
: ð19Þ

One can observe from (19) that the expression 1/r relates
with the massM of the compact star configuration, although
the term relating 1/r3 increased the importance in this dis-
cussion and became different from the usual Reissner-
Nordstrom solution [103]. Here, in our present work, we
take hðrÞ = 1 − ð2M/rÞ + ð3Mq2/r3Þ: The continuity condi-
tion for (3) and (18) at r = R takes the form

grr
+ = grr

−,
gtt

+ = gtt
−,

∂gtt
+

∂r
= ∂gtt

−

∂r
,

ð20Þ

here, “+” indicates the exterior metric and “-” identifies the
interior. Next, we utilize Equations (3), (18), and (20) and
obtain the values of A, B, and C, defined as

A = 1
R2 ln R

R − 2M + 3MR2E2

� �
,

B = 2M + 3MR2E2

2R2 R − 2M + 3MR2E2� � ,

C = ln R − 2M + 3MR2E2

ReBR2

� �
:

ð21Þ

Further, we determine the mathematical values of the
parameters by assigning specific values to the free parame-
ters R, M, and ξ and fixing some parameters, such that γ =
2,k = 0:000001, and Q = 0:00001, as represented in Table 1.
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Further, here, we mention the mandatory requirements,
which have to be fulfilled for the well-behaved nature of the
stellar system.

(i) The grr and gtt should be singularity free. Also, the
anisotropic matter configuration must fulfill
eλðr=0Þ = 1 and eνðr=0Þ = constant

(ii) ρ,pr , and pt must be positive and maximum at the
center of the star

(iii) The gradient of ρ,pr , and pt should be negative
inside the limit 0 ≤ r ≤ R

(iv) The obtained solution must fulfill the energy bonds
NEC, WEC, SEC, and DEC

(v) The condition of EoSmust satisfy, i.e., 0 <wr ,wt < 1
(vi) The velocity sounds must lie within ½0, 1�, i.e., 0

< vr
2, vt2 < 1

(vii) Redshift function must show monotonic decreas-
ing behavior while mass and compactness should
narrate monotonic increasing illustration

(viii) Adiabatic index for anisotropic matter configura-
tion must be greater than 4/3

4. Physical Attributes of the Stellar Structure

Here, in this section, we will examine the graphical
responses of the considered compact objects in the frame-
work of the f ðRÞ gravity model. For this, we will perform
different physical tests such as energy density, pressure
components, energy conditions, equilibrium constraints,
causality condition, mass function, and redshift. All these
attributes play a valuable role in illustrating the nature of
compact stars.

4.1. Energy Density and Pressure Progression. Here, we
explore the graphical responses of the density, redial pres-
sure, and transverse pressure in the light of the f ðRÞ gravity
model. It is clearly shown from Figure 2 that all these plots
illustrate positive and singularity-free nature. Also, these
plots attain the highest values at the center and touch the
surface at the boundary which shows that these plots exhibit
satisfactory behavior. We also discuss the graphical illustra-
tion of gradients of ρ,pr , and pt , and their plots are shown
in Figure 3.
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Figure 1: Variation of grr (a) and gtt (b).

Table 1: Constant values of ξ, A, B, and C for considered compact
stars.

(a)

M M⨀

� � R = 8:10 km [82]
ξ A B C

1.2 0.05 0.008822 0.0059742 -0.970785

(b)

M M⨀

� � R = 9:10 km [82]
ξ A B C

1.2 0.043 0.005992 0.003879 -0.817404

1.4 0.044 0.007359 0.005068 -1.02913

(c)

M M⨀

� � R = 10:10 km [82]
ξ A B C

1.2 0.035 0.0042596 0.002667 -0.706625

1.3 0.036 0.004715 0.003027 -0.789717

1.4 0.037 0.005192 0.003422 -0.878726

1.5 0.038 0.005693 0.003859 -0.974462
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The gradient of ρ,pr , and pt presented negative behavior,
which can be seen from Figure 3. These aspects indicate the
apex compactness behavior of the compact stars.

4.2. Charge Density and Electric Field. Further, we examined
the graphical response impact of q, σ, and E2. In Figure 4,
the plot of electric charge shows increasing responses,
whereas the nature of charge density is decreasing. One
can easily observe that σ attains its highest value at center.

Moreover, the electric field illustrates that its graph vanishes
when r = 0 and then increases in a positive direction.

4.3. Anisotropy Evolution. In this segment, we investigate the
graphical responses of anisotropy parameter Δ, given in
Equation (15) [104], since the repulsive nature of Δ validates
the existence of compact objects. It can be notable from
Figure 5 that for a considered f ðRÞ gravity model, anisotropy
parameter exhibits repulsive nature as Δ > 0. This implies
that our system is well-behaved and stable.

r (km)

10

r (km)

0 2 4 86

0.0045

100 2 4 8610

r (km)

0 2 4 86

𝜌
 (M

eV
/fm

3 )

R = 8.10, M = 1.2. 
R = 9.10, M = 1.2. 
R = 9.10, M = 1.4. 

R = 10.10, M = 1.2. 

0.0040
0.0035
0.0030

0.004
0.003
0.002

0.014
0.012
0.010 0.0025

0.0020
0.0015
0.0010p

t (
M

eV
/fm

3 )

0.001
0.000p

r (
M

eV
/fm

3 )

0.008
0.006

. 

. 
. 

R = 10.10, M = 1.3
R = 10.10, M = 1.4

R = 10.10, M = 1.5. 
. 

. 

Figure 2: Evolution of ρ, pr , and pt .
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Figure 3: Variation of dρ/dr,dpr/dr, and dpt/dr.
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4.4. Energy Conditions. To verify the existence of the com-
pact objects, energy constraints’ role is very crucial. The
famous energy constraints [105] are categories as follows:
null energy (NEC), weak energy (WEC), strong energy
(SEC), and dominant energy conditions (DEC), and
defined as

(i) NEC: ρ + E2 ≥ 0
(ii) WEC: ρ + pr ≥ 0, ρ + pt + E2 ≥ 0

(iii) SEC: ρ + pr + 2pt + E2 ≥ 0

(iv) DEC: ρ − pr + E2 ≥ 0, ρ − pt ≥ 0

It has been observed from Figure 6 that all energy bonds
showed well-fitted nature for the considered f ðRÞ gravity
model.

4.5. Equilibrium Constraint. Further, we examine the equi-
librium state of the f ðRÞ gravity model for the succeeding
forces: gravitational force, hydrostatics force, anisotropic
force, and electric force. For this purpose, we explore the
Tolman-Oppenheimer-Volkoff equation [45, 46] along elec-
tric charge, given as

MG rð Þ ρ + prð Þ
r

e λ−νð Þ/2 + dpr
dr

−
2
r
pt − prð Þ

− σ rð ÞE rð Þeλ rð Þ/2 = 0:
ð22Þ

The effective gravitational mass MGðrÞ represented by

MG rð Þ = 1
2 ν

′re ν−λð Þ/2: ð23Þ

By replacing MGðrÞ in Equation (22), we get

ν′
2 ρ + prð Þ + dpr

dr
−
2
r
pt − prð Þ − σ rð ÞE rð Þeλ rð Þ/2 = 0, ð24Þ

where Fg = −ν′/2ðρ + prÞ,Fh = −dpr/dr,Fa = , andFe = σ

ðrÞEðrÞeλðrÞ/2: Here, Fg symbolizes as gravitational force,
Fh indicates hydrostatic force, Fa defines as anisotropic
force, and Fe identifies as electric force. For a realistic
model of f ðRÞ gravity, the joint sum of the above-
mentioned four forces should be exactly equal to zero.
This implies that for an equilibrium system, all these
forces cancel out the effect of each other and maintain
the balancing state, i.e.,

Fg +Fh +Fa +F e = 0: ð25Þ

From Figure 7, it can be clearly noticed that all forces
are satisfied by the necessary constraints of equilibrium.

4.6. Equation of State. Next, we determine the EoS for the r
component and t component. The two ratios of EoS are
mentioned as

wr =
pr
ρ
,

wt =
pt
ρ
:

ð26Þ

In the graphical illustration shown in Figure 8, it can be
noticed that 0 <wr andwt < 1: This implies that our system
exhibits well-behaved nature.

4.7. Stability Condition. The velocity sound for r component
and t component is denoted by vr

2 and vt
2 and is defined as

vr
2 = dpr

dρ
,

vt
2 = dpt

dρ
:

ð27Þ

To prove the physical stability of the considered f ðRÞ
model, we employ the Herrera technique [87] presented as
0 ≤ v2r and v2t ≤ 1. In this regard, we discussed one more wor-
thy approach presented by Abreu et al. [106] to investigate
the potentially unstable (stable) configuration of the stellar
objects. It is important to mention that potentially unstable
(stable) realms within the compact structure are managed
by the modification of sound propagation. The anisotropic
realm is considered as potentially stable where −1 ≤ vt

2 −
vr

2 ≤ 0: This means that the horizon in which the transverse
speed component is less than the radial speed sound compo-
nent is recognized as potentially stable otherwise not. It is
worthy to highlight here that the considered f ðRÞ model is
entirely stable as shown in Figure 9.

0

0.0005

0.0010

0.0015

0.0000

2 4 8 106

r (km)

Δ

R = 10.10, M = 1.3. 
R = 10.10, M = 1.4. 

. R = 10.10, M = 1.5. 

R = 8.10, M = 1.2. 
R = 9.10, M = 1.2. 
R = 9.10, M = 1.4. 

R = 10.10, M = 1.2. 
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4.8. Mass, Compactness, and Redshift Evolution. For the exis-
tence of a realistic and viable model, its mass function
denoted by MðrÞ, compactness factor symbolizes by UðrÞ,
and the redshift function identifies as ZðrÞ are considered
as the necessary constraints in the analysis of a stellar sys-
tem. Generally, one can believe that objects having aniso-
tropic fluid should not be arbitrarily massive for a viable
modified theory model. In the frame of isotropic fluid, the
concept of maximum permissible mass-radius ratio, i.e., 2
M/R < 8/9, was studied by Buchdahl [107]. Later, Mak and

Harko [108] generalized the concept of Buchdahl and
argued that this mass-radius ratio holds for isotropic as well
as anisotropic fluid. Hence, the mass function for aniso-
tropic fluid is given by

M rð Þ = 4π
ðR
0
r2ρdr = R

2 1 − e−λ
	 


: ð28Þ

This response of MðrÞ implies that MðrÞ is regular and
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attains maximum values at the boundary. Further, we
explore the compactness factor which is presented as a
mass-radius ratio [108] and is defined as

U rð Þ = 2M rð Þ
r

=
2e−2Ar2 −1 + eAr

2
	 


−1 + eAr
2 − 3Br2 − B2r4 + Ar2 2 + Br2

� �	 

r3

:

ð29Þ

Next, the redshift ZðrÞ is given as [104]

Z rð Þ = e−ν/2 − 1 = −1 + e− C/2ð Þ− Br2/2ð Þ: ð30Þ

From Figure 10, it is notable that the graphs ofMðrÞ and
UðrÞ illustrate the monotonically increasing nature, whereas
the behavior of ZðrÞ is decreasing.
4.9. Adiabatic Index. Adiabatic index plays one of the most
important roles in the stability of the stars. In general, it
expresses the stiffness of EoS for energy density and catego-
rizes the relativistic and nonrelativistic celestial objects
according to their stability condition. The concept of the
dynamical stability against infinitesimal radial adiabatic per-
turbation of the celestial structures was proposed by Chan-
drasekhar [109]. Later, his idea became much popular
among cosmologists and can be tested for both isotropic
and anisotropic fluid [110–115]. For a physically acceptable
stellar model, the value of adiabatic index should be greater
than 4/3. Moreover, the formula of the adiabatic index for
r component and t component is shown as

γr =
ρ + pr
pr

dpr
dρ

� �
= ρ + pr

pr
vr

2,

γt =
ρ + pt
pt

dpt
dρ

� �
= ρ + pt

pt
vt

2:

ð31Þ

Hence, from Figure 11, it is clear that this condition is
fulfilled at each point of our stellar system.

5. Conclusion

Here, we investigate the existence of stellar structure by con-
sidering the charged static spherical symmetric spacetime
along with the Bardeen sphere in the background of a viable
model for the f ðRÞ theory of gravity. For this purpose, we
assume the metric potentials by adopting the Krori-Barua
[66] model, i.e., νðrÞ = Br2 + C and λðrÞ = Ar2, where A, B,
and C are any constant parameters. Moreover, in order to
determine the values of these constant parameters, we relate
the interior geometry with the exterior Bardeen sphere [73].
To validate the existence of our system, we evaluate different
mandatory features related to the celestial structure. To do
so, we discuss the graphical behavior of various figures of
M for different values of R, i.e., R = 10:10 km with M =
1:2,1:3,1:4,1:5ðM⊙Þ, R = 9:10 km with M = 1:2,1:4ðM⊙Þ,
and R = 8:10 km with M = 1:2ðM⊙Þ.

The main goal of our investigation is to generate a new
realistic family of f ðRÞ theory of gravity solutions in the
presence of charge anisotropic fluid. The significant out-
comes are enlisted beneath.

(i) Metric potentials are generally used to narrate the
nature of spacetime. It can be easily seen from
Figure 1 that the graphs of the metric potentials
grr = eλ and gtt = eν are positive, singularity free,
and fulfill the necessity, i.e., eλðr=0Þ = 1 and eνðr=0Þ

= eC . It is noticed that grr and gtt attain the max-
imum values and show monotonically increasing
behavior, which indicates that the chosen system
exhibits a justifiable behavior

(ii) The variation of density and pressure compo-
nents corresponding to radial coordinate r for
the considered model is positive and regular
inside the sphere. From Figure 2, it is observed
that the graphs of ρ,pr , and pt attain maximum
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value at the center and decreasing downward,
which confirms that the considered f ðRÞ gravity
model is well-behaved in nature. Also, the
graphical representation of gradients of ρ,pr ,
and pt , shown in Figure 3, yields satisfactory
outcomes

(iii) Next, discussion is based on the graphs of q, σ, and
E2. One can clearly see in Figure 4 that the graph-
ical response of E2 is maximum at r = R, while on
the other hand, σ demonstrates the decreasing
behavior. Moreover, the plot of charge q shows
positive behavior and remained consistent for the
entire system. Further, Figure 5 clarifies that Δ
reveals consistently positive nature for the consid-
ered f ðRÞ gravity model. Thus, the repulsive nature
of anisotropy confirms the physically acceptable
behavior of the chosen stars

(iv) Figure 6 shows that all the energy constraints are
fulfilled

(v) Figure 7 represents the balancing behavior of (Fg),
(Fh), (Fa), and (F e) forces for our proposed via-
ble f ðRÞ gravity model

(vi) For the well-behaved nature of the compact
objects, the graphical response of EoS must fulfill
the condition 0 <wr andwt < 1: The correspond-
ing plots given in Figure 8 show the consistent
behavior of our proposed model of the f ðRÞ
gravity

(vii) For stellar objects, the values of velocity of sounds
v2r for r and v2t for t should be furnished within
limits of ½0, 1�: It is clear from Figure 11 that the
causality constraints exhibit satisfactory nature
for considered stellar structure. Furthermore, the
Abreu approach outcomes are also consistent for
the considered f ðRÞ gravity model

(viii) It has been noted from Figure 9 that the plots of
MðrÞ and UðrÞ exhibit monotonically increasing
nature while the plot of ZðrÞ is monotonically
decreasing; this implies that we establish a stable
system

(ix) The radial and transverse adiabatic index values
denoted by γr and γt for the chosen model are
greater than 4/3, as shown in Figure 10, which con-
firms the stability of our system

Thus, our presented work satisfied all those results pro-
posed by Mustafa et al. [83] under the frame of GR. This
confirms that our considered f ðRÞ gravity model is entirely
stable and physically acceptable.

Data Availability
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