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The need for increased maritime security has prompted research focus on intent
recognition solutions for the naval domain. We consider the problem of early
classification of the hostile behavior of agents in a dynamic maritime domain and
propose our solution using multinomial hidden Markov models (HMMs). Our
contribution stems from a novel encoding of observable symbols as the rate of change
(instead of static values) for parameters relevant to the task, which enables the early
classification of hostile behaviors, well before the behavior has been finalized. We discuss
our implementation of a one-versus-all intent classifier using multinomial HMMs and
present the performance of our system for three types of hostile behaviors (ram, herd,
block) and a benign behavior.
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1 INTRODUCTION

The ability to understand the intention of others is of great importance for many application
domains, either to enhance collaboration among members of a team, or to detect potential threats
posed by enemy agents. Recently, there has been an increased interest in using artificial intelligence
technologies for security and defense applications, in order to reduce the danger for the people
involved. However, the current systems deployed by the US Army (e.g., Hermes) and the US Air
Force (e.g., MDARS Shoop et al. (2006)) rely heavily on input from a human operator who assesses
the situation and takes a decision. Given the threat of attacks on large ships performed by swarms of
small boats, whose occurrence has increased in recent years, there is a great need of systems that can
detect potentially threatening situations at sea. In addition, due to the numerous activities that the
crew is required to perform on board the ship, and in areas of high boat traffic (such as harbors),
there is a high chance that some threatening activities would go unnoticed. As a result, an automated
system for understanding the intentions of surrounding boat traffic would be of high importance.

Intent recognition is a classification task with the goal of identifying what other agents aim to do,
from their current actions up to the current moment of time. Intent recognition bears similarity to
activity/goal recognition in that it uses time series data to classify the actions of an agent or agents.
Unlike activity recognition, which seeks to identify actions that have already been completed, intent
recognition has to address the challenge of identifying the intentions of agents while their actions are
still unfolding and before their goals have been completed. In issues of security, this distinction is
important as intent recognition allows sufficient time to react to the intentions of other agents. The
information gathered from intent recognition can then be used in artificial intelligence applications
to understand environments and plan future actions. In goal recognition, activities are modeled as
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sequences of actions that lead to goals. In contrast to intent
recognition, this method allows for detecting a goal only after it
has been achieved, which does not permit early detection of
potentially threatening situations.

A second challenge that needs to be addressed in this context is
the fact that the patterns for hostile behaviors do not have a fixed-
length representation. Furthermore, transitions between such
behaviors may happen at any time in a continuous stream of
observations. To properly identify such behaviors in the ongoing
stream of observations, the system must be able to quickly detect
when such transitions occur, while at the same time it should
identify the signature of the corresponding behavior. The solution
we propose is to employ a sliding window of observations that is
being used for behavior prediction, which allows the detection of
transition from a behavior pattern to another.

Hidden Markov Models (HMMs) have typically been used for
activity modeling and recognition. They consist of a set of states,
with transitional probabilities between them. The states
themselves are not directly observable and only a set of visible
symbols can be detected. We propose to model the interactions
between agents in the world using a novel formulation of Hidden
Markov Models, adapted to suit our needs. The distinguishing
feature in our HMMs is that they model not only transitions
between discrete states, but also the way in which parameters
relevant to an activity (e.g., relative positions, headings of two
boats) change during its performance. This novel formulation of
the HMM representation allows for recognition of the agents’
intent well before the underlying actions are finalized. In this
work we focus on detecting three different hostile behaviors: ram,
herd and block, as well as on the ability to infer a benign
navigation pattern. The three hostile behaviors have been
chosen due to their relevance to the naval domain, which we
have acquired from subject matter experts in the Naval domain.

2 MATERIALS AND METHODS

2.1 Related Work
The problem of understanding human activities has mostly been
addressed from the perspective of activity or plan recognition,
with Bayesian inference and probabilistic context free grammars
as the most frequently used techniques. While these methods
have proven successful in numerous applications, most often the
focus is on recognizing activities after they have been performed.
In addition, the complexity of the inference may become
impractical for large problems and real-time applications.

In the realm of Bayesian inference, Charniak and Goldman
Charniak and Goldman (1993) propose plan recognition
Bayesian networks to encode relationships among events, and
use standard Bayesian inference techniques to compute posterior
probability distributions over potential plans. These methods rely
on a probability distribution over a set of observed events. For
practical real-world applications the number of observations can
grow significantly, making inference impractical. Dynamic
Bayesian Networks provide a more compact representation of
the past observations, improving the efficiency of the inference
process Neapolitan (2003). However, for many practical plan

recognition domains, the size of the representations can lead to
intractable inference. Methods for approximate inference can be
used in particular domains Lesh and Allen (1999), but still do not
achieve real-time performance.

Given the hierarchical structure of human activities, which is
very similar to that of sentences in a natural language,
probabilistic context free grammars (PCFGs) Manning and
Scutze (2003) have been successfully used in interpreting
activities in video sequences Brand (1997), Ivanov and Bobick
(2000), Moore and Essa (2002), Minnen et al. (2003). However,
PCFGs are limited in the types of queries they can answer and
typically require that the entire observation sequence be available
before inference can be performed. A solution to this problem has
been proposed by Pynadath and Wellmann Pynadath and
Wellman (1996), who provide a method for constructing a
Bayesian network that represents the parse trees given by a
PCFG. An application of this method Kitani et al. (2005)
demonstrates the ability to recognize temporally overlapped
activities by constructing a dynamic Bayesian network
representation of a PCFG. The method has been applied off-
line, on a set of existing videos, which is unsuitable for real-world
applications, where inference should be performed in real-time
and the observations only become available at run time. Pynadath
and Wellman introduce probabilistic state-dependent grammars
(PSDG) Pynadath and Wellman (2000) to incorporate an agent’s
internal and external state as contextual information. The
grammars exploit particular independence properties of the
PSDG language for efficient answering of plan-recognition
queries in applications of traffic monitoring and air combat.

Specific applications of Markov processes for intent
recognition is present in Sartea and Farinelli (2018), where
Markov chains are used for detecting intelligent agent
behaviors. The application is focused on categorizing malware
behaviors, but it utilizes Markov chains for early identification of
specific behaviors. Hidden Markov models have also been used
with success for American Sign Language recognition Vogler and
Metaxas (1999), Starner and Pentland (1997), speech emotion
recognition Schuller et al. (2003), skill learning Yang et al. (1994),
bioinformatics Yoon (2009), human identification Cheng et al.
(2008), and action recognition Afsar et al. (2015). Quintero et al.
(2017) presents an application of hidden Markov models for
intent recognition in road transportation and discusses the
benefit of early recognition of pedestrian intentions. Hidden
Markov models are used here to model distinct pedestrian
behaviors in a 3D environment.

For maritime domains, existing research is limited thus far to
mitigating maritime piracy. In Jakob et al. (2012), a multiagent
system simulation is implemented to model the activities of pirate
vessels. In this research, the authors focus on the set of
countermeasures available rather than early classification of
the intent behaviors of vessels. Additionally, the focus on
piracy makes an assumption that hostile maritime behaviors
are limited to smaller vessels.

In this work we propose an approach based on Hidden
Markov Models that enables early recognition and handles
continuous data streams for the detection of threatening
behaviors on a maritime domain.
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2.2 Naval Domain Background
In the case of maritime intent recognition between multiple
agents, the behaviors being observed can be classified as
hostile and non-hostile. In hostile behavior, one agent is
exhibiting some aggressive behavior towards another. Here,
our agents are considered to be large ships (own ship) and
smaller boats (outside agent). The specific hostile behaviors
considered include BLOCK, HERD, and RAM as exhibited by
outside agents in the following scenarios:

• BLOCK: An outside agent seeks to block the own ship from
a destination by intersecting its trajectory.

• HERD: An outside agent seeks to herd the own ship toward
a desired destination by approaching and maintaining a
short distance at a specific angle.

• RAM: An outside agent seeks to ram the own ship by
approaching very quickly from an orthogonal direction.

In the discussed explanations of the three hostile behaviors, it
is clear that much of the relevant information includes velocity,
acceleration, and heading in order to gain an understanding of an
agent’s trajectory and therefore their intent.

2.3 Hidden Markov Models
The HMM is a probabilistic model built on the classic Markov
chain, specifically a discrete-time Markov chain. A Markov chain
consists of a finite set of discrete states si. At each step, time step
the system can be in any of these states and can transition to
another state with probability P (sj (t + 1)|si(t)) � aij, with aij being
the transition probability of being in state sj at time t + 1, given
that the system was in state si at time t. This model is often and
easily abstracted as a directed graph where the set of vertices
represent the model’s state-space and the edges are weighted
according to the transition probabilities between each state.

In contrast to classic Markov chains, in which each the states
correspond to observable events, in HMMs the state of the system
at time t is not directly observable, thus called “hidden”. Instead, a
set of visible variables (states) vi, which are a probabilistic
function of the hidden states is available. For each state sj, we
thus have a probability of observing a particular visible state vk,
given by P (vk(t)|sj(t)) � bjk, with bjk denoting the emission
probability of an observable. The structure of the HMM,
which includes the hidden states si and the set of visible states
vi, is assumed to be given, together with a training data set of
observations (corresponding to the visible states).

Gaussian distributions and Gaussian mixture models are
commonly used to model emission probabilities for
continuous variables, while multinomial distributions are used
for discrete observations. An HMM’s transition and emission
probabilities are estimated using the Baum-Welch algorithm
Rabiner (1989). Two questions can then be answered about an
unseen ordered sequence of observations. First, what is the most
likely series of states that generated these observations under the
given model? Second, and more useful for our application: how
likely is the given model to have generated this new sequence of
observations? The likelihood calculated by answering the latter
question with the Forward-Backward algorithm Rabiner (1989) is
used for our intent classification.

The main contribution of our approach consists in choosing a
different method for constructing the model. This new HMM
formulation models an agent’s interaction with the world through
the way in which parameters relevant to the task are changing
(e.g., increase, decrease, stay constant, or unknown). This is in
contrast with the traditional approaches that solely model
transitions between static states. With this representation, the
visible states encode the changes in relevant task parameters. The
observable symbols alphabet for our system consists of all
possible combinations of changes that can occur on these
parameters, as described in Section 2.6.

We used the hmmlearn Python module to train and classify
intentions with our HMMs.Hmmlearn is an open source module
that implements three types of HMMs with an API similar to
scikit-learn HMMLEARN (2018). The models implemented in
hmmlearn consist of the Gaussian, Gaussian mixed-model, and
multinomial HMMs, where the names refer to the type of
probabilistic distributions that can be used for the emission
probabilities. Due to the nature and variety in our features, we
used a multinomial HMM and developed the feature pipeline
described below.

2.4 General Approach
The proposed approach for early detection of behaviors in the
naval domain consists of a training and a classification stage.

The training stage consists of the following successive steps: 1)
data collection (Section 2.5), which provides multiple samples for
each of the four behaviors (3 hostile, 1 benign), 2) feature
engineering (Section 2.6), which provides the sequence of
observable symbols computed from the raw data, and 3)
model training, which uses the Baum-Welch algorithm Rabiner
(1989) in hmmlearn to estimate model parameters (transition and
emission probabilities) for each of the four behaviors. For

FIGURE 1 | A depiction of the starting points of the potentially-hostile
ship in each of the four quadrants.
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training, we initialized both transition and emission probabilities
with uniform distributions.

For classification, a subset of the data samples reserved for
validation are processed through the following steps: 1) features
are extracted from raw data similar to training, 2) a sliding
window of frames is selected for classification (Section 2.7)
after filtering possible missing mover frames (Section 2.8),
then 3) classification is performed as follows: for each frame
for which a classification will be attempted, the sliding window of
observations is used as input for all of the HMMs. Using the
Forward-Backward algorithm Rabiner (1989) we return a
probability that the emissions were generated by a mover with
the associated intent. The classification returned by the system is
the intent associated with the HMM that returned the highest
probability.

The following sections describe these stages in more detail.

2.5 Data Collection
The data used in this research was generated using simulation
environments from the NASA Jet Propulsion Laboratory. The
simulations considered the ocean as a two dimensional domain.
The defending vessel began each scenario at the Cartesian
coordinate (0, 0) and in each scenario it was tasked to reach a
pre-specified goal. For each version of the scenario, the
simulation began the potentially hostile vessel at unique
coordinates in each of the four quadrants, and under the
control of a specific controller for the four behaviors tested. A
representation of the beginning locations of each vessel is shown
in Figure 1. The uniqueness of scenarios at each starting position
causes the hostile vessel to make slightly different movements in
order to get into the correct position for the scenario’s hostile
behavior, providing a comprehensive representation of each
behavior.

It is important to note that during the scenario the defending
vessel is using a controller for goal seeking, while following the
International Regulations for Preventing Collisions at Sea
(COLREGs), implemented as control rules in the simulator
Kuwata et al. (2014). This means that the vessel may take evasive
maneuvers in case the hostile boat interferes with its navigation. This
has an impact both on the training and the testing phase. First,
training data cannot be assumed to contain observations that pertain
to a unique behavior, which affects the models. Second, testing data
may contain scenario fragments that are not necessarily indicative of
the main behavior, which impacts classification.

The controllers for the hostile vessel are implemented as state
machines that allow transitions and maneuvers in response to the
defending vessel, as follows. The HERD controller transitions
between three states: 1) get in position (maneuver around the
defending vessel to get to its side), 2) herd (slowly decrease
distance between mover and target) and 3) match (mimic the
target vessel’s behavior in speed/heading). The BLOCK controller
transitions between: 1) get in position (maneuver around target
vessel to get in front) and 2) block (decrease speed and distance in
front of target vessel). The controller transitions back to get in
position if the target vessel takes avoidance maneuvers. The RAM

controller travels at maximum speed toward the target vessel,
aiming to minimize the time and distance to a collision, while
continuously adapting to the defending vessel’s avoidance
maneuvers. For the BENIGN scenarios the vessel pursues a
non-threatening, non-intersecting path with the defending vessel.

Given the scenarios conducted using the varying starting
positions, the simulation then collected 1,000 frames of data
for each scenario. In BLOCK and RAM behaviors, this number of
data frames allows for the behavior to be executed multiple times.
In HERD behaviors, this allows the behavior to be completely
executed, including the early behavior as well as the final behavior
where the hostile vessel has accomplished the goal and
subsequently moves alongside the defending vessel for the
remaining frames. Visualizations of each behavior is shown in
the third column of Table 1. The information collected in each
frame is detailed in Section 2.6.

2.6 Feature Engineering
The features that our pipeline takes as input are continuous
values. They consist of the following:

• Closest point of approach (CPA) distance and CPA time are
the distance and time of travel that would minimize the
distance between our vessel and the other vessel, assuming
both vessels continue in a straight line and at a constant
velocity.

• Cartesian coordinates of the defending and hostile vessels in
a two-dimensional plane (own_x, own_y, and other_x,
other_y, respectively).

• The velocity of each vessel in the direction of each axis
(own_vx, own_vy, other_vx, other_vy).

• The heading of each vessel relative to the horizontal axis
(own_theta, other_theta).

FIGURE 2 | Surface plot showing the accuracy of the system given a set
of options for sliding window length and number of states.
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• The number of other vessels observed, n. All variables
labelled other are retrieved for n vessels, including CPA
distance and CPA time.

These features are received from a publisher-subscriber
messaging queue along with additional information that we do
not use, such as the length and width of the other vessel and the
maximum speed of our vessel. The fields own_vx, own_vy,
other_vx and other_vy from the current and previous frames
are used to calculate the acceleration of all vessels in the direction
of both axes, own_ax, own_ay, other_ax, and other_ax. The
change in heading for each vessel, own_dtheta and

other_dtheta are also calculated using the current and previous
values for theta. If this is the first frame in which a vessel is
observed, the vessel is assumed to have had an angle of 0 radians
from the axis and 0 m

s . At this stage, CPA time is set to a sentinel
value for every vessel that has left our vessel’s view. Section 2.8
explains why this missing-mover distinction is useful. Finally, the
combination of these features are used to create 7 discrete features
which are codified as strings as specified in Table 2. These
consist of:

• Relative angle: The other vessel is either facing toward or
away from our vessel.

TABLE 1 | Graphs on the left represent the histogram of most emissions by behavior in the training set. Observable symbols are described in Table 2. Graphs in the center
represent the prediction plots of a given scenario for each primary behavior. Graphs on the right represent the xy coordinate plots of the corresponding scenario for each
primary behavior. The blue line represents the defending mover, wheres the red line represents the potentially hostile mover.
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• Delta location: The distance between our vessel and the
other vessel is either increasing, decreasing, or hasn’t
changed beyond a threshold of 1 m.

• Delta speed: The velocity of the other vessel has either
accelerated, decelerated, or has not changed by more
than 1 m

s .
• Delta angle: The other vessel is either facing more toward
or more away from our vessel than it was last frame. This
is constant if the angle has changed by less than
0.01 radians.

• Delta relative heading: Compared to the previous frame,
each vessels heading may be more toward (decreasing) or
more away (increasing) from each other. This is considered
constant if the angle has changed by less than 0.001 radians.
It is important to understand that the heading is distinct
from the angle of a naval vessel; its heading is the direction
of its movement, while its angle is the direction it is facing.
These may differ to sideslip, or the tendency of ships to move
sideways on the surface of the water.

• CPA time: The CPA Time is negative if the vessels are
moving away from each other and positive if the vessels are
moving toward each other.

• CPA distance threshold: The CPA distance of each other
vessel is either above or below a threshold of 200 m.

Each individual HMM accepts only one emission per frame, so all
of the discrete variables we have now computedmust be encoded as a
single integer per frame. For any frame, we concatenate the symbols
in order to create a single string, called a collapsed observation. Then,
we get the index of this frame’s collapsed observation from a sorted
list of all possible collapsed observations. The index of our collapsed
observation is what we consider as the emission of the hidden
Markov model for a given frame.

2.7 Sliding Window Approach
Hidden Markov models are particularly useful in intent
recognition because they process sequential data. In many
intent recognition applications, the data being generated
represents a behavior where the data is sequential (i.e. one
frame after another). One of the underlying assumptions of
the model is that only the state of the last timestep is relevant
in determining the model’s current state. Accordingly, the
transition probabilities are agnostic to any previous states
other than the most immediate. However, the probability of a

FIGURE 3 | If the loss of sensor information is less than the specified threshold, the algorithm continues attempting classifications for the next observed data. If the
number of missing frames exceeds the threshold, the algorithm must populate the rolling window before predicting vessel intent. This figure uses a 20 frame buffer
window for display purposes, but the algorithm was trained using varying window sizes.

TABLE 2 | The seven features listed with their symbols and the meaning of each symbol.

Feature Symbol: Meaning Symbol: Meaning Symbol: Meaning

Relative Angle 00: Facing Toward 01: Facing Away
Delta Location 10: Moving closer 11: Moving farther 12 Stationary
Delta Speed 20: Decelerating 21: Accelerating 22: Constant
Delta Angle 30: Turning toward 31: Turning away 32: Constant
Delta Relative Heading 40: Increasing 41: Decreasing 42: Constant
CPA Time 60: Positive 61: Negative
CPA Distance Threshold 70: Above 71: Below
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sequence of emissions of any length can be determined by simply
multiplying the probabilities of each transition-emission
combination in the sequence together, and summing these
probabilities over the entire set of possible transitions.

This sequential benefit makes action recognition tasks
straightforward Afsar et al. (2015) because the length of a
sequence is known before it is analyzed. However, intent
recognition requires that we identify an intended action
before it is completed and before the time the action will take is
known. Therefore, a sliding window of size l_wdw frames is used to
make each inference. The last l_wdw frames are used in order to
make an inference on the current frame, meaning that an inference
cannot be made when less than l_wdw frames of the vessel in
question have been observed. When a new frame is retrieved and
its emission calculated, the oldest frame is deleted and a

classification is made using the remaining l_wdw. The sliding
window method has been used in various applications where
the sequential data is used, including learning text-to-speech
conversion Sejnowski and Rosenberg (1987), predicting protein
structures Qian and Sejnowski (1988), and fraud detection Fawcett
and Provost (1997).

Sliding window lengths from 2 to 49 were tested along with
varying number of hidden states, between 1 and 5. The average
results of these tests are shown in Figure 2.

2.8 Missing-Mover Handling
At times, the other vessel may completely leave the range of our
detection. Sometimes, the same vessel will then reenter view, and
a new sliding window would have to be observed before another
inference can be made. In these cases, the algorithm is unable to

FIGURE 5 |Bar plot of the early detection: behavior of scenarios when 5-
state HMMs are tested with 30-frame sliding windows.

FIGURE6 |Bar plot of the early detection: hostile of hostile (RAM, HERD,
BLOCK) scenarios when 5-state HMMs are tested with 30-frame sliding
windows.

FIGURE 7 | Bar-plots with error bars representing the quantity of
prediction transitions between primary behaviors for each intent when 5-state
HMMs are tested with 30-frame sliding windows.

FIGURE 4 | Accuracy averages with standard deviations from a rolling
window of length 30 with 5 states. These were found to be the most accurate
hyperparameters on average over all intentions.
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make classifications of potential hostile behavior, but must be able
to make such classifications when the other vessel is again within
range. This situation is managed using a threshold value that
differentiates between erratic or temporary sensor information
loss and the vessel leaving observation range completely.

When a potentially hostile mover leaves range, the last observed
emission is duplicated and added to the sliding window.
Classifications are attempted using the resulting windows, but a
counter keeps track of howmany duplicates have beenmade. Once
the counter exceeds a threshold of 10 frames, itmay be possible that
themover has deviated from its last observed course, thus the entire
window is deleted and the ship is assumed to be permanently out of
range. This method is depicted in Figure 3.

3 RESULTS

We aim to identify four specific behavior classifications of agents
in maritime domains. These four behaviors are BENIGN,
BLOCK, HERD, and RAM. We trained hidden Markov
models using 1,104 simulated scenarios (276 of each
behavior). These were used to test 8 scenarios representing
each intent unseen scenarios using one-versus-all classification.
Our classification system was evaluated based on the following
performance metrics:

• Accuracy is defined as the number of frames with correct
classification divided by the number of frames in which
classification was attempted.

• Prediction Switches is the number of times that the
prediction changed from frame-to-frame.

• Early Detection (Hostile) is the number of frames between
the first frame in which the mover is detected and the first

frame in which one of the hostile behaviors was predicted.
This metric has a minimum of l_wdw − 1 and only applies to
movers with hostile intent.

• Early Detection (Behavior) is the number of frames between
the first frame in which the mover is detected and the first
frame in which the correct classification is made. This
metric has a minimum of l_wdw − 1.

First, the average overall accuracy of our classifier for all
intentions and for each combination of number of HMM
states and sliding window length was calculated. The most
accurate consists of HMMs with 5 states looking at sliding
windows 30 frames long. Classifiers trained and tested this
way achieved an average accuracy of ∼ 67%, as depicted in
Figure 2. We focus on this case when comparing performance
on individual intentions below.

Except for HERD behaviors, the accuracy of identifying each
individual behavior is above 70%, as shown in Figure 4. We will
discuss possible explanations for HERD’s performance after a
short discussion of all of the listed performance metrics. While
this figure does not sound impressive for accuracy, consider
that the scenarios do not contain 100% the target behavior, due
to the vessels obeying the COLREGs. Also consider that
behaviors are similar in the early stages of each intent and
so although hostile behavior is consistently predicted,
misclassifications occur.

As seen in Figure 5, the classifier is able to consistently detect
the primary behaviors less than fifty frames into the scenario,
which has a total of 1,000 frames. The minimum possible early
detection is 29 because l_wdw � 30. Considering this delay in the
potential predictions, the algorithm is able to predict BLOCK,
BENIGN, and HERD behaviors within 10 frames and RAM
behaviors within 20 frames, on average. This is particularly

FIGURE 9 | Surface plot showing the accuracy of the system on
BENIGN scenarios given a large set of options for the length of the sliding
window and the number of HMM states.

FIGURE 8 | Surface plot showing the accuracy of the system on RAM
scenarios given a large set of options for the length of the sliding window and
the number of HMM states.
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important since each of the behaviors are time extended processes
with significant overlap with respect to their observable symbols,
as described below.

Our results for early detection (hostile) were very promising.
We see in Figure 6 that hostile vessels are identified as hostile
immediately when classification with a full sliding window
becomes possible. This is important because, although an
exact correct classification is not necessarily made, it is at least
immediately obvious that defensive measures must be taken.
Again, no plot is shown for BENIGN because this metric
applies only when classifying hostile ships.

Figure 7 illustrates the number of transitions between
primary behaviors that the classifier detected on average for
each intent. Due to the finite number of observable symbols and
the similarities between behaviors, some oscillation is to be
expected. The highest amount of prediction switches occurred
with BLOCK scenarios, which is due to the repetition in the
behavior throughout the scenario. The BLOCK scenarios have
significant oscillation in order to exhibit the behavior, which can
easily be confused with RAM behaviors, shown in the fourth
row. The number of switches in predictions for BENIGN
behaviors is minimal due to the simplicity of the scenarios,
but also due to the incompleteness of data for BENIGN
scenarios. The different cases of BENIGN behavior were
scenarios without another vessel in range, a vessel that is
only in range for a short time, a vessel that is mostly
stationary, or a vessel that simply passes by without incident.
In the hostile behaviors, however, the number of prediction
switches is consistently below fifteen on average, and
considering that the scenarios contained 1,000 frames, these
results are encouraging.

In examining the symbol histograms on the left side of
Table 1, we can see that the second and third most commonly

observed symbol emissions in HERD scenarios were 108 and 324.
These emissions map to collapsed observations
“00112030406070” and “01102030406070” respectively. Both of
these collapsed observations can be decoded using Table 2, but
their meaning is not necessary to see the problems they cause
when making predictions on HERD-intent vessels.
Unfortunately, we can see in the histograms for the other
three behaviors that 108 is also a common emission for RAM
scenarios, and 324 is the most common emission of all scenarios
combined. Still, these histograms were constructed using only the
training data, so it is possible that some significant artificial
difference exists between the training and test sets which
would also explain the lack of testing accuracy in HERD
scenarios.

4 DISCUSSION

4.1 Future Work
Application of this work has been focused on simulation due to
simplicity of training and testing the algorithms. In order to
further verify the functionality of the trained HMMs and
improve the training algorithm if appropriate, additional
data collection would be necessary using increasingly
sophisticated simulation techniques as well as on-water
scenarios. On-water testing would be particularly useful not
just for increased data collection, but to provide an industrial
application of this work.

Moreover, since the data that has been collected and utilized in
this research has been simulation-based, incorporating human
navigation of Naval ships would provide realistic displays of
hostile behavior in maritime domains and reasonable evasive
maneuvers by the defending vessel. Even in the case of

FIGURE 10 | Surface plot showing the accuracy of the system on
BLOCK scenarios given a large set of options for the length of the sliding
window and the number of HMM states.

FIGURE 11 | Surface plot showing the accuracy of the system on HERD
scenarios given a large set of options for the length of the sliding window and
the number of HMM states.
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autonomous vehicles, on-water testing would probably produce
different patterns due to unpredictable dispersal of waves and
possible changes in wind and weather.

Also of interest is the fact that RAM scenarios achieve
significantly better accuracy with a smaller number of states
and with a longer sliding window. This is demonstrated by the
surface plot in Figure 8. In fact, other than in HERD scenarios,
the optimal selections for l_wdw and the number of HMM states
are not usually the same as the ones we selected, and the highest
average accuracy on a by-intent basis is always higher than the
highest accuracy achieved on all intentions. Concretely, 74%
accuracy is achieved on BENIGN scenarios when using 2-state
HMMs with a 30-frame window (Figure 9), 73% accuracy is
achieved on BLOCK scenarios when using 3-state HMMs with a
27-frame window (Figure 10), and 83% accuracy is achieved on
RAM scenarios when using 2-state HMMs with a 49-frame
window. Disappointingly, peak accuracy for HERD scenarios
is only 54%, which is achieved when using 3-state HMMs
with a 2-frame window (Figure 11). Given this information, it
may be beneficial to test using a classifier where the number of
states and length of sliding window are optimal for each
individual behavior’s HMM. For this, model checking
approaches that rely on pseudo-residuals Zucchini et al.
(2016), cummulative distribution function (CDF) plots Altman
(2004) or residual analysis and stochastic reconstruction methods
Buckby et al. (2020) will be used.

Additional methods can be explored to improve the quality of
the classification. First, we will investigate the use of alternative
methods to expectation-maximization MacDonald (2014) in
order to estimate the models’ parameters. Second, we will
explore new models, such as Hidden semi-Markov models
Guédon (2003) in order to account for possibly non-geometric
sojourn distributions and provide a comparison of the results to
our current work.

4.2 CONCLUSION

Automated solutions for intent recognition in maritime domains
are limited despite successes in other domains. Hidden Markov
models offer a solution to this disparity and we present a solution
to the problem of early detection and classification of hostile

intentions using multinomial HMMs. The method is based on a
novel encoding of observable symbols as the rate of change for
parameters relevant to the task. The results show that the trained
models are capable of classifying multiple hostile intentions with
very good accuracy. In addition, the models can detect these
intentions during very early stages of the behaviors, giving ample
time for the defending vessel to take evasive maneuvers. This
approach can be applied to other domains that involve
interactions between multiple agents, in order to facilitate their
coordination and cooperation through implicit understanding of
their intentions from observed actions.
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